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Lambda-definable functionals of finite types *

by
S. C. Kleene (Madison, Wis.)

In RF §3 we introduced a notion of partial (or general) recursiveness
of functions of variables of finite types RF 1.2. The formulation we chose
was o new one rather than an extension to the higher types of variables
of one of the previously known equivalent formulations for variables
of type 0. (Summary in the introduction to [16].)

In RF §8, [16] and [17] we began the investigation of the relations
between that new formulation and such extensions.

We continue this investigation in the present paper. Here we extend
the Church-Kleene notation of A-detinability from number-theoretic
functions to functions with variables of any finite types, and we prove
the resulting notion to be equivalent to partial (or general) recursiveness
as defined in RF §3.

Tor these limited objectives, we can give a treatment of A-definability
which is nearly self-contained. This will spare readers unfamiliar with
A-definability the necessity of finding their way around in a rather volu-
minous Hlterature (1). From that literature we shall incorporate into our
treatment only some six pages of Church-Rosser [7] and four of Kleene [11],
which the reader will have to consult (2). In the proof of the equivalence
to partial (or general) recursiveness, we ghall presuppose also parts of RF
and [17].

For historical orientation, we recall that three (equivalent) notions,
J-definability, Herbrand-Godel general recursiveness, and Turing-Post
computability, arose nearly simultaneously in the 1930’, and gave rise

* Part of the work reported herein was done under a grant from the National

"Research Foundation of the U.S. during 1958-9.

‘We cite [12] as “IM”, and [13] and [15] as “RE".

(1). The development of the notion is in Church [1], [2] (especially § 9), [3], Kleene
[9], [10], Rosser [19], and Church-Rosser [7]. Expositions, with full bibliographies,
are in Church [5] and Curry-Feys [8]. )

(%) Hence we stick to the notation of those papers, using “{F}{(A,, wey Ag)? OT
“F (A, »n» Ag)" to indicate the result of applying a function F t0 Agy oors Ay 28 8IgU-
ments. In Rosser [19], Church [5], ete. the Schonfinkel-Curry notation “(FA, ... Ap)”
or “FA; ... A,” is used. . ;
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to the Church-Turing thesis (Church [4], Turing [20]; ef. IM §62). Of
these three, A-definability was the first (so far as we are aware) to be
studied intensively, and the only one the study of which began without
the idea that the mnotion might encompass all “offectively calculable”
number-theoretic functions. At the outset it was not apparent that even
the predecessor function @ -1 is i-definable. The power of the sub-
formalism of Church’s formalism of [1] and [2] consisting of the three
rules of A-conversion (as modified in [9]), when applied to the definition
of nmumber-theoretic functions, revealed itself ag the study progressed
ff)ﬂowing the proof of the A-definability of #--1 in February 1932 (pub-
lished in [10]). Thus it was the results of the study, rather than the con-
ception, of A-definability which gave rise to the question whether all
“effectively calculable” funetions are A-definable, which Church’s thesis [4]
answers affirmatively.

. A-definability iy readily applied to other objects than number-theo-
retic funetions, and thus is a natural choice to be tried when there .lh
a question of how to formulate “effectiveness’ for a new type of objects
An early example is the ordinal numbers 1935 (published in ChIU‘Ch:
Kleene'[(i]). The direction followed in some of the analysis in RF §5 was
?ound in January 1955 using I-definability, before we saw the convern-
ience of the new formulation of partial and general recursiveness.

. 1. Before proceeding in §3 to the extension of A-definability to
higher tﬁ)es of variables, we introduce ‘“A-conversion with constants”.
) Consider a formal symbolism whose symbols are 2, infinitely many
variables @y, ay, @y, ..., finitely many constants tyy .y oy (g fixed >0)
parentheses ( ), braces { }, and brackets [ ]. The variables and consta.nt;
:: ﬂ:illles%roper symbols. (In Kleene [11] the only proper symbols were
' The notion of “ormula’, and that of “free’ occurence of 2 ‘variable
In a formula, are defined inductively, thus. 1. A variable is a formula
and occurs j:ree in itself. 2. A constant is a formula. 8. If M and N aa‘(;
formulas, so is {M}(N), and the free occurences of variables in M and in N
are fr'ee' occurrences in {M}(N). 4. If x is a variable, and M is a formula
:ﬁgt?rmmg at least one free oceurrence of x, then Ax[M] is a formula, and
e T ¢¢ occurrences in M o.f variables other than x are free oceurrences
i [M]. 5. Formal expressions are formulas, and occurrences of variables
in formulas are free, only as required by 1-4.
o bvrgze sma.y a,bbrew'gte thc‘a writing of formulas by omitting pairs
s y and rel?laelng Dairs of brackets by dots (ix[M] becoming
x-M”) each having the longest reasonable scope. Also we abbreviate
{"‘{{M}(Nl)}(N2)"'}(Nﬂ) to “{M}(Nl’ Nz, seey Nn)” or M(Nl, Ng, seny Nﬂ)y

and ]-X1[3~Xs-~~ﬂxn[M]...] t0 “AxiXp... Xa[M]” o1 “AX.X,...Xn M. We denote
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formulas by bold-face letters, and use whatever letters are convenient
as names for variables and constants. (Variables named by distinct letters
in the designation of a formula shall be distinet from each other and
from variables suppressed in the abbreviations for component formulas
whenever it would make a difference for what we are doing whether
they are distinct or not.)

Congruence of formulas is defined in analogy to IM p. 133, the
J-prefixes Ax playing the role here of the quantifiers Vx and Hx there.
When A is congruent to B, we write: A cong B. That N is free for x in M
iy defined in analogy to IM p. 79. We write “SRM|” for the result of
substituting N for the free occurrences of x in M (which substitution we
will use only when it is free IM p. 80). A formula is closed if it contains
no free (occmrrence of a) variable.

A A-contraction consists in passing from a formula (said to be A-con-
tractible) of the form {Ax-M}(N) where x is a variable, M is a formula
(containing x free) and N.is a formula to SHM'| where M’ is
any congruent of M in which N is free for x and N’ is any con-
gruent of N.

To each constant « there is to be correlated a natural number 7.

A formula A is normal, if it has no (consecutive) part of the form
{Ax -M}(N) where x is a variable and M and N are formulas or of the
form «(My, ..., M) where o is a constant and M., ...,Mn, are closed
normal formulas. (This is a definition by recursion over the construction
of A.) Adapting a term from Curry-Feys [8], we eall parbs {Ax ‘M}(N)
and «(Mj,...,My) as just described A-redewes and a-redemes, vespectively;
or together redewes. (A. normal formula is thus exactly one not containing
redexes. But also a normal formula is exactly one not containing any
Aredex or part of the form w(Mj,..., M) where My, ..., My, are closed.
For if a formula, containing no A-redex, contains a part «(My, ..., Ma,)
with M, ..., My, closed, then the innermost such part would be an
a-redex.) .

We now asswme given an evaluation € of the constants oy, ...,
which is an assignment to each constant « of a partial function o* from
ny-tuples of congruence classes of closed normal formulas to a congruence
clags of closed normal formulas. Thus, if My, ..., My, are closed normal
formulas, and MY, ..., M, are the classes of the formulas (closed and
normal) congruent to My, ..., Ma, respectively, then a*¥(M$, ..., M) s

either undefined, or congists of the class N* of the formulas (closed and
normal) congruent to some cloged normal formula N;.

An w-comtraction consists in passing from a formula (said to be a-con-
tractible) of the form «(My, .., Ma,) (« a constant, My, ... s M, closed
normal formulas) for which o*(M?, ..., M5 ) is defined to any member
N of N*.
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A contraction is a A-contraction or an «-contraction. (The resul
of a contraction depends only on the congruence class of the formuly,
contracted, and is determined only to within a congrnence.) A econ.
tractible (1.e. A-contractible or a-contractible) formula, is necessarily a redex.
But not every a-redex is comtractible, unless € consigts of only total
i.e. completely defined, functions df, ..., o, ,
A reduction consists in a contraction performed on a (consecutive)
part C of a formula A (said to be reducible) ; 1.e. A goos to B by a reduction,
if from A we get B by replacing a contractible part. C of A by a msul‘é
of the contraction of C. We say then that A is immediately reducible to B
fmd write: A imr B. A normal formula is necegsarily irreducible. But zu;
irreducible formula is not necessarily normal, unless € consists of only

total functions. We distinguish A-reductions and «-reductions. The inverse

of a reduction is an ewpansion.

We say A is reducible to B (and write: A red B), if it is possible to
pqss_fromA to B by one or more reductions; A is convertible to B (A conv B)
if it is possible to pass from A to B by zero or more reductions, expansions,
and congruence transformations. If A is convertible to B without usihg,f
expansions, we write: A cwe B. (‘A red B differs from ‘A cwe B’ just in
that for ‘Ared B’ at least one reduction must be used, with which
the congruence transformations can them be lumped. Thus: A cwe B
= (Ared B) VV (A cong B).)

Inl Church-Rosser [7] §1 (following Church [1]), congruence trans-
formatlons were obtained, by repeated applications of a rule of inference T
in each of which the x’s bound by a single A-prefix Ax are changed (the
analog of a single replacement in the Dredicate calculus using IM *73
or *74 p. 163). A second rule IT gave A-reduction separately from the
auxﬂ}ary changes of bound variables, and a third rule ITT gave A-ex-
p?,nswn similarly. In the second form of conversion of Church-Rosser [7],
given ab the beginning of §2, a rule IV (due to Church [3]) was added
giving a-reduction (separately from the changes of bound variables)
In the case of a certain total evaluation  of one constant & with ng = 2,
and, alsg @ rule V giving the inverse operation (w-expansion) similarly.
Generalizing those rules IV and V now to any specified list of constants
%y ey % and evaluation € of them, the above-mentioned relations
bet.vveen A and B become describable ag follows in terms of the appli-
gz,t;(;ns of Rules I-V by which, the relations assert, one can proceed from A

A.gong B: zero or more appls. of I (Church-Rosser: A conv-I B).
Alimr B: one appl. of IT or IV, with zero or more of I.

A red B: one or more appls. of IT or IV, with zero or more of I.
A conv B: zero or more appls. of I, II, ITT, v, V. '

A cwe B: zero or more appls. of T, II, IV (Ch.-R: A conv-I-II-IVB):
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If AconvB, and B is normal (irreducible), we call B a normal (irre-
ducible) form of A.

2. Now we need the Church-Rosser theorems (Theorems 1 and 2
and Corollaries) for the present A-conversion with constants. As we have
remarked, this is a slight generalization of their second form of con-
version ([7] p. 480). A forty-three page chapter of Curry-Feys [8] is devoted
to the Church-Rosser theorems with side-results, extensions and appli-
cations. However to get what we need now and just that, we find it easier
to go to the original paper of Church and Rosser [7], where it can be
found in a brief compass. In taking over their proof, we shall annotate
it (3).

We presuppose familiarity with the fact that in the present formulas
(just as in those of IM) there is a unique proper pairing of parentheses,
braces and brackets, which entails such results as the following (cf. IM
Lemmas 1-4, pp. 24, 73, T4). If A is a formula, and B and C are (con-
secutive) parts of A which are formulas, then either B is C, or B is a proper
part of C, or C is a proper part of B, or B and C are disjoint. Hence: If y
is a variable, P ig a formula containing y free, Q is a formula, and R is
a formula-part of {iy-P}(Q), then either R is the whole {iy-P}(Q), or
is the shown part Ay P, or is the shown y, or is a part of the shown P,
or is a part of the shown Q. (Church and Rosser refer to Kleene [9] for
results of this sort.)

Suppose A imr B, say by contracting the part C; and let R be a speci-
fied redex in A. (By a “redex’ we shall always mean a given part, of
one of the two above-described forms, of the formula A under considera-
tion. Thus two different occurrences in A of the same formula {Ax-M}(N)
constitute different A-redexes.) We define certain parts of B to be the
‘residuals of R in B’ as follows. Let us tag the initial 4 o « of R with
a distinguishing mark, say a prefixed subscript ;. Thus if R is a paxt
{Ax-M}(N), we rewrite A so that the part R becomes {iAx-M}(N); if R
is a part w(My,..,Mn), so that it becomes ja(Mj,...,Ms,). Now we
perform the comtraction of C with this tag (a subscript ;) adhering to
the 1 or a, respectively. The parts in the regult B which are then similarly
tagged with , are the residuals of R én B. One can follow out what this
means in each of the 9 cases when C is a A-redex (5 when C ig an a-redex)
to which one is led by considering whether R is a A-redex or an a-redex
and the possible mutual relations between R and C (remembering that

(*) Curry and Feys [8] p. 149 express doubls about the proof of Church and Rosser,
without locating a fallacy in it. These doubts seem to be connected with some failures
by later writers to extract from it a list of properties of conversion to serve as the hy-
potheses of a more general topological theorem which would include the Church-Rosser
theorem as a special case. We find the Church-Rosser proof correct.
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in an eredex (Mg, .., Mp,) the parls My, ..., My, are normal). Then
one can, if he cares to take the trouble, formulate the definition of ‘re-
sidualy’ without resort to the tags. There are 0, s =1, or 1, residuals,
according as R is C, C is {Ay-P}(Q) with s ocewrrences of y in P and R
is a part of Q, or otherwise. Bach residual of o A-vedex is a A-vedex, Hach
residual of an a-redex a(M,...,Myp) is congruent to o(Mj, oy M),
since My, ..., My are closed and normal.

Similarly, if A cong B, a redex R in A has a single residual in B (con-
gruent to R, if R is an a-redex).

More generally, if A cwe B through a specified sequence of zero or
more reductions and congruence transformations, and if Ry, .., R
(k>0) iy a list of distinet redexes in A, we can identify the residuals
of Ry, ..., Ry, respectively, in B by tagging the redexes Ry, ..., R, in A
with the respective subscripts i, .., %, and observing where these sub-
scripts come out after the specified sequence of reductions and congruence
transformations.  Sinee distinet redexes R; and R; (4 3 §) eannot have
their initial 4 or « in common, no 4 or « will receive two subscripts in the
tagging in A. Hence in the collection of all the residuals in B of Ry, ..., Ry,
each residual will be a residual of just one of Ry, ..., Ry. A residual in B
of a A-redex R; in A is a A-redex; of an «-redex R; is a congruent of R;.
A yedex R; in A must possess (a non-empty class of) residuals in B, unlegs
contractions are performed on residuals of Ry in A or intermediate for-
mulas. In particular, an uncontractible w-redex in A will necessarily
possess regiduals in B.

We say that a sequence of zero or more reductions and CONgruence
transformations A cong A, imr A, imr A; ... imr A, is a sequence of con-
tractions on the redexes Ry, ..., Ry in A, if each reduction in the sequence
is by a contraction of a residual of one of Ry, ..., Rg. If in A, there is
no contractible residual of any of Ry, ..., Ry, We say the sequence termi-
nates, with Ay as the result.

Now we take over Lemma 1 of Church-Rosser [7] p. 475, substituting
for their parts {Ax; M;}(N;) of A (all of them A-vedexes) a list of redexes
Ry, .., Ry in A (which may include ones of each kind). In the proof pp. 4£75-
478, the basis and Case 1 go as on . 475. Before congidering Cages 2
(a) and (b), we dispose of the mew Case 2 (c): {F}(X) is an o-redex
a(My, ..., Mp,) in the list Ry, ..., Ry. Then, since My, ..., M, are normal,
{F}(X) is the only redex in A (k = 1), and the lemma iy true with m = 1
or 0 according as {F}(X) is contractible or not.

In handling Case 2 (a), and Case 2 (b) (that {F}(X) is a A-redex
(1%, "My} (Ny) among Ry, ..., Ry), We tag Ry, ..., Ry With subscripts 5, ..y x
in A initially, and the tags ride on the tagged symbols through the re-
ductions and congruence transformations. We must verify that each
replacement of a sequence of contractions which i§ used in the proof
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leaves unaltered not only the endformula itself but also the tags which
adhere to some of its symbols. This is covered by p. 476 first footnote.
The replacements come under three types or ‘‘processes”, appearing first
in p. 476 top lines, p. 476 lines 24-27, and p. 477 first (full) paragraph,
respectively. For illustration, we elaborate the third (and most compli-
cated) one.

In amplifying this paragraph, we leave to the reader the easy new
case that instead of {1z R}(S) we have an «-redex. Now we can stick with
the notation of Church-Rosser. Also for simplicity we show the formulas
as they appear if the bound. variables of Ay -P undergo no changes during {
(in the contrary case there are congruence transformations which don’t
change the argument). The residual {iz-R}(S) of a part of M, is the
residual of a part of the P of {Ay-P}(N,), which part we write {Az-Q}(T).
Say for illustration y is distinet from z, Q and T each contain two free
occurrences of y, Q contains two of z, and P contains one of y outside
the part {iz-Q}(T). To show this, we write {iy -P}(Np) thus (cf. IM
pp. 78, 79): v
(a) MY'P(Y: {1z-Q(z,z,y,y)} (T(Y1Y)))}(Np)-

The contraction B’ reduces this to
(L) P(Nm {4z Q(z,z,Np, N;,)} (T(Np;Np))) y

where by the requirement of freedom in the substitution performed in
a A-contraction N, does not contain z free (otherwise the bound variable z
in the Az-Q of P would have had first to be changed). The contractions
of ¢ which are on regiduals of parts of N, reduce this to

()

Tinally, the contraction of {iz-R}(S), which is

P (N1, (42- Q(z, 2, Npz, Npa)} (T (Npsy Niw))) -

{Az-Q(z, z, Ny, Nps)} (T(Nph Nps)) ’
reduces this to

(d) P(Nmy Q(T(NzM; Nps); T(Nph pr): ND27 Nﬂ)) ’

since as noted z is not free in Np, and hence not in Nz, Nps. Under Church
and Rosser’s process, (a) is reduced to (d) instead via

'

(b") {2y Py, QT(,¥), T(¥,¥),,3) } (Np) ,
(e) P(N,,, Q(T(Nm Np)y T(Np; Np); Ny, Np)) .

Fundamenta Mathematlcae, T. L (1962) 20
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Not only is the same formula (d) obtained, but clearly the tags on symbols
in (a) (derived from tags introduced into A) ride through the new reductiong
to arrive at the same positions in (d) as before (%),

Now we can take over Church-Rosser [7] Lemma 2 and proof PD. 478-
479, substituting for the part {Ax-M}(N) a redex of either kind (in T,
B, cong B; in II, Byowe Byyy). Finally we have the following versions
of their Theorems 1 and 2 and Corollaries pp. 479-480. (The proof of
Theorem 1 from Lemma 2 is on p. 473.)

TreorEM 1. If AconvB, there is a conversion of A to B in which
no expansion precedes any reduction.

CoroLrARY 1. If B is a normal (or wrveducible) form of A, then
A cwe B. ‘

COoROLLARY 2. If A has a normal (o1 érreducible) form, that form is
untque to within a congruence.

TeEOREM 2. If B is a normal (or irreducible) form of A, then there
s @ number m such that any sequence of reductions starting from A will
lead to B (to within a congruence) after at most m reductions.

CoROLLARY. If a formula has a normal (érreducible) form, every part
of 4t which is & formula has a notmal (drreducible) form.

_Throughout §§1 and 2 the notions have been rvelative to a fixed
choice of the list of constants o, sy %, the numbers n,, ..., N,y and
the evaluation .

3, Now we introduce “i-conversion with symbols for functions of
finite types”. The formation rules are as in § 1, except that now moreover
each of the constants « ..., a; shall be a symbol for a function of
alg‘iven 1;oo:sitive integral type (with each m,= 1); say the constants are
0Ly ooy Ongy ooy 015 oory aiy,. Conversion will be defined relative to an inter-
Pretalion  ai, .., ony ey o, oy o, (briefly, a) of these constants, each
by a respective object of its type (RF 1.2).

The list of constants and interpretation will be varied now. Specifi-
cally, we shall define by a transfinite inductive definition the ternary
relation A q-conv B, where g includes an interpretation of at least each
constant in A or B. But first we introduce some auxiliary terminology.

() This is the case not oply when just Ry, ..., Ry are tagged in A, but likewise
when distinct numerals are nsed to tag all the redexes in A; and the same is true for
the other two types of replacement. So the proof establishes, in addition to the con-
gruence of A’ and A" (stated in the lemma), that the residuals of each redex in A are
f;orresl?ond.ingly located in A’ and A” (are the same, if A’ is A”). This enters into the
mductl.on In a rather.obvious way indicated in the second . footnote p. 476; thus, if
a te.rmxna.tmg sequenee of contractions on a list of redexes in F with result F’ is carried
out in the obvious way on {F}(M) to produce {F’} (M), the residuals in M are unchanged.
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The formulas Afa-f(®), Afz-f(f () ,Afcc-f(f(f(m))), .., and any con-
gruents of them, we call numerals (for the natural numbers 0,1, 2, ..),
and we abbreviate them by 0,1, 2, ..., respectively. When “a”, “y”e
denote mnatural numbers, “x’,¢“y”, .. shall denote the corresponding
numerals (determined to within a congruence).

We say that a formula F A-defines [ A-defines from fi, ..., ﬁ}lz ey ﬁi, A
a partial function @(ay, ..., Gnyy 01y wovy Gagy onvy 0y ooe, da)y 1 (i) F is closeﬁl
and contains no eonstants [only constants pi, ..., 8§, distinet i'r?m 01y weny Sar
and interpreted by pi, .., A, (i) for each ay, ..., Gy G -y Gy for
which @(@y ey Gngy Uiy vy Gny) I8 defined, F(ay, ..., angy 41y ooy oc,l.,) o) o
tn,-CODYV Y [ﬂi: ey Blas a}, ey ;x;,-con:r vl Where_ Y=, .., aﬂoaally '--:an’.‘-)a
(i) for each @y, ..., @nyy 01y ...; On, fm; whmEl p(ay, ...,1a,.,,, T On,)
is undefined, F(fy, -, fngy 01y very Cny) Gl ooy G, CONY Y (Bl wvvs By 0y ooy
dh-convy] for mo numeral y. (If the function ¢ is total, as in the
definition of A a-conv B below, (iii) does not come into play.)

If there is such an F, we say that ¢ is partial A-definable [partial
A-definable from B, ..., fil, and further, in case ¢ is total, that ¢ is A-defin-
able [A-definable from Bi, ..., BLl. .

If gy(a;) is a function of variabley a; mot in an pl'der of'nond..e-
creaging type, then in applying the foregoil?g definitiongs we ldent}fy
pi(ay) with the function gp(a) = g(0;) where ais the result pf permu}nng
the variables o, to an order of nondecreasing type preserving the given
order within each type (cf. RF 1.3).

Normal formula is defined as before (§1), with parts of the form
/(M) playing the role of the a(Mj,...,Mp,) there. We ghall take over
other needed terminology from §§ 1,2 when the sense §hould _bg .clear‘

Now we give the seven direct clauses of the inductive de_ﬁmtlon of
A a-conv B. The last two use the phrase “i-defines from a”, Whlch.stands
there as abbreviation for its definiens given above (which contains the
symbol for the relation now being defined).

1. If A cong B, then A a-conv B. 2-3. If B comes from A by a A-re-
duction, and B a-conv C (A a-conv C), then A a-conv C (B a-conVIC). 4-?.
If A containg as a (consecutive) part «*(m) where ot Is one 0Of oy eeey Ony
and m is & numeral, B comes from A by replacing this part by n where
n = a(m), and B a-conv C (A a-conv C), then A a—co;w C (}3 a-conv C)._
6-7. If A contains as a part «f(M) where « is one of ai, ..., fm: somﬁly
(2<<§<7) and M is a normal formula, M A-defines from a a fu;xcgl_oln £
B comes from A by replacing this part by m where n = o'(f'7), and
B a-conv C (A a-conv C), then A a-conv C (Ba-conv C). o

Remark 1. To obtain partial A-definability, and ﬂ.—deﬁnapmty,
from assumed partial or total functions i, ...,11,p; of Zn,l, vy MY va..rlalbles
respectively (cf. RTF 3.14), we generalize the‘ Biy ey b1, gbove to inc! gde
Y1y ooy Y1y and ‘supply direct clauses 8-9 allowing a reduction or expa.nsz)oli
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when A contains a part ¢y(My, ..., Mm,) where My, ..., My, are numerals
for, or normal formulas which A-define from w, ..., v, a, the regpective
members of an mstuple of objects for which y; is defined.

4. By induction, in the form corresponding to the inductive defini-
tion of ‘A a-conv B’, we see that the steps in a given verification that
A, a-conv C can be arranged in a (definite) a-conversion iree (of A, 1o C)
of the following sort (cf. RF beginning 5.3). A, is at the 0-position. After
any #-position occupied say by A (by B) under the circumstances of
Clause 1, 2, 4 or 6 (Clause 3, 5, or 7), there may be an n-+ 1-position
occupied by B (by A). In the case of Clause 6 or 7 with §j = 2 [with j > 2],
if that n-+1-position exists, we call it the wpper n -+ L-position and call
the n-position a node, and there ave infinitely many lower + 1-positions
occupied by the formulas M(a) where a=0,1,2, ... [occupied all by
the same formula M(a/~2), where «/~2 is the type-j—2 constant next in
a given list after those interpreted by a, but with all the type-j—2 func-
tions o/~2 ag the interpretations of «/~2]. Bvery branch ends. In particular,
the fop branch, which contains at each mnode the upper # - 1-position,
ends with C. All other hranches end with numerals.

The top branch, or the sequence A, ..., Ay of its formulag, of a def-
inite a-conversion tree we call an (a-)conversion of A, to Ay

We may also speak of an a-conversion tree not necessarily definite,
which results by arranging in the described manner the stages in an
attempted verification that A, a-conv C for a specified or unspecified C
(cf. BRF 9.1). The differences from a definite g-conversion tree, such as
we have just inferred to exist whenever we already have Ay, C and a par-
ticular demonstration by the inductive definition that A, a-conv C, are
two. First, branches may continue ad infinitum. Second, at a node the
top branches of the subtrees beginning with the lower 7+ 1-positions
may not all of them end in numerals, in which case the upper # -+ 1-position
cannot be filled.

In the case of conversion in which we are chiefly interested, the
Initial formula A, is F(ay, ..., Au,, od, ..., of},) Where F A-defines a fune-
tion @ which is defined for the ATUMENtS @y, ...y Gug, G1, ovy f,, and the
last formula in the top brameh is the numeral y for the number
Y =0ty o, tny, 03, ..., &,). A definite a-conversion tree in this case,

-and in an elliptical sense its top branch (i.e. a conversion), constitutes
a kind of “computation” of the function value p(ay, ..., tuy, a2, ..., o).
When we do not know whether p(ay, ..., duy, al, ..., o)) is defined, a not
necegsarily definite a-conversion tree with F(ay, ..., any, 0, ..., ah,) at the
0-position and with each next position filled when posgible constitutes an
“attempted computation” of ¢(ay, .., Guy, al, ..., ).

However, the consistency of this kind of computation is not trivial,
a8 it was of the kind in RF 3.9 and beginning 5.3 or of that in RF 10.2.
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There, given the object at the 0-position, the entire tree so far as it was
constructible was determined. This is not the case here, given the for-
mula A, at the 0-position together with the interpretation a of the con-
stants in use. ‘

The consistency now will come out of the (first) Church-Rosser
theorem extended to the present i-conversion with symbols for functions
of finite types.

Tt A a-conv C where C ig normal, C is an a-normal form of A.

TEEOREM 3. If a formula A has an a-normal form, its a-normal form
is unique to within a congruence.

Proof. The theorem is equivalent to: If A a-conv C, Ba-conv D,
A cong B, and C and D are normal, then C cong D. Suppose to the contirary
that we have two (definite) a-conversion trees T and U, whose top branches
are conversions of A to C and of B to D, respectively, where A cong B,
and C and D are normal, but not C cong D. Now either (Case 1) T an.d T
contain a pair of subtrees T, and T, (both in T, or both in T, or one in T
and one in T), each of which begins with a lower next position to & node
in the top branch of the tree T or U to which it belongs, and vsfhose top
pranches are q;-conversions of A, to C; and of B, to Dy, respectwe}y-, for
a common interpretation a, of the constants (extending a to the additional
constant of~%, if §> 2), where A, congB,, and C, and D, are normal,
bub not C, cong Dy; or this is not so (Case 2). In Case 1., the same glter-
native applies to T, and Ty; etc. If Case 1 applied each time ad mfm:.ltjum,
then by Konig’s lemma [18] we would have an infinite sequence of p9s1t10ns
along & branch of T or U. But each branch of a definite a-conversion tree
is finite. Therefore Case 2 applies eventually. To simplify notation, say
it apples initially.

P‘%e define fusjrlctions a* which will constitute an evaluation € in the
sense of §1 of the constants interpreted by a. For each such type-1 con-
stant o and numeral m, take o(m) to be m where n = a(m). For each
such type-j constant «f (j > 1) and congruence class M*‘of closed normal
formulas, take a™*(M*) to be n where n = (), When.m the top 1_3ra,r}ch
of one of the given a-conversion trees T and U a node (i.e. an application
of Olauge 6 or 7) occurs with «/(M) for an MeM* as the part gontracted
and A as the function whoge values are “computed” by the subtrees
beginning with the lower mext positions to the node (the r_esult of* the
contraction being m); this function g~ 'is unique for .ﬂ.xe given 1\/{ ) 31-
the Oase 2 hypothesis would be contradicted. In all remaining cases, o (M*)
shall be undefined. Now we have an evaluation €; and fm*tl}ermore the
given conversions, of A to C and of B to D, are conversions in the sense
of §1 for this € Hence by §2 Theorem 1 Corollary 2, CcongD, con-
tradicting our supposition.
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THEOREM 4. (i) For each list of variables, cach closed formula ¥ con-
taining only constants interpreted by o A-defines from a o %mdqu.e partial
function g of those variables. Hence: (ii) For a given interpretation a, a-con-
version as defined here is comversion in the semse of §1 for the fo,llowz'n
evaluation €: a™(m) 48 n where n = o(m); for j > 1, a™(M*) 4s n 'fwlzerz
n = ('), when M eM* and M i-defines 8" from a; o*(M*) is fzmdeﬁqlqe(il
otherwise. Hence: (iii) The Church-Rosser Theorems 1 and 2 and C'omllm'éee/
in §2 apply. '

Proof. (i) By Theorem 3, since a numeral y iy normal.

In an ¢-conversion tree (not necessarily definite), by a completed
tmep we mean the passage from a formula in an n-pogition to the formuls
in thfa n-+1-position if the n-position is not a node (the upper N+ 1-posi-
tion if the n-position is & node). An a-conversion tree in which each com-
pleted step is a reduction (which may have assimilated into it a congruence
transformation) we call an a-reduction tree. '

. TeEOREM 5. If A, has an a-normal form, then each a-reduction free
with Ay at the 0-position has only finite branches.

Proof. We restate the theorem as: If A, bas an a-normal form C
and, Acong A, then each a-reduction tree T with A at the 0-posi1:ion,
has only .fmite branches. This we prove by induction. Consider a given
a-conversion tree U of Ay to C; the hypothesis of the induction will apply
to any proper subtree of TU.

Simply by Theorem 4 (iii) with Theorem 2, the top branch of T ends
(not necessarily with a congruent of C).

‘ To deal with the other branches, consider the evaluation & wlﬁch
fhffers from &, of '?heorem 4 (ii) in that for § > 1 a™(M*) is defined only
;ﬁ Eﬁ:etjpcglszrnaﬂuz? I(}r expansion of «f(M,), for some M, eM*, oceurs

We show that, in any sequence of reductions starting with A, no
formula, coptains an «-redex not contractible under the evaluation G.
?i‘or ofihermse the sequence of reductions up to the first formula inclusive
in which such a redex occurs would be a sequence of reductions in the
sense of. §51 for  as the evaluation. No further reductions in that sense
could eliminate the residuals of this uncontractible «-redex. But by Theo-
rem 2 for € as the evaluation, continuing the reductions must lead to
a normal formula (congruent to C).

Hence in T the top branch is a sequence of reductions in the sense
of §.1 for (E as the evaluation. Therefore in this branch each «f-reduction
for j>1 is by contracting a redex af(M) congruent to a redex of(My)
fsontmcted in the top branch of U. So each lower next position to a node
in tl.le top branch of T is occupied by a formula M(a) for § = 2 (M(a/—2)
for j > 2) congruent to one at a lower next position to a node in the top
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pranch of U, which has a numeral as a-normal (a, o/=2-normal) form. Hence,
by the hypothesis of the induction, each non-top branch of T also ends.

Given the formula A and interpretation a, the result of a reduction
of A in which the first innermost redex (i.e. the leftmost redex not con-
taining a redex as proper part) is contracted is unique to within a con-
gruence; and it becomes completely unique when the choice of the bound
variables is specified by a suitable convention. (Such a convention will
be introduced implicitly in 5.1.) We then call the reduction standard. We
call an a-reduction trec standard when each reduction in it is standard and
the choice of the bound variables in the numerals a in the formulas
M(a) at the lower next positions to «*-nodes is specified by a convention
(to be introduced in 5.1).

THEOREM 6. If Ao has an a-normal form C,there is a standard a-reduction
tree of Ao to C (to within a congruence). .

Proof. We restate the theorem as: If A, has an a-normal form C,
and A cong Ay, then there is a standard a-reduction trec of Ato C (to within
a congruence). This we prove by induetion. Consider a given a-conversion
tree T of A, to C.

Simply by Theorem 4 (iii) with Theorem 2, there is an a-conversion tree
T of A to a congruent of C whose top branch is a sequence of standard a-re-
ductions with numerals as specified at the lower next positions to o2-nodes.

TFurthermore, as in the proof of Theorem 5, each lower next position
to a node in the top branch of T is occupied by a formula congruent to
one at a lower next position to a node in the top branch of U, which has
an a-normal (a,e~2-normal) form. So by the hypothesis of the induction,
the subtrees of T starting with these lower next positions can be replaced
by standard ae-reduction trees.

5. TEEoREM 7. Bach partial A-definable (Each A-definable). function
Py wory gy Ohy evry Ghay wery Gy vy O, d8 partial (gemeral) recursive.

Proof. 5.1. We introduce s Godel numbering of formulas. To the
i+ 1-st variable (of indew 4) we assign the Godel number (1, 0, i) (cf. RF 2.1),
t0 the --1-8t type-j constant efy, the Gdel number <1,7,%), to {M}(N)
the Godel number ¢3,m,ndy where m and n are the Godel numbers of M
and N, and to Ax[M] the Gédel number <8, @, m) where # and m are the

Godel numbers of x and M. )
We define some primitive recursive functions and predicates, Whmh
will have stated properties. ’
sb(m,n,@)=mn if m=uw, _
= <37 kb ((’m’)l.y‘ny m)y sb (('m')z; n, m)> i (m)=3,
= (B, (m)y, 8b (('m')sr Ty ‘1’)> it (m)=5& (m), # fv_i
=m otherwise. ‘ ‘
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If m and n are the Gddel numnbers of formulas M and N i
: 3T 48 ‘ and 2 is the G
number of a variable x, then &b(m, n, x) is the Gréide’l number of S’&OISIT
Cd(m) = (D)e<m[sb (m, 1,0,i4-1>, 4, 0,4>) =m].
If m is the Godel number of a formula M, Cd(m) == (M is closed)

(k) =k i (k) =3 &rx((k)) =0& 1x((k)g) =0 &

[(B)yo = BV{(F)yo = 1 & (k) > 0 & Cd ((B)g)}]
=rx((k)) if (k)y=3 &1x((k),) >0,

=0 otherwise .

If  is the Godel number of a formula K, then rx(k) = 0 if X is normal

and rx (%) is the Godel the firgt i i
and ) number of the first innermost redex R in K other-

repl(k,d) =b it rx(k)="F%,
= (8, Tepl((k)u b): (k)y if

(K)o =3 &xx((k)) > 0,
= {3, (k), repl((k), B)> it

(ko = 3 & rx((k),) = 0
&rx((k)) > 0,

= <8, (R xepl (B0, B)) 38 (K)y = 5 & rx((R)) > 0,

=k otherwise .

If k a;nd. b are t]le Gdde]. Ilumbers Of fOIIIIIIlla:S K a:[ld. B, thell le] l ] ] b
. . :

1 ) repl(x b) k
]-f K 18 nOlInatl, alnd re Jl(ky b) 18 the G‘Odel Illlhlbel Of 'Lhe ]esult Of(] epl"w(,-illg‘

the first innermost redex in K by B otherwise.
incr(m, 8) = {3, iner((m), s), iner (m)e, sy it (m), =3,
= <8, 5" (mhy, Inar(sb((m)y, 8"+ (m)y, (m)), 8)> it (m)y =5,
=m  otherwise .

th;;: 1?111:3? Godel .number ?f a formmla M containing no variable of index >3,
pen MI b(m,- 8) is ’qhe Gode} number of the congruent formula resulting
¥ increasing the index of each bound oeccurrence of a variable

in M by s.
0y (0, k, 2) = 38,4, 0,n>, 1,0, >,
nuo('”‘+1’.h: 1) =8, <1, 0, ), nu,(n, hyi)>.
nuy(n, h, ¢) = {the Gddel number of j(...(f(w)) ) w1:th n-1 fs,
where f and @ ave the h-+1-st and 4-+1-gt variables) .

wu(n, by §) = <, <1, 0, b3, <5, <1, 0, &3, nuq(n, By > .
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If h i, nu(n, b, ) = {the Gbédel number of the numeral for # having
the h-+1-st and ¢--1-st variables as its f and }.

nu(n) =nu(n,0,1).

nu(n) = {the Godel number of a specified numeral for n}.

Nu(m) == (B n<m{ W) ham(BiYiemlh # @ &nu(n, b, i) = m].

Nu(m) == {m is the Godel number of a numeral} .

nu=X(m) = (ify <cmmms| (¥ # (@)s &1 ((W)oy Whs (1)) = ml),
Tt m is the Godel number of a numeral, that numeral is for the natwral
pumber nu~i{m): :

Tt m and » ave the Godel numbers of formulag M and N, with M containing x
free, then incr(m, m+n) is the Godel number of a formula M’ congruent
{0 M in which N is free for x. So if P is {Ax-M}(N) with Gddel number p,
then sb (iner ((p)yay (Pha-+(2)s)s (Bl (pha) s that of a formula SKM
coming from P by @ A-contraction.

vody () = repl (k sb(iner{ (o (k) 0 (rx(8)) 0 + (X (1)),
[ () )

If % is the Gédel number of a formula K whose first innermost redex is
a A-redex, redy(k) is the Godel number of the result of contracting that
redex within K (i.e. of a single standard reduction of K).

In analyzing via Godel numbering & reduction in which an ef-redex (§ = 1)
is contracted, we shall suppose the {--1-st type-j constant aly to be
interpreted in a by (of); where of is a specified type-i object (cf. RF 2.1).

rod; (k, o) = repl (7* u ((“1 (R ((I‘X(’“))z)))mm):.-)) '

Tf % is the Godel number of a formula X whose first innermost redex is
an od-redex, rod(k, ¢) ix the result of a single standard reduction of K.

vedy(k, o, ') = repl (70, nu((a’(ﬂ’**))(m(k,,m)) (G>1).

Tt % is the Godel number of a formula K whose first innertost redex is
a contractible a’-redex a’(M), with f*~* the function which M 2-defines
trom a, then red; (%, of, /) is the Gdel number of the result of a single
standard reduction of K.

In analyzing ol ..., Gy, cory Gy ooy @p-CONVEISION, WO shall take the
constants interpreted by al,...,ah, to be the first #; type-j constants
(f=1,..,7). Then % = <0, fy, ..., Ny Will be used to keep track of the
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Jimmbers of these constants which have been admitted. At a node with
j> 2, the a/=% ghall be the mext unused type-j—2 constant, i.e
Aj-g+1-86 where n;_y = (1);—s. ' s e he

. 5.?. We say that a fcur‘rnula A (containing only constants interpreted
y a) has the a-value y, if A a-convy; and has no a-value, otherwige

Tn the first case, by Theorem 3 the y is uni
. sorem 3 the y is unique and by Th ;
is a standard a-rednetion tree of A to y. ¥ Theorem 6 there

Consider the following recursion, for a given » > 0.
(%) valy(n, &, o', ..., o)
=~ valy(n, redy (%), o, ..., ar) it (.rx(k))l,o =85 (Casc 1),
2 val,(n, red, (k, o), o, ..., &t}  if (rx(k), o =1 &
(rx (%)), =1 &Nu((rx(k))g) (Case 2),
L~ val,(n, 1’ed2(k, a, vaa],(n, <8, (rx()),, nu(2)>, d, ..., a’)) 10y, a')
: it fx(k),,=1& (rx(k),, =2 (Case 3.2),

~ . i J—
~ val,(n, Jed,(k, o, a8 %al,(p,_g n, {3, (1‘X(k))27 Ay i—2, (n)-sd),
1 j~8 7—8 - -
@y, 0 o (T)(n),_,expﬁi o s)) 11 (p,ex})(ajﬂ((rfns)) )
1< (n) jz 02

i1 7 r .
a T, L, a )), oy ...y a) if (rx(k))l’o =1& (rx(k})“ =j
(Case 3.4 for =38, ...,7)

]

xnu~i(k) it Nu(k) (Case 4y,
~val,(n, k, o, ..., a")  otherwise (Case B).

- g.‘ll‘::ef:;cﬁ;n vs}l,f(.}ompu?ed by the recurgion (x) in the sense of RF 10.2

gt e b ven’t first written the recursion with a function variable )
ollowing property. When n = <0, 0y, ..., n,>, & i3 the Godel numb

of da ];orm.ulo? K containing only the oonstcmts’ m},’ e

g‘nmzh;; Z’l; if;nltéa;fzeted m a by.(af)i,. then valy(n, k, a*, ..., ar) 4s defined

oy o s an a-value, in wi?wh case val,(n, k, at, ..., o, ...) s that

- Thig i8 established by two inductions, one over the computation

by (%), the other over. i
for its, v, a standard a-reduction tree of K to the numeral y

1 r r
vevy Qpyy eony Ky aovy Olpyyy

funetion ,121-5,*) 18 nor_mal m.the sense of RF 10.1, as we see thus. The
for 8499 innl.%. ]si\t)b;mt]lted in Case 3.j is of the sort Ar7-%... stipulated
Case 3.2) comes dlI‘ (17 =3, ...,7). The 87~*... in Case 3.j (the Az...in
variable of) vi ectly undgr the function variable o/ (the function

via the construction of red;(k, o, ai~1) (of red,(k, o, al)),

used in" constructing the
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and so comes under $8. (88.2). The case definition can be handled by
repeated applications of S6" in RF 10.1. Otherwise only the primitive
recursive schemata S1-88 RF 1.8 are required, after introductions of ¢
by 80 RF 10.1.

Hence by LXIV in RF 10.3: val,(n, k, ot ..., o) is partial recursive.

5.4. Suppose F with Godel number f A-defines ¢(ay, . ., @ny, 01, oy
Ghyy very By very Oy) WiLH 7y > 0 3f 7> 0. For the given n, and 7, we easily
define a primitive recursive function x such that x(f, ay, ..., Gugy M, -, M)
is the Godel number of F(yy wyfugy 6, ey Unyy oory Oy oery On,)  WheTE
oy s ocf,,, are the first my; type-j constants (j =1,..,r). Then by 5.2,

1
(#x) @@y eey Ongy Oay eey On,) & Vﬂ‘]r(«]y Mgy ey e
1 1 .
#(fy thyy vry Bmgy Moy woey My By ey Uy Dy oonsy oty ey a;,)) :

The functions (a{, ey alf,,) (=1,..,7) on the right are of the form
Ji-1... for LXI in RF 9.7, provided f, ..., te—y > 0, and by 5.3 val, is
partial recursive; so then ¢ ig partial recursive.

To handle A-definable funetions with ns, ..., #y_y not all > 0, we can
proceed as in (iii) of the proof of RF LXVIIL. We introduce successively
sets of functions similar to val.(n, &, ¢, ..., o) but lacking 1, 2,..., r—2
of the wvariables a2, ..., a"1. The successive recursions come under (a*)
of RF10.4, so by RF LXVIIL (i) these functions are partial recursive.

6. Tuzormm 8. Hach partial (gemeral) recursive function Py, veey Ongy
0, ey Ghry enny Gy ooy Ohy) B8 partial A-definable (3-definable).

Proof. 6.1. We now take over Kleene [11] §2 pp. 344-347. Note
the definitions of I and J p. 341. In [11] “A conv B” means that A is
transformable to B by zero or more A-reductions, A-expansions, and con-
gruence transformations; and in this section we further write “A red B”
when at least one reduction, but no expansion, is included. In (1B) p. 346,
ete. “free symbols” means constants and free occurrences of variables.
The get of the free symbols of a formula Temains unchanged throughout
a A-conversion. We now show that (1)-(22) of [11] hold also reading “ped”
in place of “conv” (provided the conclusion of (11) ds first restated as
“min(x,y) convx and min(y,x) convx”). Of statements ¢“A conv B”
where A is not normal but B is, the strengthening to “A red B is imme-
diate by Church-Rosser [7] (or § 2) Theorem 1. Of the remaining statements,
the strengthened form follows directly from the previous proof, except
that in (13) and (14) we replace the given C° by I(C°) (A’ by I (A") to
exclude the possibility of no reduction. .

Let Ly—0, Ly—~T, Ljpa—2b-b(Ly) (f =0,1,2,..). Then L, is & nu-
meral, and for § > 0 (by an induction with a double bagis), Ly A-defines
a type-j function. So letting Hy—ic-¢(Ls-1, I), and using (4):

(23) . Hya)aredI (j=1,2,8,..).
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The % = 0 case of the next proposition (24) is immediate, by taking G
ag F. To infer it in general by induction, consider any %> 0. By the
hypothesis of the induction, there is a G’ such that G’(n) for n = 0,1,2,
. red Ag, ...y Ap-r, F(0), F(1), F(2), ..., respectively. Using (17), pick B
so that B(0)red in-G'(n=1) and B(L)redin-n(I, A,). Now in ‘B(l=n,n)
has the properties of G in: :

(24) If Ay, ..., Ap—1, F have no free symbols, there is a formula G (withoui
free symbols) such that G(n) for n=0,1 12y . red A, ..., Ay,
F(0), F(1),F(2), ..., respectively .

Applying (24) with & = 1, Ay—~Abe-b(c) and F».»an(ldbm-d(zt-b(t, a),
¢(a), Ao), and using (3) and induction:

(28)  There is a formula G such that G(n) red Aboay...an -b(c(ay,

vy Oy),
Gy ey tt) (0 =0,1,2,..),

Similarly with Ag—bt-b(t), F—an-n(Adba-d(2-b (¢, a)), A,):

(26)  There is a formula G such that G(n) red Abay...ant-b(t, ay, ..., an)
(n=0,1,2,..).
Similarly with F—>anm-n(Adba-d(b(a)), Aq(m))

(27)  There is a formula G such that, if Aq(m) red Abe-b(Cy, ..., C,) where
Cyy -y Cp comtain only the wariables ¢ and no constants, then
Gn, m) red Abay...anc-b(ay, ..., an, Co.yCp) (m=0,1,2,..).

Similarly with F->inm -n(ldboa-d(b H, a), 0}, Au(m)):

(28) If H has no free symbols, there is a formula G such that, if
o(m) red Abec-b(Cy, ..., Cp) where Cyy...,Cp contain only the vari-

ables ¢, ¢ and no constants, then G(n, m) red 2bca, ... anc+b(H, a,,
ey Hytn, €y .y Cp) (m=0, 1,2,..).

Remark 2. We can improve (15), (17), (19), (20), (24), (28) to allow
constants, either «’s or as in Remark 1 also {’s, reduction then becom-
ing a-reduction where a includes an interpretation of these constants.
(This would be used in proving the relativized form of Theorem 8.) To
allow ¢’s, we assign them type designations. For example, we can write
w(b, Bi, i, B°) an oY, B2, B2, F) where t = (0:0,1, 1,8). Then letting
Hy—2bb(Ly, Ly, Iy, Ly, I), and using (4) and the regult preceding (23),
Hy({*) a-red I. Thus (23) is extended from ‘“pure” to “special’” types
([1_4] bottom p. 95). For any function of a special type t, we use the
unimproved (15) to pick a formula Of such that C4(I)red H, and Ci(H)red I,
also o formula (' such that C(I)red H and C'(H)redI, and let
Ce—im - C4{(0"(@)). Then O4y(I)red I and Cy(H)red Hy. To prove (15) when C
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may contain constants, we now replace each term T not a .eonstant
(each constant T of type t) by y(T) as before (by 4y, T)). The improved
(17), (19), (20), (24), (28) follow as Defore, using the improved (15) in
place of the unimproved.

6.2. Next we undertake to translate the recursion (7)‘of [1.7] 3.9,
for a fixed # bul varying odd m, into an a-reducibi]ity.rela.tlo.nshlp. The
role of ¢ will be played by a fixed formula L, which will be picked bres-
ently using (19) (so L(-—1) red I). Given. valuesv of m,z,q,o will be
expressed by numerals m,z, q,%. For given odtli m (T (0,%1; ...,'n,,r>
with #,> 0 if r> 0), the function jm'gur:enfs 0y ey Gany coey By ey ug.n,

i ill be the interpretation of constants og, ., Gy cvey &1y -on s Onyy
izl;eflll); fcﬁ‘gf Mgy oory By OF tipes 1, ..., #, respectively. The left side of [17]
(7) will thus b(: tl'mwiated, f(rn' give'i].)values of m, 2, ¢, ®, by the formula .

™ verg Ol erey Olp,)e

L(m&‘zh;eq;izilg léide’ Oci?’[ﬂ’] ('; ) l’h _g;ven by cases, the number of cases
varying with m. But we shall consider Cases 7.1,...,7.m (vc.rhe?re Ny = (m)y)
as Subeases 1,...,#, of Case 7; the Case 7 hypo‘uhfms is (z)o.=7&
1< (g0 < (m);. Similarly, we ghall consider Cases 8'7.1’-'",’ 8+j-ny f;ms
Subeases 1,..,n; of Case 87 (j=2,..,7). We now h'%.ﬂ{e _caa?)s
1,2,8,4, ba, 6b, 6a, 60,7,8:2,..,87,9,10 as the d-case for =0,
ey 749, .

’ -Yj—Ve shall wish the formula L(m, z, g, X, o1, ..., &p,) expressing the
left side of [17] (7) to be a-reducible to a formula Rimegs expressing ’ohe;f
right side in the cage and subcage Whi(}h. apply for the given vablueExJD 1(1)
m, 2, ¢, ». First, we must see that there is sgoh & fqrmula. By (Bziil, ble
standard, primitive recursive number-theoret{c functions are A-defina le,
and we now employ formally the usual notations for them. For exa,ml;f,
we write (A); as a abbreviation for E(A,I) where E is some formula

A-defining Aai (@), [T pf®* for F(X) where F is some formula 4-defining
i<X . o i
lmig PP ete. Tn the 10-, ..., 7+ T-cases (Cages 85 for j=38,...,7), ¢
X

shall be, translated as a variable ¢ just following th@ type-j —_—2 constaﬁltg
(so that when o/—2 is substituted for ¢ by @ Z—reduptmn, L will be g,pé) ?1
to its arguments in order of increasing type). In this roauner we do in efe11 (;
given L,m,z,q,®, determine a formula Rymege which expresses t
right side of [17] (7) in the applicablo case and subcase.

(a) For each r, and each i = 0, ..., -9, there i3 a formuh’u hS; ( w'bti(;m;;
free symbols) such that, for each odd m (r= {0, "3” ...,.n,> wit n;; o
7> 0), 6ach 2,q,®, €4Ch Gf, .oy Qhyy ey Oy wovy Ony 1(brw]‘l:t/'_, @), ;R
formula L such that L(—1) red I: S(L, m, Z, g, X, e, .., %n,) 6760 Rumsgz
when the i-case of [17] (7) applies to that m, 2, (¢, .
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Proof. We begin with the easier cases. Sy (for Case 10) is simply I.
S, (Case 5a) is Almega-l(m, (2),, ¢, Hp"‘”“), and S, S; (Cases 6a, 6b) are

constructed similarly. Syiq (Case 9) is Almeqw-2(I,1,m,( o’q’ ” p(-’n)m)
Sy (Case 4) is  Amegw: G((m)y+ ...+ (m)y, 2d-L(m, (2)s, g, 2%+ Hpiﬂ?ﬁ),
l( y (8)ss 4, @ ) fm the G of (25), and S; (Case 5b) is constructed similazrly,

To construct S, (Case 1), we first apply (28) with Ambe- m([ b(e ))
as the Ay and H, from (23) ab the H to obtain G, such that G,(n, m) red,
Mbea”...a b(H,,af?, ..., H,,a, ¢). Next & applying (28) with, im - Gl((m ey m)
as the A, and H,_, ﬁom (23) as the M, we obtain G, such that

Gy(n, m) vod Abeay” ™V ...al ™ al...a) b (H,_y, al™®, ..., H,_,, af , H,, a?,

.y Hy, a,;', , ¢) where f, = (m), Contlnumg thus, we eventua.lly obmln G,
.such thaJt Gy(n, m)wdlboam... Dal.. 0P .. a...a b(H,, o , Hl,aﬁ,“,
H,,d?, .., Hy,d?, .., H,, al), E,, a,,,, c) Tet Sy —Almeg - G, ((m)l, m,
I,1(-1, z,I , 0, I w)o-l-l)). S, and S, (Cases 2 and 3) are constructed
similarly.

To construct S, (Case 7), let A’—>Amgbeal® - “G((m)y = ()05 M, b am(c))
for the G, for Sy, 80 (using the Case 7 hypothesm) A'(m, q) red Abcal®
il o (2) ~af’.. (r) b(Hn“sH, - Hl:“nuﬂnya szagzn Hr;“m

o H,, a,,,), a“’( )) where 8 = ()1,0. Applying (28) w1th A (), (2),) as
the A, and H, as the H we obtain G’ such that G'((q )1,0—1 <m, g))
red Aboas”... al) - b(Hy, o, ..., Hy, oy, Hyy 0y, ooy Hyy 0, af(e ¢)). Let
Ss—>Almeqe-G'((@ho =1, <m, g5, I,1(—1, 2,1, (& a)y))-

To construct S, (Oase 8.2), we ﬁ.rst construct similarly to G’
for S, a formula G” such that G((m)y,<m, q)) red tbcal®...ql? - b(H,, o,

vy Hay 620, Hy,y 0y, ooy Hy, o, () where s = (g)so. By (26), there
is a formula E such that E (m),+... + (m),) red 16a...alt-b(t, af®,..., a).

Using the G of (25), let Sy—>Almeqa - G((m)1+ S+ (m),., G”((m)l,(m, q) I),
E( M)+ .. (M), At - Z(m’ )3y 4, 2t H?ﬁzll)))

To(ﬁonstluet Sjr (Case 8(;) for 3 r, we firgt obtam G“) such
1,
that (? ((m);, <m, g)) red beal?... o b(Hl,al y ooy Hyy oy, Hyy 0y, .
H,, a7, o (¢)) where s = (g);,. Yy (26), thew is an E such that
E(m)jes+ ... +(m m),) red Abaf~? ., aﬁ.’,’t b, al™",. ) Taking the A,

s Oy
for (27) to be im - “E((m)j—1+ .. - (m)y), we obt:un a formula E; such that
Ey{(m); + ... + (m);_s, m ved Aba® ... aDs- b(af, .y a2 8, a0, L., a).

Using the G of (25), let Sit2—>Amage- G (('m’)d‘ wee (), GP((m)y (e, @3, 1),

Ej((m)y+ ... +(m);_s, my U(pj—smy (2)s, Qsimas m))) where Qg,jme is the re-
sult of translating g, with m, ¢ a8 variables, k ,
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(b) For each r, there is a formula L such that L(—1) red I, and, for
each odd m (= 0, Ny, vy Npd With n, > 0 if > 0), each 2, ¢, s, and each
@ yoees Gigy ey GLy ooey Oy (briefly, a): Lim, Z, 4, X, o, ..., omy) a-red Remypg-

Proof. The case hypotheses are mutually exclusive primitive re-
cursive predicates of m, 2, ¢, #, 5o there is a primitive recursive function »
such that in the <-case »(m, e, ¢, ®) = i. By (22), there is a formula K

which A-defines . By (24) for & = r4- 10, there is a formula S such that

S(i) I‘GdS{ (i = 07 R ')"-‘|~9). Lot F*Mmlz,flw's(K(‘m, %, 4, .’D), Zy m, 2, q, w)’
and choose L by (19).

6.3. For cach v, cach odd m (= <0, ny, ..., 0y with n,. > 0 if r> 0),
each 2, q,®, and each di, ..., ay, (briefly, a): If ow(z,q, o, d, ..., d,) is
defined, then L(m,z, q,X, o, ...,,) a-redy where § = om(2,q,@,0,...,d).

Proof, by induction over the computation of ¢m(2, ¢, @, o, ..., of,)
by the vecursion [17] (7). Since pu(2, ¢, @, o, ..., a},) is defined, one of
Cases 1-9 of [17] (7) must apply, ete.

Oase 8+j-s, forany j = 3, ..., and s =1, ..., ny. In this case by 6.2,
(i) L(m, z, q,x, %Ly weey Gny) a'l'“d ﬂs(M L(Pf—-2m; (Z)a, Qs,j,m,05 X “17 ey 0(41»,_”

bl oc,.,)) Furthermore, (ii) {4- L(pj_‘am,( Yoy Qagumas Xy 01y orvy Cyons

% ™ ,)}(Oj %) ved L(mt, z+, ¢f, X, of, ..., az;;i, 7 ™ L, o)
whete mt = pj_em, 2T = (2), ¢t = G;. Since gu(e, ¢, @, di, ..., ah,) is de-
fined, by the case hypothesis gmi(st, ¢t, @, i, ..., of,., o' %) is defined for
each o2 = g7Y(c"™%) way. So by the hypothesis of the induction, for
each o'~% L(mtT,zt, ¢F, X, oi, .. ,m,.,j,c""z,a{ ey o) a,a"“z-redehele
v=p"Xo"™). Using also (if), 7 -L(pj-sm, (2)s, Qesma X; 01, vr) hyay T
al” ., oh) A-defines B~ from a. So by an a-reduction, aZ(lt ‘L(pj—om ,(z)s,
Qayimas Xy 0ty vory Gy byad Yy oy oc;,)) a-red y where y = af(f"™"), which
is the value of gm(2,q, ®, 0F, ..., &) in this case. This with (i) gives
the desired conclusion. i

6.4. For each v, cle.: If pmle, q,®, oty ..., &) 8 undefined, then
L{m, z, q, X, o, ..., «h,) has no a-normal form (and hence is a-convertible
to mo numeral y). .

Proof. Then Ly the analog of RF 9.1 LIIL for computation trees
by [17] (7) (cf. [17] 8.18), there is in the computation tree for gm(2, ¢, 2,
@y iy 0h,) bY (7) an (uppermost) infinite branch, each position on which
[below whieh] is oceupied by a tuple (7, , ...) for which ¢z(Z, ...) is unde
fined. [defined]. Say the tuple at the k-position on & given such inflm@e
branch iy (my, 25, ...) (k= 0,1,2,..). We shall infer that, in a certal_n
(indefinite) q-reduction tree with L(m,z,..) at the O-position, the.n.a is
a branch having a formula containing as part L(my, Zg, ...) ab its sk—pQSn.:lo.n,
where 0 = g, < 8, < 8, < ... Thus that a-reduction tree has an infinite
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branch, and it will follow by Theorem 5 that L(m, z, ...) has no a-normal
form.

‘We construct the a-reduction tree by stages. Suppose we have reached
the s;-position on the branch in question, where the interpretation is ay.
‘We show how to reach the szyi-position. To match the notation of 6.2
and 6.3, we now drop the subscript % in writing gmg(ex, ...), (7, 2 ...‘)
L{mg, z, ...), . Since gn(z,q, @, q, ..., of) is undefined, Oa.ses’ 1-3’
and 7 of [17] (7) cannot apply. We take first:

COage 8-:s (f =3, ...,7; 8 =1, ..., ny). Pick that o/ for which the
k1+1-position of the given branch is occupied by (ps_um, (®)sy Tsy
@y vy Uy 0 2). First we perform the reductions (i) of 6.3 on the p;m;
L(m,z,..) in question (simultaneously adjoining at the lower next
Dositions to the nodes the requisite a- or a,a’~2-reduction trees, available
on Theorem 6). Then we perform the reductions (ii) starting from that
ower next position to the node thus reached (whose upper next it
will be unfilled) which is determined by of-2 ;s the inf(ﬂpretaﬂoﬁoit;ﬁ
new constant o/~2 In this manner we veach the sy;-position.

Case 4: Iz'sing ('3.2,@ non-empty sequence of A-reductions takes
L(m, (z; q,lx, oy «.ey 6p,) into L(m, zt, q, (2expL(m, ¥, q, X, o}, ..., %)
~‘_]<—]x Py a1y oy a;',,) where #t = (2), and #F = (2);. We perform these
1'educt‘ions on the part L(m,z,...) in question of the formula at the
sg-position.

Subecase 1: the k;l—l-position in the given branch is the upper
one. Then pm((2)s, ¢, @, o, ..., dy,) is defined, say with value », and that
k+1-(1;)c:s1tion is occupied by (m,t,q,at, o, ..., a},) where wl =2°
-i];a[cpiﬂ. By 6.3, L(m, z, q, X, a1, ..., &) a-redv. Using this, the part
in question further reduces to L(m,zt, q,xt, of, ..., o), which is our
L(mk+1, Zit1y ...).

Subczyse1 2: ‘nh:a k+1-position is the lower ome, occupied by
(m, %%, ¢, @, o1, ..., 0p,). The part L(m,z¥, q,X, o}, ..., 0f,) within the

result of the above reduction of the part L(m, z, ...) is our L(mgy1, Zeay -o0)-

6.5. Suppose that ¢(a, ..., ug, a1, ..., dpyy ..o, o, .o, o) I8 partial
recursive with index 2, where #,> 0 if »> 0 Let F—ay...00, - L(m, z,
9 <, -y anpp) for the m, g of [17] (6). Kor given Opy oey Omgy 106
@ = {lyy ..., tny); then F(ay, ..., ag,, o, oy 0m) Ted L(m, Z, g, X, o yuee 0m,)s
and by [17] (6) @(ay, ..., Gug, i, ..., 0h) = @u(2, ¢, @, o, ..., ). The
conclusion of Theorem 8 follows by 6.3 and 6.4. '
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