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Developments in topological analysis *
by
G. T. Whyburn (Charlotesville)

1. Introduction. The basic topological natwre of many of the
classical results of the theory of functions of a complex variable has long
peen recognized. In recent years, as the concepts and tools of topology
have sharpened into more definitive formn and become usable by a wider
range of mathematical scholars, considerable effort has been made in
the direction of separating out those phases of classical analysis which
are topological in character and developing these in as purely a topological
way a8 is poss’ble and easy.

Tt was recognized early by Stoilow [1] that lightness and openness
of the mapping generated by a non-constant analytic function represent
the fundamental topological properties of this class of functions, in the
sense that all other topological properties of the whole class of necessity
ave congequences of these two. This has led to a most intensive interest
in and development of light open mappings and in their relation and
applications to the results of classical analytic function theory. In a paper
published in 1950 the present author [2] called attention to the desirability
of proving the lightness and openness properties in a simple and purely
topological way, based only on the assumed existence (and not continuity)
of the derivative. Such a proof was given by Ursell and Bggleston [3]
two years later, by making essential use of a topological index equivalent
to the eclagsical winding number.

Meanwhile a similar type of index had been studied and used effect-
ively by Rilenberg [4] and by Kuratowski [3] in connection with the
development of plane topology and the application of results to obtain
properties of functions of analytic type. Using the terminology and methods
of Kuratowski and Bilenberg the present author [2] was able to simplify
the Ursell-Bggelston proof and exploit the method of argument to carry
vonsiderably further the development of analysis type results by topological
means. During the preparation of the author’s book on “Topological
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Analygis” (Princeton Press, 1958) und after its Dublication, important
new steps were completed by R. L. Plunkett [6]. He was able to prove
continuity of the derivative by these mappings and, a little later, succeeded
in establishing also the openness of the derivative mapping. Lightness
of the derivative mapping had already emerged earlier as a consequence
of the identification of the set of zeros of the devivative Wwith the set at
which the mapping given by the original funection is not locally topological.

This work was clearly pointed in the direction of showing by to-
Dological methods that existence of the first derivative implies the exis-
tence of the second derivative and thus also of all higher ordered ones,
This goal was actually attained early in 1960 in some remarkable work
of B. H. Connell [7] who effected the proof by making essential use of
the openness of the original mapping along with the extensibility of
openness of a mapping to the whole region B when opennes is assumed
to hold on R—p, where P e B. This latter vosult gives the maximum
modulus conclusion under a similar assumption; and by applying this
ingeniously to the ditferential quotient, Connell was able to obtain exis-
tence of the second derivative, termwise differentiably of unifo
convergent sequences and other classical rvewults in remarkably simple
faghion. Just recently Connell and Poreelli [8] have snceeeded in establish-
ing; in thig same chain of results, the power series development of » funetion
in a neighborhood of each point of & region in which the function i assumed
only to have a first derivative. Thig has taken us very far indeed in the
development of clagsical analysis from g topological base and it is con-
fidently believed that the end has not yet been reached.

Largely ag a result of a study of Connell’s and Poreelli’s papers to
which he had access i manuseript form, the present author has been
able to fit their conelusions into what is believed to be a simpler and still
more natural sequence of deductions of classical theorems of complex
variable analysis from a topological base. The essential features of this
treatment will be given in the sections that follow in the present paper.

The differential quotient fouetion

M, ) L1
for a function f(«) defined and coutinuous in
plane will play a key réle. Tt will be considered a8 a function of the two
complex variables » and Y in the cartegian product space B x R. By
developing and exploiting its uniform continuity properties on B x B— 4,
where 4 iy the diagonal of R xR, and employing standard extension
results for uniformly continuous functions, the main results ave obtained
in & surprising easy and simple way. Further, it iy not necessary to make
direct use of opennes or lightness of the mapping generated by a differen-

& region & ol the complex
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tiable function. Instead we are able to use directl'y a fo;rm qf mffxixm.u;l
modulus results already available through the c;rculgmtlon index W}AlIACI
i)revi011sly had been proven in the course of proving lightness and open-
ness. As a result we are able thus to obtain new proofs.for these two ba;;u{
topological properties as Dby-products. This ae.comphsbes a‘sulist‘a,n, ia
shortening and simplification (?f the path 1eaf1mg to 1,he§e results, ren-
dering them even more accessible by topological methods.

2. Background material. We take an arbitrary mapping ¢(z)
of an interval or simple are ab into 1'1116. complex plane Z and let P be
a point of Z— B, where B == p(ab) is the image ?f ab. (Note: all ma_pfmgs
are assumed continnoug.) Any continuons function #(x), € ab, satisfying

(1) & =p@)—p,

is ealled & continuous branch of the logarithm of q)(m).—p an(_l (1) is refer;cfi
to as an exponential representation of ¢(x)—gp. It is readily S.hOWI.l t. i\:
every ¢ has such representations and, further, that ‘ghe. w(2) is uniquely
detrmined up to an additive constant. Thus when we cefine the circulation
indem

(2)

it follows that g is independent of the particular u(») entering into the
representation (1). Also, of course,

(3) wlg, p) = pulp—p, 0)
and for any factorization @(x)—p = (@) p(®), we have
(4) w(py p) = p(py, 0)+ p(@sy 0) .

‘We note here that when no confusion is likely to .1'esu1t so‘:lii]zl (;)1' all Hﬁitil‘;e
symbols ab, @, and p in the expression uam(p, ») ma’}’r and. e‘soﬂosed'
Now in case p(b) = ¢(a) so that our “curve” orv image 1_ o ),
u(p, p) hag the form 2kni, & an in.tegfar, 80 tha‘t ?(qp, ]1;3)/3;:1, -.—f:)urq;‘,(g)
is integer valued and iy czulle(% ﬁw wz;uﬁ::g fﬁ:zbf;g(l)q; (q; )a_ pl+pi; et
is a logarithm of ¢(2)—p and thus of the I ‘ )- iaoplp ()
—p]. Further, as a function of p, u(p, p) i (;01.1‘5111110115 in pA a s
coggtant in ea’ch component of Z-— H. From this it fOHOWBItTL g(q; 3 1?J)s(;n(;
for all points p in the unbounded component of Z ——E.b nEe:t, or some
such p sufficiently remote from #, the angle subtended_ y ; inpmodulus’
hence the variation of the imaginary part of « () on B is < 2% )
= ! =0. ) )
* thI?;t kO bg ZI ginﬁ)le closed curve and lot f be a contnnlml;s ;;nlcj;t;x}
from ¢ to the complex plane. We underatapd by a tmvzrsgug o
ping ¢ of an interval or simple arcab onto C with £ (a) = {(b) omonds ontr
unique for y ¢ 0—¢(a). It is readily shown that uw(ff,p) dep

x € ab

Mab((py p) = u(b)-—u(a) )
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on the sense in which ¢ traverses 0. Thus for two traversals Cand & of ¢
we have u(fl,p) = +u(fly, p), the sign being + or — a‘cem.‘dinhti qé ¢
:'md 4"1 agree or disagree in sense. By comparing with the case Wie;; ¢
is a circle centered at p, it is easily shown that for any traversal ¢ of
arbitrary € in the complex plane and any point p \‘vithin '(J o have
(where f is the indentity mapping) ,

(6)

we have

1
o Man(8y P) = k1 == wilz, p) .

Hence we define a positive traversal of ¢ ag a ¢ for which wo get -1 in (5)
~ It is clear that for any continuons complex-valued function w = /(~5
defined on a simple closed curve ¢ in Z, all positive traversaly of ¢ i;o
l;l.le same value of ua(fl, p) for p ¢ W—£(C). Since we thus can compufe :
directly fyo.m f. on 0, we write u(f,p) instead of tat(fC, p) when thﬁ
traversal iy positive. Similarly we write we(f, p) for the windi’n numb
of f about p when the traversal is positive. # ?
Now' let f(2) Le any mapping (continuous) from a simple closed
cwrve C in a complex plane Z to a ‘complex plane W and let R be ;‘;he
interior of 0. The following additional conclusions are readily established.

(6) ;ft P ;V W ];(C’)fa.nd if f admits an extension (continuous) to R
into W—p, [or if fis gi g 28 not i
to. p,[ fis given on 0 + R and 7(0+ R) does not contain ),

we(fy p) = 0.
() If fis continnons on ¢ =+ R and if there exists a denge open subget B,

oflE—f(O), where B = j(0+R), such that f is differentiable o
[ (By), then for any p e B—f(C), wdf,p)>0. |

The conclusions already stated lead naturally and simply to the
.TB.EORF}M. If w = f(2) is continuous on a simple closed curve ¢ and
Z;»fz(t;a ing)mo; (IZ')M;? i differentiable on the inverse of a dense open subset
— s then f(R + O) consists of () tog ; tai
omponenis o T e f 1(0) together with certain bounded
CoROLLARY 1. If [f(e)| < M on O, then [f(2)| < M on O-+R.

COROLLARY 2. If f(2) is contin ) ;
P 3 f ] MUOUs  on R4-C and differentiable on
g sz %i—ﬁ(}.ﬂ o finite set of points, then [F(2)] < M on C implies [f(2)|
Fora complete treatment of the ab bopi
) V ove topics and results the reader
is refvf}'red to the aut}mr’s book on' “Topological Analyris”, Chapters V
%1;;1 K Referem_zes will be found, there to closely related work by Filen-
; g,l ufratows}n, Urgell and Eggleston and others. A similar sketch may
e 4 Ztl) ound in earlier papers by the Ppresent- author.
. tlflough the concepts and results just sketched are valid and were
proven lor completely general simple closed curves and regions in the
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plane, a treatment limited to the very simplest cases would be entirely
adequate for the applications which are to follow. Indeed, circles and
squares and their interiors along with the region between an outer square
and a finite number of inner squares provide all the generality needed.
Thus all difficulties of subdivision of regions and approximation to general
curves can be avoided.

3. The differential quotient function. Let f(x) be a complex
valued function defined and continuous in a region E of the complex
plane. We define the function

Mo, g) = HO=I0,

h(z, @) = f'(%) ,
Thus h(x, y) is defined at all points of the cartesian product space B X E
except at points of the diagonal 4 of this space where f fails to be dif-
ferentiable. Further, h(x, ¥) is continuous in (#, ¥) at all points of B x B—4
and is continuous in @ (and in y) separately at points (@, «) of 4 where
it is defined, i.e. such that f'(#) exists. We note also that h(z,y) is
gymmetric in # and ¥.

(8.1) TEmOREM. Let w = f(2) be continuous inside and on o simple
closed curve C and differentiable at all points of the interior B of O except at
o finite set F of points. Then if K is any compact set in B and Ky=K— K F,
the function h(z,y) is uniformly continuous on K,x K.

~ Proof. Let ¢> 0 be given. By uniform continuity of h(x,y) on
0 x K, there exists a 6> 0 such that

[h(t, 1) —h(t,y')| < &2

for =z,yeR, as=y;

for xeR, when f(s) exists at .

for all teC and all y,y ¢ K

with  ly—y'|<$.
Now let (@1, 91), (@q, ¥a) € Ky X K, with |o,— | < 8 and [y, —ys| < J. We
next define, for z ¢ R,
h(z) = h(z, y)—h(z, 92,  g(2) =h(@, 2)—h(21, 2) .
Then h(z) and g(2) are continuous in ¢+ K and differentiable at all points
R-—F—m—®,—y;—y, Whence, by §2, Corollary 2,
[h(2)| < n{ncaax |h(t, 1) —h(t, 92)] < g2, forall =z ¢k,

l9(2)} < r?aéx |h (@, 1) —h(wy, t)| < &2, for all zeR.
€ .
TWhence, substituting @; in the first and g, in the second of these relations,
and adding,
&> |h(@)|+ |g(y2)] = |h(@)—g(y2)]
. = |h(®y, y2)— b, Ya)— B (g, Yo) + 1 (@1, yz)_[»

= | k(@ Y2)— P (@3, Ya)| -
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(3.2) THEOREM. Let w = f(2) be continuous in a region. 8 and dif-
ferentiable at all points of 8 — T wheve T 45 o finite set of points. Then bz, y)
is defined and continuous at all points (v, y) in 8 % 8. Thus f'(w) emists and
i8 continuous at all points of §.

Let 2y be any point in 8, let ¢ be a civcle with center % and lying
together with its interior R in the region 8. Let K be a cireular disk centerecd
at % and lying in R and let Ky = K—K-F. Now since by (3.1), h(w, y)
is uniformly continuous on I, x Xy, by a standard extension result (see 1T,
(2.3) of the author’s “Topological Analysis”, for example) it admity
& unique continuous extension to the closure of Ko x Ky and thus to all
of K x K. In particular this extension ig valid at the point (%0, 2p); and
sinee (2, %) is interior to K X K, we have that

lim 7 (z, 2)) = lim j—(—i)*f(f"* == f'(%)
>ty 220

2—2,
exists. Thus since f i differentiable af 2oy h(2g, 29) Was already defined
there; and h(2, 4) must be continuous at (205 %), since it is identical with
its extension to K x K and (%0, #) s intevior to K x K. Ag Zp Was an
arbitrary point of 8, our first conclusion follows. Also, f'(x) exists at all
points of § as just shown and it is continuous af all points of 8 because
it is identical with h(m, y) on the diagonal 4 of §x . ‘

(3.21) CoROLLARY, If w == f(2) is continuous in a region 8 and dif-
feremtiable in 8 except possibly at the points of closed, totally imperfoct
subset I of 8, then f(z) is differentiable and §'(z) is continnons at all poinis
of S.

(3.3) REMOVABLE SINGULARITY TarorEM. If f(2) is bounded and

differentiable on B—2, where R is a region containing the point 2y, then
a =Hmf(2) ewists and if f(z,) is defined to be a, then f(z) is differentiable
)

at 2.

For if we define g(¢) = (z—2y)f(2) for 2 5 & and g(z) = 0, then g(z)
i8 continuous throughout R and differentisble on R—2,. Hence by (3.2),
g9(2) is differentiable also at 2y 80 that

ﬁmM =lmf(z) = a, exists.
@ —%

e ]
Hence it f(z,) is defined to be a, f(2) is continuous throughout R and,
by (3.2), it must also be differentiable in R.

(3.4) LIoUVILLE’S THEOREM. If f(2) is bounded and differentiable in
the whole plane Z, then f(z) is constant in Z.
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3 1 Y v g~ i i.'f
Tor let 2, be any point whatever in Z. Then if for any r> 0, € is
. . . . a i ' e
the cirele [z——zo| = 7, since h(z,2) is differentiable in Z, we have

—Ffl=)| _2M
1h(z0, 20| = l?acx |h(t, 2o)| = 11{13&3: lj-—[:’o—— <=-,
<@ P .
where |f(2)| <M in Z.

Hence f(2) = h(z0, %) = 0 for all z in Z, as ¢ can be arbitrarily large.
e o) = N (2
Accordingly f(z) must be constant.

cond derivative. o
:;.]rl)‘lzl‘el{;:nm\[, If §(2) is differentiable in a, region R so (itlso }I.s j(j);
Proof. Let y, be any point of K. T}}en since the.funem;)?lnb(og,i n/:h .

i coﬂtinuous (in #) everywhere in I :u}d differentiable (mAQw) at all p
bf. R—1,, by (3.2) it is also differentiable at y,. Whenc

@ =1 _ iy
_"=Y% _

B, 90) =Wy ) _ yipg .
I o

TalYo, Yo) = lim T— 1

Yy

(%)

&Yy

Thus since for @ = ¥,, ;

f'(@) (= yo) — [f () —f (%0)]

"’:,u(my ?/()) = (.’L‘—- yo)z

and since

Ho)—=f) - J@=FW) _

, (@)= == —
f’(m)—f(?/o)_f ey " ?/oﬁq ,
PR T—Yo B— 1Yo

we have
y Ta—v,

im £ @ =1 W0) _ iy i, yo) +lim —— 2T
lim = =7, zLyﬂ (25 Yo " z—1,

= 1, (%o Yo) -+ P05 Yo) = 2hz(Yos Yo)

(-”)'—f(?lo) "'f’(i'/o)

z=Yo

i . According],
by continuity of (@, y,) as given in (3.2) and Dby (+) above. Accordingly

o ists and equals 2hx(Yo, ¥o)- ) )
! (glozlf]i\fimsvenimveq the clgssic,al result that the existence of the first

derivative in a region implies the existence anq. continuity of derivatives
of all orders for a function of a complex variable.
5. Higher derivatives-order at a 'point.
(5.1) Lemma. Let f(z) be differentiable in a)a'eg

="£(0) = f'(0) ...
ovigin. If for >0 we 7;&’;7(80;(0) =1'(0) =f"(

n!

ion R oont,wining the
= f*(0) = 0, then

hmﬂﬁ exists and equals
o0 2% .
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Proof. By induction on ». For

= 11301 (f(z) /z), # =1 this follows from

Suppose it holds for » < % and that f(0) [

=1(0) ... = f*¥ )

= 0. Then
’ 4 )
liml(—@- = LLO_) =)
N 20 7"'1
Now define
71:(2) e Z-(.E}. for 2 %0 R
== () for  2=0.

== 1(0)) and ditferentiable

Then %(2) is continuous in R (since i.im h(z)
L ne . >0
for # # 0. Thus it is differentiable also at o = 0. Whence

(i) h'(O) = lim !E:)Bf = lim f(Z) .
20 & 20 SHH1
Also since = [ 4 e [ 17
s0 smee 0 = [f'(2))ieo = [f'(2)]slo = ... = [f (@))%, we have
(i) ]imj——_’(z) - [_]U_(f)lfﬂo F%+10)
o BT TR

Further, by continuity of B(z) at & =0, we pot
, we get

(i) W(0) = lim A(2) = lim A'(2) — k=11 (2)
20 50 2k T
_ml® .k
i - im
Thus by (i), (i) and (iii) we get
. . v Toplk1)
) i - i 0 L0

or
a0 L (BT
which is our conclusion for m = %1
(5.2) TemoREM. Let f(2) be ditferenti j
%;oim seB, 0o ; ,]:((a)) ¢ differentiable in o
18- constant in R. :

lim M = f(k+1)(0)
!

b region R. If for some
vy (@l derivatives of f vanish at a) then f

Proof, Suppose firgt ﬁha:t a=0=

chosen so that 1 f(a). Let the circle ¢: ]zl =7 be

Hes together with its interior in R, By (5.1), Lim (f(2)/2")
-0
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— 0 for all » and the function A(z) = f(z)fen for 2 %0, R(0) = 0, is dif-

ferentiable in R. Thus for any and all z inside C,

o) _M
BT

" )

|h(2)| < max |h(t)] < max
teC teC

where I = max [f(9)}. Thus [f(z)| < M|efrl® o that f{z) =0 for lel <.

Now in general, applying the case just handled to the function g(2)
= f(a+2)—f(a), we conclude that fla+2) =f(a) for || <r. Thus f(2)
is constant in a circular neighborhood of # = a. Since R ig connected,
f must be constant throughout R. For if R, is the set of all points 2 ¢ &
such that f(2) = f(a) in some cirenlar neighborhood of @, B, is open in R
by definition; and if b is any limit point. of R, in R, all derivatives of f
likewise vanish at b so that f(#) = f(a) in a neighborhood of b. Hence R,
is also closed in R.

(8.3) Let f(2) be non-constant and differentiable in arvegion B, let a e R
and let n be the least positive integer such that F™(a) # 0. Then

fe)—f(@) = (=—a)l"pl2) ,

where @(z) is differentiable in R and pla) # 0.
For by (5.1), if p(2) = (f(2)—1(a))/(z— @)™ for z # @ and g(a) = f*(a)/n},
lim @(z) = p(a) so that our conclusion follows.
20 +
Note. The integer n is usnally called the order or local degree of f
at the point a. .
(5.4) If f(z) is mon-constant and differentiable in a region R, for any
a € R we have 1(2) = f(a) for all 2 # a in @ sufficiently small neighborhood

of a. k

6. Lightness and openness.

(6.1) TrEoREM. If f() 48 non-constant and differentiable in a region R,
f is light and strongly open in R. ‘

By (5.4) each point of f(y) is an isolated point of f~(y), for any
y € f(R). Hence f is surely light. Now to prove Openness, let U be any
open set in B and lot w, e f(U) and 2, € U -f-Yw,). Then if C is a circle
with center 2, lying together with its interior Iin U and such that f(2) 7 0,
on C, by the theorem in § 2, f(C+1I), and therefore also f(U), contains
the complementary domain of f( () to which w, belongs. Accordingly £(T)
is open in the w-plane go that f is strongly open on R.

(6.11) CorOLLARY (Maximum modulus theorem). If |f(&)| <M on
the boundary Fr(0) of a bounded open set 0, then |f(2)| < M for all z€O0.

(For various applications see, for example, p. 77 of “Topological

Analysis.) . -
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- 7. Power series expansion. The validity of the ugnal power
series development in a neighborhood of any point of a region in which F(
is differentiable results readily with the aid of (5.1). The reader ix remindad
that, especially here, we are following proofs of Conmell and Poreell
to be found in papers referred to in §1. o
(7.1) THEOREM. Let w = f(2) be differentiable in the vegion R:
19)
’ n!
all n and the MacLanvin’s series for | converges to f for [2] < 1
Proof. By induction on . For # = 1 we have )

?)

2] <1

and be continuous on B and satis Wy [f(=)] = 1 on B. Then < 2" fou
3 iz = 7

PO o s |[TO—=FO) |
I 1 * < x| =g s max [1(t)~£(0)] “2, where (0= F—R,
- Assume
() g
{f.?(’m)l <27 Aov all k.
Define
B(e) = f@) = 1(0) 1/ (0)e— T OF [0yt
Then - (=1t

MOy =0, W(0) =F(0)~f(0) =0, ...,

hE=0(Q) = flt-1() (k—1)!7%-1(0)

(k=117
- - . bz . I |
Henee by (5.1), 1311817) exists and equals {’%,Q) which is the same
®(0 ST )
as L]‘}F') Thug
190)] )]
| SRS g = A (A (O] 2 e 20T e 0k

3 : . . . . : )/
by the induction hypothesis. Hence 1he inequality ’ff’i?) < 9" holds for
all . Thiy gives 9 :

M)

2k

< max
teCQ

M_Q(

=max |b(t)| < 2% for all k.
te

Thus |h(z)| < [22," for all % o that h(z) >0 as k-+oo0 for o] < &.
_(7.11) CoroLLARY. If f(2) ;
tnuous for |z—a| <7,
|e=~a] < }r.

i s differentiable for |g—a] <7 and con-
the Taylor’s series for 1(2)  converges to f(z) for
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8. Local topological analysis. Degree. Let f(z) be non-constant
and differentiable in a region R. As noted in (5.3) for each ¢ « B the least
positive integer %, such that f*¥(a) 0 is the local degree of f at a. Tn
particular kg = 1 if f'(a) ~ 0.
(8.1) THEOREM. For any sufficiently small simple closed curve C lying
in R and enclosing a, we have

1we[f, f{a)] = ka -
Proof. By (5.3) we have the representation

L

(F—a)?p(2), =ek,

f&)—f(a) =

where @(2) is differentiable in B and ¢(a) # 0. Now let C be taken small
cnough so that if I is its interior, then ¢4 I lies in B and the origin of
the w plane W lies in the unbounded component of W—g¢(C+I). Then
by §2, wp, 0) =0 so that by (3) and (4) of §2, we get '

welf, f(a)] = wlf()—F(a), 0] = w(z—a)*, 0]+ wigp, 0)
= w(2—a)*, 0]
= kaWo(2—a, 0)
= kate(2, a) = Fq
since wq(z, @) =1 by (5) of §2.
(8.11) f'(a) # O if and only if kg = 1. Algo f(z) generates a local home-
omorphism at a if f(a) # 0, (or kg =1). :
To see the latter, we have only to note that if f'(a) = h(a, a) # 0,
then h(w, y) % 0 in a neighborhood U x U of (4, a) where U is a neighbor-

hood of @ in R. Thusz—(%)«zz-l@;éo for all »,y e U with o # 9.

(8.2) THEOREM. f(2) is locally topologically equivalent at a to the power
mapping w = 2%, Thus for a suitably chosen topological disk D enclosing a
we have f(2)—F(a) = [8(2)]* for 2 « D, where s () is a homeomorphism on D.

Proof. Let f(z)—Ff(a) = (2—a)**p(z), where p(a)# 0, and p is dif-
ferentiable in R. Consider the function ,

= (e—a)p(z)".

s(2)
Since s(2) = p ()" + (1/ka) 9 ()™ '9'(2) (2— a), so that s'(a) = p(a)’® £ 0,
s generates a local homeomorphism of Z into the complex plane § in the
neighborhood of a. Now the function

w = g(8) = 8" = (z—a)*p(2) = f(z)—f(a) ,
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is a power functionin the neighborhood of s == 0. Thus f(z)— Lo
into the form ' f(2)—f(a) tactors

fR)—~f{a) = gls(2)] = (¢~ a) p(r) T |

where ¢(2) is a homeomorphism in a neighborhood of @ and ¢ i )
mapping of degree k,. ‘ 7 s mover
' (8.21) CoROLLARY. .lf’m' any &el—a, there are emactly ¥, 'dist'mct
pomts of ;f'lf(z) on D. In particular, f is a local homeomorphism at a if
and only if Ty =1 (or ['(a) # 0).
(8.22) COROLLARY. At any point a in R, local degree == 1 i
I N . . ¢ 0 = loc L )
plicity = winding number af a. ’ ! s
DrriNITION. For zm_y' y ef(R), the sum k(y) (finite or infinite) of the
local degrees of f at all points of R-f~Yy) will be called the degree of f at y.
(§.3) TH:”EOBEM. Let f(2) be continuous on a simple closed curve ¢
and differentiable on the interior K of 0. For any component Q of {(R+ 0)—
—H(0), k(y) is finite and constant on Q. Indeed we have

k(y) =wef,y) =%k, for allyeqQ.

This is an immediate consequence of (8.22) together wit N
stated in § 2. [ ( ) together with the results

Por (8.31) COROLLARY. On R-f-YQ), f is compact and of constant degree.
Bor any p « Q, the number of p-places (each counted with multiplié'ity). of f
in B is constant and = w(f, p). " ' C

(8.23) CororLARY. If f(g) #0 on O, there are exactly w,(f, 0) zeros

of f within C. "
As would be expected, Rouché’s theorem and other results on zeros

and poleg are also immediate consequences of this sequence of results.
For details, see “Topological Analysis’, Ch. VIII, for example.

-, 9. Sequences. Termwise differentiabilit i
s . ility. Using only the
results i §§1-8 above we now establish the- standard resul‘i : Y

(.9.1) TEzOREM. If the sequence of differentiable funotions [fa(2)] in
a region B converges almost uniformly to f(z) in R, then f(2) is differentiable
in E and the sequence [ﬂ,(z)J converges almost wniformly to §'(¢) in R.

N Proof. Let' M be any qomp@et set in R, We shall now show that
he sequence of corresponding differential quotient functions hu(z, )
(J:l/(}nverge uniformly on M x M. Let O be a hounded open set such that

COCOCR and let  be the distance from M to the boundary Fr(0)
of 0. Then if &> 0 there exists an N such that -

() [falt) —fm(t)] < r8/2, for ull ie0 and m,n>N.
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Now for any fixed y e M we have, for all # < M,
(i) {hn(, ) — Fem(, ¥)| < max |ha(t, ) — bmlt, o)
te Fr(0)
fult)—1fuly) fm(t) — fm(y)

= Iax

te¥ro)] 1Y -y
N \
< 7 max |fa(t)— fult) +fmly)— faly)|
{eFr(0)

< max [}falt)—Fult)] + |Faly)~ Fn®)]]
1235 {()] .
%.2”_'9;5 by ().

Thus for ia‘ll @,y e M, ie. (x,9)eMxM,
S |, Y )~ (0, Y| <e for  m,n >N,

s0 that ho(m,y) converges uniformly on M x M. .

Now in particular ha(x,y) converges uniformly on the set A-M x M
and on this set hm(2, 2) = fa(@). Thus fn(e) converges uniformly on M
and hence converges almost uniformly on E.

Now let g(w, y):]ifcloh,,(m, y) for (v,y) e RxR. Then g(z,¥) is

”

continuous in R x R; and for @, # y, we have

. 1 . .
9 (@0, Yo) = Lin hn(y, o) = o—- [ 1in falap) —lim (%)
n-»00 0— Yo n-oc n—»00
1
Zo—Yo
Thus if 2, eR, continuity of g(w,y) gives lim g(z, %) = §(%; %) 50
&->Lo

that lim k(z, 2) = (%0 %), since g(2, %) = h(z, %) for z #2,. Thus,
%

[f (o) — 1 (%0)] = B (o5 Yo) -

lim Mf(z;—{——(z") exists and equals g(2, ). Hence f'(z) exists and equals
S->2p T %g .
(%, 2); and this concludes the proof of the theorem since we already

have shown that fi(2) converges almost uniformly to g(2e, 20) = (%) -

This result yields an interesting second proof for the

THEoREM. If f(2) is differentiabie in a region R, so also i8 f'(2). (See § 4
above.)

For let 2, ¢ R and let C be a circle with center 2, and lying with its
interior I in R. Then if a, is any sequence of non-zero numbers converging
to 0 and with 2-+a, CR for zel, each of the functions k(2 aa, 2) is
differentiable in I. Also by uniform continuity of h(w»,y), the sequence
[h{2+ @, 2)] converges uniformly to #(2) on I. Thus by (9.1), f'(2) is itgelf
differentiable on 1.
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Schoenflies problems
by

M. Morse (Princeton, N.Y.)

Dedicated to the Fundamenta Mathematicae on the occasion
of the publication of its 50th volume, with grateful appre-
ciation of what this journal of mathematics has meant to the
world of mathematics during the last fifty years.

§ 1. Introduction. The theorem that the union of a Jordan
curve and its interior in a 2-plane is a elosed 2-cell is commonly called
a Schoenflies theorem. The problems which arise in attempting to generalize
this theorem in euclidean spaces of higher dimension are called Schoenflies
problems.

The generalization which suggests itself first is false. Let M be
a topological (n—1)-sphere in an euclidean n-space E with n > 1. Let Jm
be the open interior of M and JM the closure of JM. Tt is not always
true that JM is a closed n-cell for n > 2. Sze Ref. [0].

A major advance in formulating a valid Schoenflies extension theorem
when %> 2 was made by Barry Mazur in Ref. [2]. Mazur concerned
himself with a topological (n—1)-sphere on an euclidean n-sphere. We
shall present a theorem which is essentially that of Mazur, but in which
Mazur’s n-sphere is replaced by the euclidean n-space E. This use of an
euclidean n-space F in place of an eucliden n-sphere accords with sub-
sequent developments which we shall present.

Mazur’s theorem. Mazur made two assumptions, the second of which,
as we shall see, is unnecessary. Let S be an (n—1)-sphere in B with center
at the origin and radius 1. In our formulation of Mazur's theorem these
hypotheses are as follows.

I. Let ¢ be a homeomorphism of an open neighborhood N of § into #
under which points interior (exterior) to § go into points interior (ex-
terior) to the (#-1)-manifold ¢(8) = M.

II. Suppose that there exists in N a neighborhood of a point P of §
in the form of a star of euclidean cells incident with P such that on each
cell of the star ¢ is linear.
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