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In case (1), there are open sets U about a and V about b with UAV = 1,
so that (I x U)x(IxV) is open and misses K. In case (2), using the
continuity of g, there are open sets U ahout a, N about #, and M about y
with g(a',y') < o’ for each 2" ¢ N A LiyeMAlI and @ ¢U. Then
(N AL XDIx[(M ~I)x U] is open and misses B. Thus B is closed,
and it follows that ¢ is continuous,

Since I x[0,1] is a compact topological semigroup and R is a cloged
congruence, it follows that I x [0, 1)/R is again a compact topological
semigroup. Denote the natural homomorphism by 7. We have the diagram

Ix[0,113 Ix[0, 1R &

—

where g* ig the function induced by ¢. It follows fron} the continuity of ¢
that * is continuous, and is 1-1 onto and hence g homeomorphism. We
identify Ix[0,1]/R with § so that § is now a topological semigroup
and is the continuous homomorphic image of I x [0, 1]. Now let T be the
relation on Ix[0,1] defined by T'=(Ix0)x(Ix0)ud where 4 is
the diagonal of (I x[0,1])%. Then T is a closed congruence, I x [0, 1)/T
is a compact topological semigroup, and the natural mapping £ is a con-
tinuous homorphism. Since 7'C R, there is induced a continuous homeo-
morphism o as indicated:

Ix10, 115 1x[0, 1y7 5 I %[0, 1)/R = §

n

Thus § has been realized as the continuous homomorphic image of
Ix[0,1)/T, which is the “fan” over I, ie. the topological semigroup
obtained from I x[0,1] by shrinking I'x {0} to a point.
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iom

On groups of functions defined on Boolean algebras

by
S. Balcerzyk (Torud)

With an arbitrary set 7' and abelian group G on? may connect the
group of all functions o defined on T' with value§ in ¢. These groups art;
known as complete direct sums and can be considered also as %rlroups 01;
functions defined on 7' with values in & that are measurable wit ri}spifacr
to the complete Boolean algebra 27 of am‘]l subsets c:f T. Let us write fo
an arbitrary function @: T'->G and arbitrary ge &

w(g) = {t e T; w(t) =g} .

Then we obviously have

(1) w(g)e2? forall ge@,
=1,

(2) » HLEJGw(g)

{3) z(g) ~nm(g) =0 for g#yg,

(4) (+9)(9) =a,L€JGw(g’) ~ylg—9).

ralizations; let G be an arbitrary
Now we get a clear way for generalizations; an
abelian group g;)f cardinality G = m and 9 a Boolean m-additive ?gebrz
with maximal element e. Elements of the group.S.(%, @) are functions
defined on G and satisfying the following conditions:

(5) z(g)eW forall ge@,
(6) gLEJGw(Q) =0,
Y] w(g) ~na(g)=0 for g#g',

the sum # = x+y of two such functions is defined by the equation

(8) a(g) =\ olg) nylg—g) for ge a.
e .
Since 9B is m-additive, then the sum in (8) exists and elements 2(g)
are well-defined and satisfy conditions (5)-(7).
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It is easy to see that S(“¥, &) is an abelian group (1) and & (B, @)
is isomorphic with a complete direct sum of 7' copies of the group @ in
case P =27,

For each element @ of S(°¥, ¢) we shall write

riw) = U w(g) =[2(0)].
0#geld
Let 9 De an arbitrary (fmltely additive) ideal in the algebra ¥ and 94
the least o-ideal containing 9. We define §(9) as being the set of all
clements @ ¢ §(N, @) with »(z) e 9
(9) 8(9) = {m e 8(°B, (A); »(x) e I} .
Since the relation »(x—y) C»(x) v »(y) holds, the set §(9) is a subgroup
of 8(98, &).
The purpose of this paper is to give the structure of the factor groups

8(95)/8(9) for the torsion free group G: these groups are torsion free
culgebmlmlly compact groups in the sense of Kaplansky (see [7] and § 3
below). In the special case of groups §(27, ¢) and ideals 9* consisting
of all subsets of 7' of cardinality < s, all cardinal invariants of those
- groups are found (by freely using Cantor’s Generalized Continuum Hypo-
thesis, i.e. 2% = g4, for all ordinals a). In the second part we present
some theorems relating homomorphisms of groups §(9%, &) in slender
groups with measures defined on 9. In the last section, § 9, we present
two theorems on groups 8(93, @) in the case of m-distributive Boolean
algebra 3; if @ is an algebraically compact group, then §(%, G) is zmlso
such a group; if @ is complete direct sum @ = 2 Gy, then

S(8, X" a) = D8, @).

tel tel’

Some of the 1esults contained in this paper were communicated
in [1].

I wish express my gratitude and thanks to Professor J. Eo§ and
Dr. E. Sgsiada for their helpful suggestions.
§ 1. Notations and lemmas. All groups that will be considered
are abelian ones. If {G}iex is a family of groups, then 3™ @ is the complete
. teT
direct sum of the family {Gy}, i.e. the group of all functions @ defined on T
such that z(t) € @4 for ¢ e 7. The subgroup of the group Z @, consisting

of all functions # with #(t) = 0 for almost all ¢ ¢ 7' is ‘rhu dlsuetc direct
sum of the family {G4} and is denoted by ) G. If all groups G, ave identical
¢ tel

(*} The definition of the growps §(%J, @) is due to J. Loé.
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with a group @, then the group ! 21,:* Gy is denoted by Gf or GF and the
_ €
group 2 Gg by GT or GT.

The group of rational integers is denoted by €, that of rationals by R,
that of p-adic 1ntegem by I,. 0y is a cyclic group of prime order p, Pis
the set of all primes P = (py, Py, ...).

We shall prove three simple lemmas, which will be used in the proof
of Theorem 1.

Levua 1. Let G be a group and B o G-additive Boolean algebra.
Then for @,y € 8(°8, @) and n = +1, 2, ... the following two conditions
are equivalent:

i) v= 'n'w:

(i) y(g U a(g') for g enG and y(g) =0 for g¢ nG.

Proof. Since an equality (—y)(g) = y(—g) holds, it is sufficient to
prove our lemma for positive integers » only. We shall prove the impli-
cation (i)=-(ii) inductively with respect to #; for m =1 it is obvious.
Let us suppose that the above implication holds for m—1; then

Uwg g) nl(n—1)a](g") =UJ

g (n—1)g"=g’

y(g) = ©(g—9') nal(g”) .
The element w(g g') nz(g’”) is not empty only if ¢ _; ¢ = ¢''. Moreover
(n—1)g"" = ¢’ and the two relations imply g = ng’’ and the double join
is reduced to |J 2(¢"”) = y(9).
ngTeg
Let @,y be elements of 8(°8, &) satisfying (ii). Then by the result
just proved (nx)(g) = y(g) for all ¢ € G and consequently y = na.

CorROLLARY. Hlement y € S(B, @) belongs to n8(B, &) if and o'nly
if y(g) =0 for g ¢ nG.

LeMmA 2. If G 48 torsion free and § is a o‘-ideal containing 9: D9,
% 18 the natural homomorphism of 8(F) on 8(9)/8(9),  is an element of 8(9)
and for a fized positive integer m the join of all 'u(g) with g¢n@ U 2(g)

0¢n@
8 in 9, then y(x) € n(8(3)/8(9)).

Proof. Tt is sufficient to find such an eclement yeS(g) that
»(ny—w) e 9. We define y by the following relations:

y(g) ==z(ng) for gs£0, y(0)=w(0)w U alg)
géne
At firgt we prove for g £ 0
, , it ¢ #0,
(ny)(g") ~ a(g ~g)={ y(0) ~a(—g) if ¢ =0.

Fundamenta Mathematicae, T. L (1962) 24
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In fact, if ¢'¢n@, then (ny)(g') =0; it ¢ = ng'’ # 0, then (ny) (ng")
=y(g") = 2(¢') and @(g") ~ z(g’—g) = 0 because g 5= 0. The lagt case
g'. = 0, follows by the equality (ny)(0) = y(0). By the definition of aJdZ
dition we have (ny—)(g) = y(0) ~ @(—g) for g # 0, and consequently
vy —o) = y(0) A (@) = [2(0) v U @(g)] ~ v(®) = |J @(g) ¢TI, whence

g¢n@
ny—x e §(9) holds. vine
Lumuma 3. Let g1, ..., gu be elements of o group G and py, ..., py dif-

ferent primes; then there exvists an element g e G suoh that g—g, € P71 @
G~ € Pr G- ‘

Proof. Let us denote 7 = (p;..px)" then there exist it
; here  exist integers
Kyy ooy kn such that ’ s

g seey

r v
—ki=1(p]).

P4
It we write
7
mi=—lki, g=mg+..--mugn,
then
mi=1(p7), my=0(p}

for j + ¢ and consequently g—g; e p}6G.

§ 2. p-complete groups. If & is an arbitrary group and p a prime,
then the subgroup of all elements of infinite p-height is defined as the

meet: po@ ="Ol p*G. If p~@ = {0}, then the group @ admits p-adie

{(Hausdorff) topology: a complete set of neighbourhoods of 0 consists of
f;ubgroupﬂ p“‘G. "l‘he group G (with p* @ ={0}) is called p-complete if it
is complete in its p-adic topology, i.e. every COauchy sequence is con-
vergent (a' sequence {g,} of elements of & is a Cauchy sequence if for
each positive integer % there exists an integer N (k) such that, for each
%2 N(k), gu—gna € p*@). ,

- § 3. Algebral‘cally compact groups. Let us recall the defi-
nition of an algebraically compact group (see [7], p. B6): a group 4 is
algebraioally compact if and only if it has a form 4 = 4,+ 3"* A, and 4,
: ] pEP
is a filvmlble group, 4, (for p « P) has no element of infinite p-height
and is p-complete.

The groups .4, are isomorphic to A/p>A ' axi
divisiblo subgroup ot . rp [p and 4,'is the maximal

If A is a torsion free group, then 4y = M p* A and it is eagy to verify
the following o
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LemmA 4. A torsion free group A is algebraically compact if and
only if it possesses two properties:

(i) A/p* A is p-complete for each prime p,

(ii) for each sequence {a;} of elements of A there ewists such an element
acA that a—apepgA for all k=1,2, ...

Kaplansky gave an algebraic characterization of groups without
elements of infinite p-height and p-complete (see [7], p. 51). If such
a group G is torsion free then it takes the form G = complIy, i.e. the
completion in p-adic topology of the group IS (for a suitable set I').
It may be considered as the subgroup of the group of all functions defined
on I' with p-adic integer values and of at most countable support. For
each countable subset Iy of I' there exists an element of G with support
identical with I5. :

§ 4. Factor groups S(I;)/8(I). We shall prove the following

THEOREM 1. If G is o torsion free group of cardinality m and 9 is
a finitely additive ideal in a Boolean m-additive algebra B, then the factor
group A = 8(9)/8(9) is a torsion free algebraically compact group.

Proof. By Lemma 1, for n 0, v(x) =v(nz); henee, if © e 8(Ty)
and nw e §(9) for some # = 0, then 2 e 8(9) and 4 is torsion free.

Let us denote by x the natural homomorphism of 8(9) on A:
%(8(9p)) = 4; furthermore 8, = y~}(p=A) for pe P and y, the natural
homomorphism of 8(95) on 8(I)/8,. Then we bave

Afp 4~ B(O,)/S(9)]8,/8(9) ~ 8 (95)/8,

and by Lemma 4 it iy sufficient to prove that
(10) the groups A, = 8(Ip)/8, are p-complete;
(11) for each sequence {w;} of elements of 8 (Op) there exists such an element
2 € 8(Tp) that xp(®) = xp(w2) for k=1,2, ..
Let us suppose that {as} (a4 e 4, for n=1,2,...) is a Cauchy sequence.
Then for each positive integer % there exists such an N (%) that
(12) w2z N(k).

Without any restriction we may suppose that N (1) < ¥ (2) <.. We
ghall prove that there exists a sequence {zn} of elements of 8(9p) such
that

(13)

aN@—On € PEA,  for

lp(z") = AxN(n) and Rp—R%p € ?ks(gﬂ) for n > k.

Let {ys} be an arbitrary sequence of elements of 8(J) such that
Zo(Yn) = @y for all n. We define 2, = 9,; relation (12) implies Yz—¥n
€pt8(9p)+ 8, for >k and all k. Therefore ;—Yys = Pln+ua for some
the 8(9p), un €8y and n > 1. If we put yi =%, ¥n=ys+us for n>1,

42%
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then yi—ynep8(Tp) and for n2k>1 yp—yn=yr~ Yn + gy — Uiy
€ p*8(Tp) -}-Sp, and we define 2, = y;. Taking % = 2 in the above relation
we have ys—yn = p*0n-+wn for some v, e §(Tp), Wy €8p and n> 2. If
we put g1’ =¥i, ¥2' = Yz, Yn = Yn+ws for.n > 2, then yj—y; = (yé—y{)
+1—yn) € p8(95) and wn € pS(Tp); consequenﬂy Yi—Yn = Y1 — Y5~
—wn € pS(Tp) for n > 2 and y¥—yn = Ys—Yn— Wy = Py € p*8(9p), and
we define #; = yy. Thig procedure m(Ly bo continued, and finally we
get the sequence {2,} that satisfies (13).

Now we de[mo an eloment z e 8(Jp) with a property yp(2) = limay,.

The join b = U (zn) belongs to Jp and may be represented ag a join of
na=l '

o0
digjoint elements of 9: b= \Ubm (bmeT, bmm by=0 for

; m FE n).
m=
Llement # is defined by the equalities

== Glbm ~ 5m(g) for
2(0) =[ U =2(g)1 .

0#ge@

ge@, g#0,

Let us consider the difference 2—z,; by the definition of 2 we have

(0)*[Uz -—[U U b~ oy’ N =L b (o) -—U[binuzm(O)]

& H0 M=l me=1
and furthermorc
o0 o0 o0 oo
200) nd = N[ zm0)]n Ubn =1 N b 2m(0)] A by
m==1 Nl n=1 M=l
Cc Ul[b;L W 2Zu(0)] A by = | 2x(0) ~ by .
n= ) Nn=1

Since »(2x) Cb, by the above inclusion we get for ¢ 5 0

(e—2x)(g) = Uzk 9'—g) ~2(g")
CU[zkg—g) menzm( ) w2k — UzWO)mb,,
= U bm ~ [U em(g’) ~ 219’ — = U b ~ (Bm—21) (9)-

me=1

Since by (13) 2m—e2y € p*8(Jp) for m

=k, we have by Lemma 1
(zm—-zk)( )=10 for

g ¢ p¥G. Then for tho&e g we have (z—z2x)(g)

C U bm and consequently ¢U 2—2)(g) C U bm ¢ 9. By Lemma 2, clement
el
1o(2—2x) belongs to p*4,; furthermore we have, for ¢ > N (%),
1(2) — & = [p(2) — ame] +[avin— @] = gp(e— 21) + daypy— as € P* Ay .
This implies y(2) = limaa and the proof of (10) is finished.
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Let {rz} be a sequence of elements of §(J). The element ¢ = G v (@)

k=1

belongs to I and may be represented as a join of a countable set of
(=<}

disjoint elements of I: ¢ = | ¢; (6;€ 9T, ¢; ~ ¢ = 0 for ¢ # §), By Lemma 3
i=1

for each n-tuple of elements of & gy, ..., gn there exists an element g ¢ @

such that g—g¢; e PTG, ..., §—gn e pn@; we denote by ¢(gys ..., gn) oODE

of those elements guch that g s 0 (it exists because & is torsion free).
We ghall prove that element % e 8(95) defined by equalities

o0
=nL_JlU001(gl) a
2(0) =[ U =(g)]
0#g €
(the second join is taken over all g, ..., gs» € @ such that @(gy, ...
satisfies (11). It is easy to verify that «(0) =¢'.

Let us take an arbitrary prime p; and an integer m >
for g’ #0, (0) ~ 2 (—¢') C2(0) ~ c= 0, we get

o Talgn) N6 for g0,

) gn) = g)

> k; then, since

(—ax)(g") Uw(g) ~aulg—g')
= U U Uzigy) ~ oo ~ Bn(gn) A on ~ a{g—¢') .
g#0 n=1
Corvvbpavld U Usdgr) ~alg—g') .
0#0 n=m

The element wx(gr) ~ #x(g—g’) is not empty only in the case of g = g—¢';
if n>m, then ¢ = g—gp € P3G C pi @ because g = ¢(gy, ..., gu). There-
fore, if ¢' ¢ pi @, then (x—2 )(¢")Ce v .. U Cp— €9, and consequently

U (@—ax)(g') € 9. By Lemma 2, yn(0—axx) € pi Ay, for all m >k
o¢pEE

since pg’ Ap, = {0}, we have ypu,(®) = xp({2x) and the proof of (11) is finished.

§ 5. Special cases. Let 93 = 27 be a Boolean algebra of all subsets
of a set T and let @ be an arbitrary group. Then the group 8 (%‘ @) may
be identified with the complete direct sum G* and, for e G*, v(z) is
the set {t e T; a(t) # 0}. For an arbitrary finitely additive ideal 9 in 9B
the group S(Q) congigts of all elements @ € Gf with »(z) = 9. By Theo-
rem 1 we immediately get

THEOREM 2. If G i8 a forsion free g?'oup and 9 is a finitely additive
ideal of subsets of T, then the group 8(9p)/8(9)={x € GT; v(x) e T} {mp € G*,
»(x) e I} 18 a torsion free algebraically compact group.

The direct proof of this theorem is simpler from the technieal point
of view than that of Theorem 1. In that case all the functions under
consideration can be defined explicitly, not by their counterimages, as
in the proof of Theorem 1.
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From now on we shall consider the factor groups mentioned in Theo-
rem 2 for G = C.

Let T be a set of cardinality x; and 9* the ideal congisting of all
subsets Ty of T with Ty < 8,. The ideal 95 is different from 9% if and
only if s, is the sum of a countable number of alephs less than w,. In
that case the ideal 9f is identical with 9.

Oonsistently with the notation used in [8] we shall denote by 8%
the subgroup 8(9%) of OR. Using Theorem 2 we shall study the structure
of groups 87%'/83 for x confinal with w, (i.c. cfx = 0).

Let us recall the following useful

Dermirion. For an arbitrary ordinal o the symbol cfa denotes the
least ordinal y such that w, is confinal with Wy,

.Tarski proved (admitting Cantor’s Generalized Continuum Hypo-
thesis) the following propositions:

(14) R?" == {Nﬂ. for %< cfl’
N1 for x> cfAd.

(15) I f % << Athen the Jamily of all subsets of cardinality 8, (< R,) contained
in a set T with T =, is of cardinality wy(x;) in the case of cfA > §,
R241(8;) in the case of cfd = % and 8341(8241) 0 the case of cf) < x
(see [13]).

We shall deduce, as an easy consequence of the preceding propositions,
the following

LEMMA 5. Let T be an arbitrary set of cordinality x,, and let » be

an ordinal with 8 < 4. Then there ewists a family K, of subsets of T having

the properties
() If XK, then XC T and X = »,.
() If X, Y eK, and X % Y then X = Y =u,.

({il) 9, =&, in the case of cfd>n, and K, = K300 in the case of
cfd < .

Proof. By the equality x; = N,-8, the set T may be congidered
a8 a cartesian product T' = T, x T, with T, = %, and T, = &,. We define
%K« as the family of sets of the form X — Xy % Ty with X, C T, and X, = &,.
By (15) the family K, possesses all the desired properties.

We shall prove two lemmas that give the cardinal invariants of
factor groups S7+Y/e%.

LEMMA 6. For an arbitrary prime p and ordinals %y A with » <A
and ctx = 0 the group A, = 518 satisfies: A, = x, in the case of efd >
and Ay =R, in the case of cf2 < » (2).

; Q) T}izi greto)up +S,, i8 the same one as has been defined in the proof of Theorem 1,
6 By =y [p*(8%7Y8%)], where y is the natural homomorphism of 85 onto §%*Y/8%.
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Proof. Let T be a set of cardinality s, and X, a family of subsets
of T with all the properties of Lemma 5. For each X of %, a function
defined by relations:

1 for

0 for

te X,

alt) = TP

belongs to 851, and it is easy to prove that the images of those functions
by homomorphisms x, (defined in the proof of Theorem 1) are all different;
then A, > ,. On the other hand 4, < §;™ and the cardinality of the
group 87! is not greater than that of the family of all subsets of T' of
cardinality < s, multiplied by 2%. The lemma follows by the properties
of K, and by (15).

LEMMA 7. If » < A and cfx = 0, then the cordinality of the maximal
divisible subgroup of the group 878y is x; in the case of cfi> x and is
N1+1 n the case of cfd < ».

The proof may be carried out in the same way as preceding one,

00 =

by defining for arbitrary X e °X, a decomposition X = UIX,l with X, < 8
n=

and then the elements

tEXn;
t¢ X,

LeMMA 8. Let G be a torsion free algebraically compact group with
PG = {0} and G = 8,. Then cfa> 0 and the group s of the form:

G = compl(I:“) in the case of a limit ordinal a,

G = Iﬁs*l in the case of « not being a limit ordinal and cf(a—1)> 0,

& = compl(I}e) or INe=* in the case of a not being a limit ordinal,

a>1 and cf(a—1) =0,

G =1Ip,Ip, ..., compl(I}) or It in the case of a =1
according to whether G (in the p-adic topology) confains o dense subse
of cardinality %,., or not.

Proof. By the theorem of Kaplansky, the group G has the form
G = compl(I}) and using the same method as in the proof of Lemma 5
one may find ‘

n!  for

(t) = 0 for

cff>0,
cff=0.

8g in the case of

e _
compl(I}¥) = in the case of

Rpt1
It follows that no group @ has power &, with cfa =0 (i.t can be proved
independently of Kaplansky’s characterization, by wusing the method
of Baire’s category theorem). oL

The group I;ﬁ: is algebraically compact and has cardinality Ry41.
The factor group IN/pIY is isomorphic to (Ip/pIp)¥r s (Op)r and then
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is of cardinality »,.,. Since the cardinality of a dense subset (in p-adic
topology) of a group H is at least I'ﬁiﬁ', then the group I does not
contain a dense subset of cardinality s, . ?

Let a be a limit ordinal with cfa > 0; then ¢ = compl (1),

Suppose that a is not a limit ordinal and cf{a—1) > 0. ?Bhen the
cardinality of compl(Ife) is 8, and G = compl(I3e). The group I¥e-
Iy of cardinality », and, being algebraically compaﬁt, it is isomorp’]l;ic
to compl(I¥e). Consequently & = I¥e,

Suppose that « is not a limit ordinal, « > 1 and c¢f(a—1) = 0. Then
the groups eompl(I;“—l) and compl(I:“) are of cardinality s,. The first
one containg a dense subset of cardinality 8,., and since I;_f‘:—l is of car-
dinality x, and does not contain guch a seb, it is igomorphic to compl (I¥s).,

The last case, @ = 1, can be discussed in g similar manner. ?

Now we are able to give a simple proof of

TeroREM 3. If x and A are ordinals such that » <A and efx = 0,
then the factor group STYSE is algebraically compact and

(1) 85t 8)ms RN ‘2:1:&"1 in the case of A mot being a limit ordinal
and 1> 0, ’

(i) 83y~ RN Z:compl(lg“) in the case of A being a limit ordinal
and cfd> x, "

(i) 8387 ms R¥H+1 +p§)*1:z in the case of A being a limit ordinal
and cf ) < x.

The groups of (i) and (iil) admit compact topologies.

_Proof. By Theorem 2 the group & = Y8} is a torsion free alge-
braically compact group. By Lemma 7 the divisible part of @ is of the
form deseribed.

Let us suppose that of 1 < %. Then ﬁp = N3+1 and using the results
of Lemma 8 we shall consider two cagses:

a) cf1> 0; then @, = .
‘ b} efd = 0; we can take into consideration the functions w(t) defined
in the proof of Lemma 6. The difference of two such functions a,—a,
takes ’Xrailues lor —1 on g get of cardinality s, and then (since the elements
of p&;™ + 8, take values not divisible by p only on a set of cardinality
<R 2o(®) — 1(@,) ¢ 2@, Oonsequently @, /p@, = 5,4, and @, has no
dense subset of cardinality x,. By Lemma 8, Gy =I%

— »*

Let uws suppose that cfi> . Then Gp = §; and using the results
of Lemma 8 we shall consider three special cases:

€) 4 18 a limit ordinal; then Gp = compl (1),

d) 2 is mot a Uimit ordinal and cf(1—1) > 0; then G = I¥-1,
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e) A is not a limit ordinal and cf(A—1) = 0; there exist 8, functions
in 83+ with disjoint supports of cardinality , and taking only the values 0
and 1. By the same reasoning as before the images of those functions
by x» are all different modulo pGy,; then Gop@, =%, and @, =I:é‘1.
To prove the last part of the theorem it is sufficient to know that
the complete direct sum of groups I, admits compact topology and the
groups BY%ti~ (BM)¥ are isomorphic to the complete direct sums of
groups of real mumbers which admit compact topology also (see [6]).
The assumption cfx = 0 in Theorem 3 is essential; if ¢f» > 0 then
in the group S§tY/S; the only element of infinite p-height (for some p)
is 0. In fact, if element x--8% is of infinite p-height, then every set
Ty = {E el pra@®)}, k=1, 2, ..., is of cardinality < &, and since efx > 0,

00
we have D Ty <8y If t¢|JT% then p*|a(t) for all k and consequently
®=1 Bt
vel;.

§ 6. Groups ;. J. Lod in paper [8] has considered groups o}
= 94*Y/8; and proved some interesting properties of those groups for
and A which are not limit ordinals. We shall prove Theorem 4 concerning
the structure of groups Jj with » < A such that cfx = 0.

THEOREM 4. Let =, 1 be ordinals with » <A and cfx=0. Then
Sim B8+ ST

The structure of the first summand is fully known as a result of
Theorem 3.

Proof. The group oS§ contains a subgroup & = Y8} and the
factor group /G is isomorphic to 857/85 = S5+, which is torsion free.
Then the algebraically compact group G is pure in J} and by a theorem
of [2] it is a direct summand of oj.

§ 7. Factor groups of groups 8(%,G). We shall consider
factor groups of the form S(9, ¢)/8(9) for some ideal 9 of B.

THEOREM 5. Let G be a group of cardinality m, 98 an m- additive Boolean
algebra, and 9 its m-additive ideal. Then the factor group 8(B, G)/8(9)
ig isomorphic fo S(WB/T, @) (8).

Proof. Let ¢ be the natural homomorphism of 98 onto 9B/I; we
define the mapping ¢ of 8(B, &) in 8(WB/9, &) as follows:

P(#) == if and only if #(g) = ¢(2(g)) holds for all g ¢ @.

It is sufficient to prove three propositions:
(i) p s & homomorphic mapping,
(i) g=(0) = 8(9),

(*) Theorem & was communicated to me by Professor J. Lo&.
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(ili) @(8(B, &) = 8(B/T, @).
It 2=9(x), §=¢(y), 2 =a-+y and z = p(z), then
2g) = lelg) = «p[g,LEJGw(g’) ~ylg—9)]

=Ue@g) ~nelyl9—9) =U () ~ 5lg—g)
0'e@ veaq
and consequently
P@+y) =2=T47 =g()+p(y) .

If © is an element of 7-%(0), then for cach g e &, g % 0, element z(g)
belongs to 9 and consequently »(z) ¢ 9 by the m-additivity of 9.

Let & be an arbitrary element of §(98/9, G); then there exists such
a decompogition {#(¢)}yeq of the unit of 9B that «p(w(g)) = F(g) and it is
equivalent with §(z) = Z. '

It is known that each Boolean o-algebra 9B can be represented ag
a flactor algebra B = F/I of o-field F of subsets of & set T by some
o-ideal I (see [11]). If G is a countable group, then by Theorem 5, 8(%8, ¢)
~ 8(F, @)/8(9). Since FC 2%, then the group S(F, @) is a subgr(,)up
of. the complete direct sum GF and consequently each group 8(%B, G)
with countable & iy isomorphic with a factor group of some subgr(,)up
of the complete direct sum of sufficiently great.mumbers of copies of the
group @G.

”l“I-IEOBEM 6. If B is an m-additive Boolean algebra, 9 is a finitely
qdd@twe ideal in B, and G is a torsion free group of cardinality m, then
the group 8(95)/8(9) is o direct summand of 8(B, G)8(9). If m=n,
then 8(B, 4)/8(9) ~ 8(95)/8(9) + 8(9B/95, ).

Proof. The proof is similar to that of Theorem 4. The grou
8(9)/8(9) is pure in (9B, @)/8(9) and by Theorem 1 it is algebra%call?
compact. Then by a result of [2] it is a direet sammand. The group
S(%, @)/8(9) containg the subgroup 8(I)/8(9) and the factor group
S(%, G)/S(Q)/S(Qﬁ)/S(Q)NS(%, @)/8(9p) 18, by Theorem 5 (if m = xy),
lsomorphic with §(8/9;, @) ‘

. THEOREM 7. If 95 is a Boolean wm-additive algebra, 9 is a principal
zdea.l of B, and G is a group of cardinality m, then the subgroup S(9) is
o direct summand of §(98). v

Proof. Let 9 = 9(a) be the ideal of all elements of the form a ~ u

for u € 93. Then the common part; of the subgroups § (9(a)) and 8 (9(a")

consists of 0 only. For an arbitrary element @ of § (B, @) we define ele-
ments y and 2 by the following relations:

yi)=o(g) e, 2@ =a(g)na’ for ge@, g0,
Yy(0)=a(0) nava', 2(0)=z(0)na va. ‘

giv;jously yel8(9(a), €8(9(a')) and it is easy to verify the relation
=2,
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§ 8. Homomorphisms of groups S(°3, §). We shall prove a few
theorems on homomorphisms of groups S(93, ¢) and set of some connee-
tions between those homomorphisms and o-measures defined on 93. The
first papers concerning this problem are those of Specker [12] and Ehren-
feucht and X.of [4].

The methods used in this seetion are similar to that used in the proofs
of the theorems contained in [4].

J. Lof has defined slender groups:

DerFinirioN. The torsion free group H is slender if and only if for
every homomorphism % of the group Y ¢™ (0™ infinite cyclic group)

n=]
in the group H we have h(C™) = {0} for almost all .
Let {Ghier be a family of torsion free groups and T <&, (4 and let
us write 8* = 3*@, § = 3 &. The following theorem was proved by -
teT ted
J. %0§ and published in the book of L. Fuchs [5]:
(16) If H is a slender group, ond h a homomorphism of 8* in H such that
1(8) = {0}, then h(8*) = {0}.

E. Sasiada has proved in [9] that every torsion free, countable and
reduced group is slender.

‘We shall consider measures p defined on a o-additive Boolean
algebra O3 with values in a torsion free group H. The notion of a finitely
additive measure with values in H is analogous to that of a real-valued
measure. The o-additivity in the case of a measure taking values in H
cannot be defined in general and we restrict ourselves to measures u that
satisfy the following eonditions.

(By) If elements ay, @y, ... of O3 are disjoint, then ulan) =0 for almost
all n,
(Fy) If elemenis ay, as, ... of O3 are disjoint and p(an) = 0 forn =1, 2, ...
o
then u{\Jan) =0,
n=1
and we shall call them F-measures. Let us denote the set of all F'-measures
on 9 with values in a group H by M (98, H). This set can be considered
as an abelian group with respect to the usual addition defined by the
equality (s -+ us) (@) = p(@) + pa(a) for all a < B.
We are able to describe all measures belonging to M (%5, H) and
every such measure is uniquely determined by a finite number of measures
taking values 0 and 1 defined on 98 and by the finite set of elements of H.

(9) 8, is the least aleph (if such one exists) with the following proper?y:
there exists a o-measure  taking values 0 and 1 defined on all subsets of a set M with
M = x and such that u((m)) =0 for all m ¢ M and u(M)= 1.
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THEOREM 8. If uis a F'-measure defined on 9B with values in a torsion,
n

free group H, then it is of the form u(a) = 3 u(a)-h; (a €B), By ooy fin
i=1

being measures taking values 0 and 1 on 9B, hy, ey hn elements of H. The
MEASUTES iy ..y thn (if all different) and elements hy, ..., by (if different from 0)
are uniquely determined (to the order) by the measure -

The first to prove thiy theorem was probably A. Birula-Biatynicki;
the proof just presented is due to J. Foé.

Proof. Let 9 be a o-ideal in 9B consisting of all elements a, @eP,
such that u(b) = 0 for all b contained in a, b C a. In the algebra B = PBI9
we define the measure z by an equality u(Z) = p(a) (@ is the coset of a).
Obviously if @< % and @ s 0, then there exists a 5C @ such that u(d)
# 0. The algebra 9B is finite; in the opposite case there exists an infinite
sequence &,, @,, ... of digjoint elements of 93 such that (@) % 0 and con-
sequently in the algebra 93 there exists an infinite sequence of disjoint
elements a,, ay, ... such that u(a,) s 0—this is impossible since u is a F-
measure. The finite algebra 9B is the algebra generated by its atoms
by ey bn and E(B) =h; £ 0 for i= 1,..,n We define o-measures
H1s ey i, taking values 0 and 1, by the equalities

1 it adk,
”’(a)*{o £ @AB=0.

By the definition of w, ..., us it follows that 2@~ b)) = ula) by, and
consequently for « ¢ B we have

n n
wlo) = YE@A8) = X i) b
=1 i=1
The representation of u as a linear form is unique since for every
finite set of o-measures taking values 0 and 1 defined on 98 there exist
such elements ¢, ..., ¢, of 9B that p(e;) =1 and ui(es) = 0 for 4 # j.
Let g, be an arbitrary elements, different from 0, of the torgion free
group G. For an arbitrary element ¢ of 98 we denote by @, the element
(“characteristic funetion”) of 8(B, B) defined as follows:

Talg) =0, @a(0)=0a', @lg)=0 for g#0,g%g.
. LeMMA 9. If ay, ay, ... are disjoint elements of B, and 8*(ay, a, ...)
i8 the subgroup of S(WB, @) that consists of elements © having the properties
(i) 2(g) =0 for g #= mgy, m =0, :E17 2, ..,
(1) @(mgy) ~ az = ay, or 0 for all %, m,
then there ewists am isomorphism y of the group S*(a, g, ...y onto 3F0™ such

ne=]1
that y(2a,) = en, ea being a generator of the group O™,
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Proof. Isomorphism g is defined by the relation (@) = {knen)
and kn = m for such » that a, C x(mg,); it is easy to see that y has all
above properties.

TeEOREM 9. If H is a slender group and heHom (8(9%, @), H),
@ being torsion free, then the function p defined on B b'y an equality ,u.(a)
= h(zg) is o F-measure on B and the mapping h->p is & homomorphism
of Hom(S(%B, G), H) into the group M (B, H).

Proof. Since #uu..va = Ba+ -+ %, for disjoint a, ..., as holds,
4 is obviously a finitely additive measure. Let ay, ay, ... be a sequence
of disjoint elements of 9B and consider the subgroup S*(a,, g, o) (:ili
8(%, @) and the isomorphism defined in Ler}flma, 9. The function hy
is a homomorphism of §* in H and since H ig slender, hp—Yea) = 0 for
almost all » and consequently u(as) = h(x,,) = 0 for almost all =.

o 2 . .
If plag) =0forn=1,2, .., a= U1a»n, and elements a, are disjoint,
ne

then hyp—Ye,) =0 and by (16) hy~* = 0. Consequently u(a) = h(wg) = 0.

TrEoREM 10. If G is a torsion free group with & < s,, B is a é-ad-
ditive Boolean olgebra and p is a F-measure defined on B wzth. integer
values, then defining the function h on 8(B, G) by the equality h(x)

= X plw(g) g we get the homomorphism of 8(9B, &) into &. The mapping
G -
yzh is @ homomorphic one and maps M (9B, C) into Hom(S(B, &), &).

Proof. Using standard arguments (see [3]) one can easily prove
that for every set of disjoint elements a,¢%B, g ¢ @, we have y(gLEJGag)

= ulag,) + ...+ p(ay,) for some gy, ..., gn € G-
If @,y are elements of (9%, ) and z = a+y, then

h(@+1) = h(z) = D, nle(g) g
= u[gw(g’) ~ylg—g)g
= ZZ o) ~ylg—g)g + ;Z ula(g) ~y(g—g)1(9—9)
= Z; wlo(g) ~ y(a—a’)lq%%’%} wlo(g’) ~y(g)]-9"”
xZu(m(g’))w’Jr Z ulyg")-g"
=7Z(w)+h('3l) . ”

All the sums are finite and the operations that have been performed are
admissible.
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TaEOREM 11. If B i o-additive Boolean algebra and pis o F-measure

defined on B with values in the group I, then defining the function b on
+00

8(B, 0) by the equality h(x) =

9

pX %-M(w(n)) we get the homomorphism
= — OO

of 8(98, C) into H. The mapping u-h is homomorphic one and maps
M(DB, H) into Hom (8(B, 0), H).

The proof of Theorem 11 iy similar o that of Theorem 10.

The only essential property of the group of rational integers used
in Theorems 10 and 11 iy that there exists a bilinear mapping of ¢ x @
into G (vesp. ¢ x H into H); hence Doth theorems may be appropriately
generalized.

The homomorphisms that we have got in Theorems 10 and 11 Starting
with a given F'- measure are, in fact, integrals (with respect to this measure)
in 9B in the sense of Sikorski’s paper [10]. Sikorski has congidered g-mea-
sures with real values and has defined the integral for a Lhomomorphism
of the o-algebra of Borel sets on the real line into 93, but this definition
may be adopted to in the situation presented. The generalization of the
notion of real function on 93 which ig used in [10] is similar to that dis-
cussed at the beginning of our paper.

By Theorem 9 we get the natural homomorphic mapping of the
group Hom (§(8, &), H) in the group M (B, H); this mapping is, in
general, not isomorphic. In order to have more precise information about
that mapping we need some lemma, concerning the uniqueness of ex-
tending the homomorphism defined on the sabgroup S(9) to the homo-
morphism defined on & (Dg).

LeMMA 10. If O s q finitely additive ideal in a o-additive Boolean
algebra B, an h is a homomorphism of 8 (B, C) into a slender group H
and h(z,) = 0 for a €9, then W{z) =0 for x ¢ 8(9p).

Proof. If # is an arbitrary element of §(9p), then (@) = yom('vz) €9

n
and v(z) may be represented as a join of disjoint elements a,, ¢ 9: »(2)
o
=mUlam in such a manner that each an 18 contained in one of the @ (n).
By Lemma 9, there exists an isomorphism that maps S*(ay, @, ...) onto

8% = Z;*{en}; ¥(%a,) = en. By an equality Fy(z) = h(z) we define o homo-
=

morphism % of §* into H such that h(es) =0 for n=1,2, .. By (16)
we have % = 0 and then hiz) = 0,

TEEOREM 12. If 9 is o o-additive Boolean algebra and H is a slender

group and for arbitrary o of B %q 8 an element of 8(98, C) defined by the
equalities

Tofl) =a, 2400)=a’ y W) =0 for g% 0,1,
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then the mapping of the group Hom(8(%, G),H) onto M (B, H): h—u
defined as follows
/ ula) = h(xg)

is isomorphic, and the reciprocal mapping: p—>h is the following one

+oo
hiz) = Z n-plw(n)) .
N=—00

Proof. At first we shall prove the mapping #->p to be isomorphic.
It is obviously homomorphic; let us suppose that (w,) = 0 for a]lfa € C)?l
Then by Lemma 10 (taking Q:Q,;:‘?B), we have h(m)f:;)n 3;- ;\.{)
zel(W, C) and h=0. Let u be an a}‘bltra,ry F-measure o 1( rh, )
and consider the bomomorphism & defined above; then evidently h(w,
= is the image of h.
B ”(gitagdb: a,lsl zl‘bitrars finitely additive ideal in 93, H a slend_el" groulé
and let us consider the subgroup of Hom(S(%, 0), H) consmtni% o11
all honlomorphisms b such that h(z,) = 0 for all @ € 9. By Lemmg da5
these homomorphisms are 0 on the group §(9). By Theorems 12 an
; llowing theorem holds: N
e f'.(E)H;‘())VREix 13. If B 4s a o-additive Boolean algebra, 9 is a fza.mtley
additive ideal in B3 and H is a slender group, then the subgroup consastmg
of all homomorphisms h e Hom(S(%8, 0), H) such that h(we) =0 for a
a €9 is isomorphic with the group M (B[9, H).

§ 9. Groups 8(B, @) with distributive 93. For complete direct
sums the following ‘“‘commutativity” holds:

g
(Sl S
ieT ieT
or, which is equivalent,

8(2%, Dra)~ 378", 6
teT tel

for an arbitrary set V. This last relation can be geneljalized t:hgmo;g:

8(MB, &), but we must impose some additional assumptions on the a

bra Q3. o -
DEFINITION. The m-additive Boolean algebra 98 is said to be m-distri

butive if the relation
U ae=1) ()0
tel uel; JeF ta

(F' being the set of all functions f defined on T' Wiﬂl' ;ra'lues g‘t)_ﬁtn<zz
holds for arbitrary mon-empty sets T, Us (¢« T) satisfying 2 Ues

and for arbitrary elements ay, € 3.
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TemorEM 14. Let {G4}, te T, be a family of groups, §* = Z*G,,
n= 2 Gy and lot B be a 8*-additive and n-distributive Boolean algebm
Them

8(m, Dra)~ 88, @ .

tel leT

Proof. We define an isomorphic mapping from left to right ag
follows: let ug write
W
= D6
te T\(t)
and for @ < 8(98, 8*)

p@) =< and  afg) = U a(n+g).
MS,
We ghall prove four properties of the mapping ¢ just defined.
1. @€ 8(98, G4). In fact, for each pair of different elements G, gi e @
we have @(g;+¢9) ~ 2(gi-+g') = 0 for g, 9 €8f and moreover

U o(ge) = U 2(g) =
neGy ges*

2. p(z+y) = p(2)+o(y) ']‘or each pair ®,y e 8(W, 8*). Let us write
#=0+y, o) = ), o(@) = <@, ¢(y) = (ysd; then
=Uzg+9)=U Ua@)nyg+g—g)

ges; ) 068 g'esn

=Uo@)nUylgtg—g) = L) 2(g) o~ ylge—aD)

055

=U U=@gi+g) ~ydg—gi)

0‘ €Gy ﬂ’(ﬂ,

U 201 ~ Yilgi— g7) = (@ +y1) (90);
0‘€G‘¢

thus 2, = @ +y; and ¢(2) = (@) +@(y).

3. @ = 0 implies qo(m) 5 0. In fact, if » ¢ 0 then there existys such
& ge8*% g0 that x(g) # 0; moreover, for some #, e T we have ¢, 50
and then w(g;,) D w(g) 5 0 a.nd o(®) = Lw> # 0.

4. Let oy 8(B, @) for all t « T and congider an element @ ¢ 8(<8, 8%
defined by

x(g) =‘Q o(gr)  for each g = (g> e B*.

The elements w(g) are obviously digjoint and

0 = Qato) =) Wi =
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by the n-distributivity of 98. Moreover, for y. = p(x) we have

Yilg1,) = U z(g1,+9)

geS,o

U U @dg) ~ mi(g,)

€Sy, teT\()

= Ty(ge) » U N @dg)

€Sy, 1€ T\(to)
= Zu(n,) f\w}‘\J%) ”Hh % ga) = 2u(G1);
thus 9y, = @, for an arbitrarily chosen #, e 7.

All 1-4 imply ¢ to be an isomorphic mapping.

It is known that the complete direct sum of algebraically compact
groups is also such a group. We generalize this theorem to groups 8(9, &).
At first we shall prove a very special case of that theorem.

Lemuma 11. Let G be an infinite algebraically compact growp with
p*G = {0}, @ G = Nq, cfa> 0, and let B be a G-additive.and G-distributive
Boolean algebra; then S(98B, @) is also algebraically compact growp.

Proof. Let us write § = 8(98, @); since p* G = {0}, then by Lemma 1
it follows that p* 8 = {0} and the p-adic topology of § satisties separation
axioms.

Let {zx} be a sequence of elements of § that satisfy the Cauchy
condition:

(17) for each k, there ewists an N (k) such that for each n,m > N (k)
) B — Tm € PES holds.
It ﬁ #;(¢:) # 0 then
f=1
(18) In—gm e p*G for all n,m = N(k)

and the sequence {g;} converges. In fact, we have the inclusions

o0

Q 25(g4) C 2n(gn) ~ Tm(gm)
CU #a(g') ~ tm(gm—gn+9') = (@n—m) (gn—gm) ,
o )
and by ow assumptions, Lemma 1 and (17) we have gn—gm € p*G.

‘We shall prove that the sequence {#} converges in the p -adic topolcgy
of 8 to the element # defined by the equality

(19) 2(g) = U () 99

the join being taken ever all sequences {g;} (g; « &) convergent to g (by
our assumption cfa> 0 and we have G = @ summands).
Fundamenta Mathematicae, T, L (1962) ' 25
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At first we prove meS; all 2(g) are obviously disjoint, Using the
distributivity of 8 we get

L!’Jw(m = Uﬁwt(gt) = (l;ﬂ ﬁwi(m) :ﬁy #{g) = e,

the join in the second term being taken over all convergent sequences {g;}
that in the third one over all sequences {g;}. ’

We shall consider the difference 23— for § = N (k). By the definition
of # we have the relation

@i=a)(g) = alg+9) ~ alg) = U ﬁ air) ,

the join in the last term being taken over all convergent' sequences {g;}
such that gy = g—{-h‘imgh Let us suppose that (w;—)(9) % 0; then for
fome sequence {g;} with the above properties we have (0% @(g:) % 0, and
=1
by (18) for m > N (k) we have lim g;—gm e p* G and g;— gy = (g +limg;) —
. ;
—gm € P*G; consequently g e pt@ and by Lemma 1, @;—a e p*g. '

THEOREM 15. Let G be an algebraically compact group and B o G- ad-

ditive and G- distributive Boolean algebra. Then 8(98 s @) is an algebraically
compact group. '

' .P.r'oof, By Lemma 1, if @, is a divisible part of &, then S(9, G,)
iy divisible and Theorem 14 implies §(9%, @) =8(B, &) + Z*S(%;Gp)
. . pGP
@y _bgmg algebraically compact with PGy = {0}. Consequently, it is
sufficient to consider only the groups § (B, Gyp).
The group @, may be represented as

?

’ o
& = compl(Z3*) + compl Y, (Cp)™
Ne=al

X 00
for some cardinals m,, My, ... Let us write s, = 3 my; then we have
k=n

8, 2 % > ... and there exist such a cardinal s and an index N that s, = s
. sl
for » > N. It is easy to see that the group 3 (Cp)™ contains the sub-
0 n=N
group G, :»gi‘v (Cp)* and the cardinality of compl G} is ™ which is not
confinal with x, (by (14)). Finally the group G, can be represented as
N—1
6 = 3 (Opn)™ + 6y

5 Air o . . .
and @ is not confinal with % by Lemma 8 and our previous remarks.
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N1
The group 8(WB, 3 (Cpn)™) is of bounded order and thus it is algebraically
n=1

compact and the group S(98, Gy) is algebraically compact by Lemma, 11,
consequently the group 8(9, @) is also an algebraically compact group.

Remark. It is easy to construct the group §(B, &) with finite @
and S(°B, &) admitting no compact topology. In fact let 93 be any field
of sets of cardinality B =, and let & be any non-trivial finite group.
Then the group 8(B, @) is of cardinality s, and hence admits no compact,
topology.

v
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