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The category of a map and of a cohomology class

by
I. Berstein and T. Ganea (Bucuresti)

The purpose of this paper is to prove several results concerning the
n-dimensional category of a topological space X in the sense of Fox [7]
and the category of a cohomology class # ¢ HY(X; G)in the sense of Fary [6].
The category of a map, a concept which goes back to Fox ([7], p. 368),
will play a unifying role in the present setting: among other things, we
prove that, provided X is a reasonale space, both the n-dimensional cate-
gory of X and the category of u coincide with the categories of certain
maps of X into standard spaces of homotopy theory.

1. The category of a map. Let f: XY be a (continuous)
map of arbitrary topological spaces.

DEFINITION 1.1. catf is the least integer k=1 with the property
that X may be covered by % open subsets Um such that the maps f| Un:
Un—YX defined by | are nullhomotopic; if no such integer emisis, we pnut
catf = co.

We shall denote by cat X the Lusternik-Schnirelmann category of X,
i.e., the least integer % > 1 with the property that X may be covered
by % open subsets which are contractible in X; if no such integer exists,
cat X = oco.

The following results are easy to check:

1.2. catf < min{eat X, cat Y}.

1.3. cat O = cat X if 0 i the identity map of X.

1.4. catg o f < min {catf, catg} for any map g: Y—Z2.

1.5. cathy = cath, if by X—>Y 48 a homotopy. ‘

Next, since a OW-pair has the homotopy extension property and
since a CW-complex is locally contractible, we have

1.6. If a OW-complew X is the union of k subcomplewes which are
contractible in X, then cat X < k.

‘We now prove

PROPOSITION 1.7. If X is a OW-complew and f: XY is an arbitrary
map, then the following statements are equivalenmt:
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(i) X may be covered by k open subsels Un such that f o g ~ 0 for any
OW-complex Lm and any map gm: Lp~ Um;

(il) there ewists a OW-complew Z and maps ¢: X2, vt Z—Y such
that Z is the union of T self-contractible subcomplexes and foyp o ®;

(iii) catf < %.

Proof. Select, ag we may, a simplicial OW-complex L and a homotopy
equivalence g: L-»X. In a suitable subdivision of I there are sub-
complexes Ly such that L =)Ly and L, C Y Un). Let Z denote the
OW-complex which results by attaching to I a cono OLn ovoer each Lim;
thus

Z = GL_‘_ vooLv OLk and. oLm [a) Ol;n =Lm " Ln .
Let w: L~+Z denote the inclugion map, and let gn: Lm— Um be the map
defined by g. We have f o g ~ 0 50 that f o g extends to every 0L, yielding
o map y: Z—Y such that pow=7Ffog. Let % be a homotopy inverse
of g, and let ¢ = w o h. Then, f2fogoh=yop and we have proved
that (i) implies (ii). Next, it follows from 1.6 that catZ < %, and by 1.5,
1.4, 1.2, we obtain catf < k. Finally, it is clear that (iil) implies (i).

Next we compare 1.1 with the extension to maps of the G. W. White-
head [17] definition of a category. Let Y* be the k-fold Cartesian power
of an arbitrary space Y, and for any Yoe ¥ let T'(X, yy; k) denote the
subspace tonsisting of all points (Y1 + 5 Yr) such that ym = y, for some m
with 1<m < %; let j: T(X, 4o; k)~ X* be the inclusion map and let
the diagonal map dyp: ¥ —>T* be given by Ay(y) = (y, ..., y). For any
map f: X—»Y one has dpof=fo 4x, where f* is the k-fold Cartesian
power of f.

PROPOSITION 1.8. Suppose X is normal, Y is 0-comnected, y, e X has
@ neighborhood N which is contractible in Y, and let f: XY be a map.
Then, catf <% if and only if there is a map g: X =T(X, yo; k) such that
jogxdypof.

Proof. Let hy: X—¥* be 3 homotopy such that &, =Adyof and
hy=jog. For every m with 1<m <k lot Up=— hi*(pm*(IV)), where
Pmt X*>X sends (g, ..., vs) into Ym. Olearly, every U, is open and
X =UUn. Wo have pmohy=f and pyo hy(Um) C N; therefore, and
since N i§ contractible in Y, /| Un=~0 so that catf < k. Conversely, if

catf <%, there are open subsots Vs, of X and homotopies hm: VmxI—-Y
such that
X=UVn and in(z,0) =f(a), (@0, 1) = 9
for every weVm, 1< m<k. Since ¥ is 0-connected, we may assume
that ym = y, for all m. Since X ig normal, there are cloged subsets Am
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of X, open subsets Wm of X, and continuous functions rm: XTI such
bl

hat AmC Wi C W C Vi,

o X — W) = 0.

X"“"'UAM;
’l"m(Am) =1,

For every m define a homotopy dm: X XI->X by

WGX"'Wm,
{L‘EVm.

_[f@ it
@0 =\ b, trmlar)) it
Tet d(w, 1) = (du(@, 1), ..., di(@, 1)) € X5 then, dearly, d(z,0) = dy o f(a),
and, sin’ce every @ ¢ X belongs to some Anm, d(2,1) e T(X, yy; k).

] V- d Y has a continuous
ProvostrioN 1.9. If X is a OW-complew an .
multiplication, then catf,fy < cat fi+catfy—1 for any two maps fm: XY,

Proof. The product map fif, i8 equal to the composition

X2, xxx 2 vy Sy

in which z is the multiplication. According to 1.7 and 1.6 there wzl'e
OW-complexes Zm and maps gm: X—>Zm, Ym Z,,.T>Y such that caj:io,l,;
< catfm and fm= ymo gm. Then, fi X fy is homotopic to the composi

I X0, 7 7N, T X Y,

and the classical theorem on the category of Ga,rbesian-pro_dilct? 1[]’2 1)I<laAZy2
easily be extended to products of OW-complexes so as to yie. d 5&1 21
< catZ, +cat Zy—1. The result now follows from 1.5, 1.4, an t. .d rd
We cloge this section by generalizing to maps some of the s anla
estimations of category. We wuse singular l}omology an;l éoh%lnggec;ﬁ
groups with arbitrary coefficients @, but omit the symbof lvlv o
we work over the integers; we shall use cup pro'duct;iz of cohomology
classes with coefficients in an arbitrary commutative ring K. |
PropostrioN 1.10. Let f: XY be a map with catf < k. Then, for
any cohomology classes vm € H™X; R) with gm =1 and ¢ = ¢+ +qk
one has f*(vy v ... v ) = 0 e HY(X; B).
Proof. Agin[97, 2.1, 1et Umbe open su'bsets of X such that X = UUnm
and f| Um0, 1< m <k Since gm>1, in the diagram

H®(X, Un; R)-25 H™(X; B)-25> H™(Un; K)
1r
H™(Y; R)
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we have 4o f* =0 so that, by exactness, f*vn)= m(wm) for some
W € H™X, Un; R). One has w, w ... U wy, e HY(X, | Un; B) = 0 and the
naturality of the ecup product finally yields

Horo v w) = (wn) v O i) = wy .. W) o
where j* iy induced by the inclusion map §: X (X, U Un).

ProrosrrioN 1.11. If X is a OW-comples such thai Hu(X) 45 free
and Hy(X) =0 for ¢>r, and if Y is a (p—1)-connected space (p > 2),
then any map f: XY satisfies catf < r/p-1.

Proof. If r < p, a standard obstruction argument yields f~ 0 and
catf = 1. Buppose 7 > p, and let Z and ¢: X—Z denoto the OW-complex
and the identification map which result by pinching to a point the (p—1)-
skeleton X*~* of X. Since ¥ iy (p—1)-connected, Fl X" >0 and there-
fore there is a map v: Z-—Y¥ such that f=ypop. By 1.5, 1.4, and 1.2 we
have catf < catZ. As is easily seen, Z is (p—1)-connected and

Hy(Z)~ H(X)D F, H(Z)~ Hy(X) for 4>p,
where @ denotes direct summation and ¥ is a subgroup of the free group
H, (X?7%). The extension of the Grossman [10] theorem given in 8],
1.1, now yields catZ < #/p+1.

Remark 1.12. Another upper bound for catf, still in case X is
@ OW-complex and ¥ is a (p—1)-connected space (p > 2), may be ob-
tained by a similar argument replacing the Grossmann theorem by
the following generalization (8], 1.2) of a vesult by Eckmann and Hil-

ton [4]:

. Let Z be a 1-connected OW-complex, B={g> 0| Hy(Z)s 0}, p= min B,
* = max K. If B is contained in the union of k closed Vinear intervals, each
of length p—2, then catZ <k+1; if H(Z) is free, the interval containing
r may have length p—1.

2. The n-dimensional category. We shall need the generaliza-
tion to arbitrary maps of an invariant first defined by Fox ([7], p. 368)
for inclusion maps and then by Bvare [13] for fibre maps.

DerFINITION 2.1. The genus of o map f: XY ds the least integer
k=1 for which there are open swbsets Vo of ¥ and maps gm: Vm—>X
such that ¥ =JVm and fo gue jpm, where jm: Vi~ Y i the inclusion
map (L <m < k); if no such integer exists, genus f = oo.

The following results are eagy to check:

2.2. genusf <eatY if ¥ s 0-connected.

2.3. genusf =1 if 0 4s the identity map of X.

2.4. genughy = genush, if bt XY i3 a homotopy.

2.5. genusf o g = genusf = genush of if y: WX and h: Y—~Z are
homotopy equivalences.
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Recall that a sequence F—gE—’;B of spaces and maps is a fibr.:aJtion
if ¢ defines a homeomorphism of F onto p~*(d) for some be B, and if for
any space A, any homotopy hu: A -B and any map k: A—F such that
p o k= hy, there is a homotopy & A —H such that ke = & and p o by = k.

PROPOSITION 2.6. Let F: FLEBB e a sequence of spaces and maps.
If poix0, then catp < genust; if F is a fibration and B is O-connected,
then catp = genusi.

Proof. Let V be an open subset of B with inclugion map j§. If g:
V —>F satisties 40 g4, then p |V =pofjxpoiog~0. Next, suppose_
that F is a fibration and let Iy: V—B boe a homotopy such that h, = po]
‘and 7(V) = b. Since B iz 0-connected, we may assume .th‘cbt b=poi(F).
Algo, there is a homotopy k: VX such that k=4 and po ?a, = h,‘;
therefore, & (V) C p~4b) and there is a map g: V-—F such that 4. gxj.

ProrosrrioN 2.7. If ¥ is a OW-complex and f: X—Y is an arbi-
trary map, then the following statements are equivalent:

(i) Y may be covered by T open subsets Vm with the property that for
any OW-complewes Ly and any maps hy: Ly —>Vm there.are MAPS G Lp—+X
such that f o gm=>jm o hm, where jm: Vm—XY are the inclusion maps;

(ii) genusf < k. ,

Proof. Select, as we may, a simplicial OW-complex I and a homotopy
equivalence h: L—Y¥. In a suitable subdivisiT} of L there are sub-
complexes Ly such that L = | JL, and LmC}? (Vm)- Let' . L,,,'—->Vm
be the map defined by h and let gm: Lm—X satisty fo gm=jm o hm. There
are open subsets Um of I and maps 1m: Um—>Lm such thz'ut Um. D Lp and

em o 'm~im, Where em: Lm—L and im: Um—L are the inclusion maps.
Let 4 be a homotopy inverse of h. Then,

dofogmormzdojmohmorm=dohoemoﬁm.’:‘.d0h°1:m-’?'-’1;m

80 that genusd o f <% and, by 2.5, genusf < k. The converse is obvious
and the proof is complete. i

Fo]lolwing J. H. %] Whitehead ([18], p. 214) we 1'e-deﬁne. the .%-(11-
mensional category of a space using maps of ar_bltmry n-dimensional
OW-complexes instead of maps of finite n-dimensional polyhedra.

DEFINITION 2.8. For any n =0, catnX is the least 'i'n.teger k=1
with the property that X may be covered by & open n-categorical subseis,
i.e. open subsets U such that, for any map h: I— Um of any C{W-fsomplewL
of dimension < n, the map L—X defined by h is nullhomotopic; if no such
integer ewists, caty X = oco.

Evidently, cat,X < cat X.

We shall be concerned with spaces obtained by killing off the homotopy
groups in dimensions < # or > » of a given 0O-connected space.
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TrEOREM 2.9. Let X5 Y57 be maps of connected OW-compleges
Let > 1. If ’

m(X) =0 for q<n and [ m(X)mnlY) for g¢> n,
n(Z) =0 for g>n and gp w(X)~mlZ)  for g<n,

then genusf = cat, ¥ = caty.

Proof. Let ¥V be an open subset of ¥ with inclusion map j:‘ V-7,

' Suppose that J’ is m-categorical, let L be an arbitvary OW-complex

with fm—ske]e_ton I, a,m} let h: LV Do an arbitrary map. Use of the
mapping cylinder of f will enable us to assume that f is an inelugion map.
Then, we haXe m(¥, X) = 0 for ¢ > n, and the assumption on V implies
that joh|L"~0. Standard deformation arguments now yield a map
d: L—+X guch that ;fo.dzjo hy and by 2.7 we obtain genusf < cat, ¥.

l_Text, suppose goj~0, let L be an arbitrary OW-complex of di-
mension <#, and let h: LV be an arbitrary map. Without altering
the h.omotgpy type of Y we may assume that ¢ is a fibre map with fibre ¥
fund inclugion mayp 4t F->Y. Since gojo h~0 and Z is connected, there
is ahmap d: LT such that todx~joh. We have () =0 for g n
50 that, since dimI < n, d~ 0; therefore, jo A~ 0 and
that cats ¥ < catyg. ’ ’ ! e have proved
‘ ]?‘mal?y, since my(X) = 0 for ¢ < n, the n-gskeleton X* of X is con-
tractible in X and gof extends to X v OX", where OX™ iy the cone
over X" Sué.](ie my(Z) = 0 for ¢ > m, we may further extend gof to the
cone over the whole of X g0 that gofx~0 d i
oty < powaed, gof~0, and, by 2.6, we obtain

Under slightly different assumptions, similar argu ts yi X
related to 2.9; thus, one has ’ Euments yield vosult

. ZROPOSITION 2.10. Let g: Y7 be a map of connected OW-complewes,

and Tet n'> 1: ?f 7Z) =0 for ¢>n and if the homomorphism ga: ma( X)
—ma(Z) is trivial, then catg < cab,_, Y.
, Pr_o of. Let ¥ be an open (n—1)-categorical subset of ¥. Let L be
an fbrbltl‘ary OW-complex with m-skeleton L™, and let h: L—Y be an
arbitrary map such that 2(L) C'V. Since & | L* ™ ~0, h extends to & map
k: Lu 0" Y. Since the homomorphism

gn o Fent ota(L w OL*) 1y (%)
;s Frivial, g ok extends to a map f: L w OL"->Z. Finally, since my(Z) = 0
011:1 g>n, f extends to a map d: OL—+Z. Therefore, goh =doix0,
where ¢: L OL is the inclusion map, and, by 1.7, we have caty < caty—1 X.
N ‘3. The category.ot a cohomology class. Let X be an arbi-
rary space, @ an Abelian group, and # >1 an integer.

The following definition is essentially due to Fary [6]:
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DEFINITION 8.1. For any u e H"(X; @), catu is the least infeger
k=1 with the property that X may be covered by k open subset Um
such that §%(u) = 0, where jh: HYX; @)—»H"(Un; &) is induced by the
inclusion map jm: Um—X; if no such infeger exists, catu = oo,

Let K(@,n) denote any Eilenberg-MacLane CW-complex L such
that ma(L)~ G and my(L) = 0 for ¢+ n; the homotopy type of L is uniquely
determined. The group H"(K (&, n); G) may be identified with the group
Hom (&, @), and the identity map of G then corresponds to the funda-
mental class e HYK(G,n); 6). ¥ X is a OW-complex, the set
n{X , (&, n)) of homotopy classes of maps X —K (@, n) and the group
H™X; @) ave in a 1:1 correspondence which is given by

f=*9)

is induced by f: X =K (&, n). For any u e H(X; G) we shall denote by fu
any of the (homotopically equivalent) maps f: X—K (G, ») such that
) =u. .
TarorEM 3.2. If X is a OW-complex and if weH'(X; @), then
catu = catfy.
Proof. Let V be an open subset of X with inclusion map j: V—X.
If f, 0§ 0, then j*(u) = §* o fi(s) = 0 so that catu < cat fu- Conversely,

where f*: HYK(@,n); G)~H"X; G)

_if j*(u) = 0, then, for any CW-complex L and any map k: LV, one

has h*oj*o fi1) =0 so that fuofoh~0 and, by 1.7, we have catfy
< catu.

From 3.2 and 1.11 we obtain

TEEOREM 3.3. If X is a CW-comples of dimension <r and if
u e HYX; @), then catu < 7/n+1. )

PROPOSITION 3.4. If X is a CW-complex and if u, ve H"(X; @), then
cat (—u) = catu and cat (%) < catw+cato—1.

Proof. The first statement is obvious by 3.1. In order to derive
the second, recall that K (@, n) has an H-space structure which converts
the set (X, K(G,n)) into a group which is isomorphic to B X; @)
under the 1:1 correspondence displayed above. Therefore, futs = fufy
and the result now follows from 3.2 and 1.9.

PROPOSITION 3.5. If X 4s any space and if um ¢ H™(X; R), then
cat (4, L %) < min {catw,, catu,}.

Proof. If U with the inclusion map 4t U-—>X is an open subset
of X such that *(u,) = 0, then i*(uy u uy) = ¢*(1y) v ¥{up) = 0 s0 that
cab(uy U ug) < catiuy; similarly, cab(u, v up) < catw, and 3.5 is proved.

PROPOSITION 3.6. If X is am arbitrary space and ve HYX; &) i8
the image of u ¢ H™(X; @) under a cohomology operation T, then catv < catu.

Fundamenta Mathematicae, T. L (1962) 19
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Proof. Let U with the inclusion map §: U-+X be au open subset
of X guch that ()= 0. Then, commutbativity in the diagram
H"X; @) -I> A™U; @)
{7z Ty
HYX; &) L5 HYU; @)
yields §™*(v) = j™ o T'x(u) = Ty o j*(u) == 0, and 3.6 iy proved.

Prorosrrion 3.7. Let g: H-—>X be o map of arbitrary spaces and lot
ue HMX; @). Then

(i) catg*(u) < catu;

(i) if X is a connecied OW-complew, catu < k if and only if there
i & conmected OW-complex Z, o cohomology dlass w ¢ H™Z; @), and o may
¢: X—Z such that catZ <% and u = ¥*(w).

Proof. If U with inclusion map j: U—X is an open subset of X
such that j*(u) = 0, then ¢* o g*(u) = d* o () = 0, where N = g~ T),
&: N-+His the inclusion map, and d: N — U is defined by g. This proves (i).
The sufficiency part of (i) is an immediate consequence of (i) and of
the obvious fact that catw < catZ. Finally, it catu <%, then, by 3.2,
catfu <& 5o that, by 1.7, there is a connected OW-complex Z and maps
¢t X—>2Z,y: Z->EK(G,n) such that catZ <k and fupop; with w = p*()
one has w = f¥(:) = ¢*w), and the proof is complote.

Next, we shall establish relations between the n-dimensional ca-
tegory of X and the category of certain cohomology classes. We ghall
need a slight generalization of cohomology suspension, which is baged
on consideration of the spaces and maps

B(X* To, de)  and  pa: B(X% Ty, dy) > X

associated with any space X with bage-point @, € X and any & > 2. With
the motation of 1.8, these are defined ag follows: E(X*; Ty, dz) is the
tompact-open topologized space of all paths A= (Ayy.ery &) in the k-fold
Ga,rte?smn power X* which emanate from the subset Th = T(X,wy; %) and
end in the diagonal subset 4 of X*; py is given by pi(4) = 45'(A(1)),
where dx: X—X* ig the diagonal may.

TEEOREM 3.8. Let X be a connected CW-compless with basc-point
a 0-cell myeX. Let n>1 and ue HYX; Q). Then

(1) cabu < catn X;

(i) catw < (catn X+T—1)/k if ph(u) = 0; :
(i) catwu < (catnX -+ 1)/2 of w is in the kernel of the cohomology sus-
pension;

(iv) eatw < cat,_y X if w is a spherical amnihilator;

(v) cat(oy © ... U 1) < (catn X + % — ik i ume H™X; R) and
l<@m<nfor m=1,.,k ‘
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Proof. The first statement follows from 3.2 and 2.10 with n replaced
by n-1. o -
In order to prove (ii) it obviously suffices to show that the inequality
cata X <1k implies catu <7 Leb then Ve, (1<s<r, 1< m<%) be
open n-categorical subsets which cover X and let V= |J V. Let I,
with n-gkeleton L™, be an arbitrary CW-complex and let h: L—X be
an arbitrary map such that k(L) C V,. Without altering the homotopy
type of L we may assume that it is a simplicial CW-complex, and then
in a suitable subdivision of L™ there are subcomplexes L, such that
I" = JZLm and h(Lm)C Vyn. Therefore, with d=h|L™, we have
@ |Lm=~0. Since the OW-pair (L™, L,) has the homotopy extension
property and since X is 0-connected, we may invoke the last argument
in the proof of 1.8 to obtain a map g: L™ T (X, u,; k) and a homotopy
Hy: ™ X* guch that Hy=17jog and H,= Axod, where j embeds
T(X,x; k) in X*. Define a map e: L™ ->B(X*; Ty, &) by setting
e(a)(t) = Hya) for every a e L™ and ¢ e I. Then, pzo e = d and, therefore,

A* o fA(e) = 6% o Ph o (1) = €* o pi(u) = 0 e HYIL™; @) .

As o consequence, the map f,od: L(”’—+K(G,n) is nullhomf)topi({ 50
that the map f,o h extends to a map Lu CL™ K (@, n) which; since.
mo(K (@, n)) = 0for ¢ > n, may further be extended to a map OL->K (G, n).
As a result, fuoh~0 and, by 1.7, catfy <r so that, by 3.2, catu <1,
and (ii) is proved.

The proof of (iii) will be based on (ii) and on several arguments
essentially due to G. W. Whitehead [16] Introduce the subsets

E0={A|A(O)=mo}7 E1={1ll(l)=mo}: Qon’“EE‘
of the space X7 of all paths 4 in X, and define a homeomorphism
O: B(X?% Ty, d3) =By v By

b 0
Y A(2s) if
MW(2—2s) if

. 0<s<3,

¢m¢mw={ Y

With ¢ denoting the constant path at @, in X, we have the diagra,m

HYEB,u By, ¢; G) <~ A B, B, B;; G) %> HY(E,, 2; ¢) <~ H" (2, ¢; &)
¢¢n \i. ) T’,o

HYE (X2 Ty, 4y), (¢, &); G) «—2— HYX, oz &)

in which j* and k* ave induced, by inclusion maps, Whﬂ(.-) p* and r* are
induced by the maps » and 7 given by A—-A(1). Define a homotopy
Tt (B(X¥ Ty, A1), (6, 6) (X, 00) by Mk, %) = At) 50 that

P Ay Za) = P (yy Zo)(1) =70 f o P(hy, L),

Tuldqs Ao) = Paldey o)
19%*
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and pf=@*of*or*. I is alio clear that p* = k*or*. Now, since
(XT; By, By) has the homotopy type of a OW-triad [11], the exci;ion .k*
is isomorphic. Since H, and B, are contractible, consideration of the
cohomology sequences of the triples (B, By, By, &) and (H,, 2, &) reveals
that j* and d are isomorphic. Therefore, @*o %o (k*) 1o iy am isb-
morphism and

pPE=P*o o (") odoo* where o*=0"o p*
is the standard cohomology suspension. As a vesult, o*(u) =0 implies
pi(u) = 0 and, by (ii), we obtain catw < (catsX - 1)/2.

The fourth statement is an immediate consequence of 3.2, 2,10, and
of the fact that % is a spherical annihilator if and only if the ‘.h,otnunlorp,himn
(Fulnt oal X) >a(B (@, m)) i brivial. '

In mrder to prove (v), again let Ve, (1 <8 <7, 1 <m<lk) be upén
n-categorical subsets which cover X and let V, == |V u. Let

fem fa - J
Ven—""5 X -2 (X, Von), Vo2 X4 (X, 7,)
be inclusion maps. Sinee Ve, certainly is gm-categorical, by 3.2 and the
proof 0fq2.10 we have ih(um) =0 so that, by exactness, there is
& Vom € (X, Vom; B) such that wm = hu(vem). Therefore,

Uy e U = P (Vg1 e U V)

and, by exactness, ‘i;‘(ul Vv ) = 0. Bvidently, X = {JV, and we
have proved that the mequality cats X < rk implies cat{(u; w ... w uz) < 7.

.If:emark 3.9. It is well known that a cohomology class which is
a,nmh?la,te_aﬂ by cohomology suspension is a spherical annihilator; there-
fore, in (iii) we also have catu < caty_;X. Next, it follows from (v) that
cata X > k+1 if X has a non-trivial %-fold cup product of cohomology
classes of positive dimensions < n; this is the ‘“n-dimensional”’ version
of_ t]_1e well known result according to which catX > k-1 if X hag a non-
tr.mal k-.fold cup product of positive dimensional cohomology classes.
Finally, in connection with (i) we point out
GW-PROPOSITION 8.10. If X is an (n—1)-connected n-simple (m > 1)

{JOMPl%t and if ue HMX; wn(X)) 8 the primary obstruction to con-
tracting X into a point, then catu = caty X. ‘

. Proof. One. has H™(X; ma(X)) & Hom (Ha(X), ma(X)) and w cor-

esponds to the inverse Hurewicz isomorphism e Hy(X)—>ma(X). The
map fui XK (na(X), n) induces an isomorphism of homotopy groups
In dimension # and the result now follows from 3.9 and 2.9,
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A lower bound for the category of a cohomology class is provided by

THEOREM 3.11. If X is a CW-complexr and if the k-fold cup product
WU ..U 0f a positive dimensional cohomology class ©e H'(X; R) 18
non-trivial, then catw = k-1.

Proof. One has filtv.ut)=uwv..
and 1.10, catu = catfy >k -+1.

Remark 3.12. Let M, be the complex projective space of 2n—2
real dimensions. One hag m;(M,) = 0 so that, by [10], cat M, < n. Also,
H2( M)~ Z for 1< ¢< n—1, where Z is the ring of integers. If » ¢ H¥ Mp)
is a gemerator, then catw < catM, < = and, since the (n—1)-fold cup
product % w ... v % generates H™ ¥ My,), by 8.11 one has catu > n. Thus,
the category of a cohomology class may assume any given value.

v 40 so that, by 3.2

4. The category of a rational cohomology class. The pur-
pose of this section is to provide a recipe for the computation of the
category of a cohomology class with rational coefficients. We shall use
reduced homology groups, and consistently demote by ¢ the additive
group or the field of rational numbers.

LEMMA 4.1. Let W be a l-connected space and let m =3 be an odd
integer. Then, the following statements are equivalent:

(i) Ho(W)~Q ond HyW) =0 if ¢ #n;

(i) (W)@ and mo( W) =0 if q % n.

Proof. The result could be derived within the framework of the
Oartan [3] computation of the groups H(m,n). A more geometric proof
rung a. follows. For every integer r>1 select two copies X, and ¥,
of the n-sphere S™ and let fp: X,—~Y, be a cellular map of degree 7.
Tet O, denote the mapping cylinder of f, in which X, and ¥, arve em-
bedded in the standard way. Let K, denote the CW-complex which
results from the disjoint union €y v ...u 0, upon identifying ¥, with
Xppa for all 7 < s. We have K, C K4y and we define a OW-complex K
ag the union |J K, with the weak topology. The homology and homotopy
groups of K are the direct limits of the systems consisting of the homology
or homotopy groups of the K, with the homomorphisms induced by the
inclusion maps jy: Ke—>Kgt1y, 8 =1, 2, ... As an immediate consequence
we have

mgE) =H (E)=0 if g<n, H(E)=0 it g>n.
Notice next that the inclusion map K,—K,. is homotopically equivalent
to the map farso ... o farat 8" — 8" Therefore, (js)a(@s) = (s 1)1,

where an is a generator of the free cyclic group Hn(Km), so that

HyE)~Q, whence m(K)m@.
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Now, select an integer ¢ > n and recall that, since » is odd, m, (8™ ix
a finite group ([14], Chap. V, 3); therefore, it follows from [15], Chap. V, 1,
that, provided ¢ is large enough, the mMap fepss ... 0 iy, whose degree i
(8+1) ... (8-+1), induces the trivial homomorphism of mo(8™) into itself.
Obviously, this implies that

wg(Il) =0 if g>n,

Thus we have constructed a OW-complex K which satisties both (1) and (ii)
and the assumption that # >3 has not yet been used. Now, il W is an
arbitrary 1-connected space satisfying either (i) or (ii), then, since n > 3,
its singular polytope will have the homotopy type of K, and 4.1 is proved.

CoROLLARY 4.2. If n > 8 is odd, then catX (@, n) = 2.

Proof. Aecording to [12], Appendice, there existy (and in the proof
of 4.1 we have actually constructed) a 1-connected OW-complex X such
that H, (X)~@Q and Hy(X) =0 if g #n—1. The suspension XX ig
1-comnected, Hu(ZX)nQ, Hy(EX) = 0 if ¢ # n, and, ovidently, catZX

= 2. The result now follows upon notieing that, by 4.1, K(Q, n) has
the homotopy type of I X.

)

TepoREM 4.3. Let X be a OW-complex and let u e HY(X;Q), u#0,
> 1. Then ‘

(1) if n i3 odd, catu = 2;

(i) if m is even, catw is equal to the least (finile or infinite) imteger
k> 1 for which the k-fold cup product u w ... v u vanishes.

Proof. The first statement iy an immediate congequence of 3.2,
1.2, and- 4.2. In order to prove (i), notice first, that as an immediate
consequence of 3.11, we have catw > &. To prove the converse inequality
lot ¥ =K(Q,n) and let f,: XY satisfy fi(e) = u, where ¢ e H{X; Q)
Is the fundamental class. We may assume that ¥ is a countable CW-com-
plex whose (n—1)-skeleton is & O-cell ¥, e ¥. As a rosult, with the no-
tation of 1.8 we have (1) :

) (Y9*DC 1y

Where‘T;, = T(X, yp; k). Let M denote the space of all paths in ¥* which
emanate from T and end in the point (Yoy -5 Yo) € X%; ag is easily seen,

(@) T M)~ mg1a(X*, Ty)  for all

Since #>1 and k> 1, it follows from (1) that T4 certainly containg
the 3-skeleton of ¥* so that m(¥*, Ty) = 0 for 1 < g <2, and, by (2),

(3) : M is 1-connected

—_— .
() The p-skeleton of any CW-
the p-fold Cartesian power of I, whi

g=0.

complex L will be denoted by L®; I* will denoto
ch is known to be a CW-complex if I is countable.

icm
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Let BY and BY* denote the spaces of all paths in Y,.resp.eetively Y*,
which end in the point ¥,, respectively (4o, ..., ¥)- As noticed in .[1] D. 446,)
the pair (BY*, M) is homeomorphic to' the k-fold Garte'sm,n 'poweé
(BY, Q7T)* of the pair (Y, 2Y), where QY is the loop spacg of ¥. Sm(_:e

is a CW-complex, it follows from [11] that (EY., .QYr)uhens the homotopy
type of a OW-pair and we may 1}«:% the relad_nve Kiinneth theorem tlo
caleulate the homology of (BY, QY)". Since ¥ is a space of type (@, n—1)
and n is even, by 4.1 we have

(4) Hoy(QY)~Q and Hy(QY)=0 if gs#a—1.
: K

Therefore, the homology of QY is torsion-free and, since BY and BEY

are contractible, for ¢ > 0 we obtain

(8) HM) ~ D HyQT) ® ... ® HylQY)

i such
i irect) summation extended over all sequences (iy .-, g
:;Vl:;]; (fldlﬂl—ec -){-q,, =¢—k+1 and ¢;> 0 for all &. From (4) and (8), and
1+ .
gince @ ® ... ® @ =@, we obtain

Hin—1( M)~ Q Hy(M)=0 if

Since kn—1 is odd, (3) and 4.1 now imply that M is a space of type
(@, kn—1) so that, by (2), we finally obtain

(6) g X%, Ty) = 0 g n .

and. q# kn—1.

for

According to 1.8, in order to prove that ca,tugl‘z it suffices to sho;v
that the map Ay o fu: X— ¥* may be compressed into Tx. Now, by li é
and the cellular approximation theorem, we may already assume tha

Ay o fufX*7V) C Ty .

Next, the primary obstruction to compressing Ay o fu into T is given
by the element
fto A% o §4(0) € H™X; men( X, Th)) ,
‘where ‘

je: H™(T*, Ty men T T)) > H*™(X%; 3( X*, T)
ig induced by inclusion, and

0 ¢ H™(Y*, Ti; mpn( T, T))
. k
is the fundamental class of the (kn—1)-connected pair (Y*, T%). Upon
identifying mn(Y*, Tx) With
Hlm(ka Ty) = Hal Y, %) ® ... @ Hu(Y,9%) =¢®..Q® Q,
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¢ becomes the identity map in the group
Hom (Hiu( T, T5), @ ® ... ® Q)

and, therefore, j%(0) is equal to the E-fold cross product ¢ x 3

] \ ) L CrOSY X .. X b Sinee

®..0Q9 =0, we obatin e
faod¥ o f*(0) =fho At X . X t) = fitw . w N VW

By fms.sm?lption, we have % v .. w %= 0 go that, as in the proof of the

Pontrjagin-Postnikov theorem ([2]; § 10), the map dg o f, | X tm) may be

compressed 11(1,01;()) Tx. Use of (6) with ¢ > kn implies that the compression

of dyoful X™ may be further extended to a compression of Ay o,

over the whole of X, and the proof is complete. :
We now examine the case n = 1.

ProPOSITION 4. . —
Thern 4.4 Let X be a OW-complex and let u. e HYX; @), u + 0.

(i) catu <3 and the case catu = 3 is actually possible;
(i) if X is finite, catu = 2. |

Proof. According to 3.2 and 1.2 we have catw < et K(Q, 1); also
by 1.3, we have cat. = cat K (Q, 1), wheve ¢ « HYK(Q, 1); Q) is the f’undaj
mental class. Therefore, in order to prove (i) it wuffices to show that
cat'K (@,1)=3. This is a consequence of the following two 1'emaJ1‘kS:
a8 In the proof of 4.1, K (Q, 1) may be constructed so as to have dimension 2
and, therefore, catK(Q,1) <3; secondly, since HAK(Q,1)) # 0, it
foﬂ(?ws from [5] that catK(Q,1)>3. In order to prove (ii), we ghall
again take for K (Q,1) the OW-complex K = | JK, constructed in the
prf)of 0? 4.1. Then, for some ¢ > 1, the compact subset fu(X) of K is con-
tained in the subcomplex K, and, since the latter is homotopically equi-
valent to a 1-sphere, we have cat fu = 2.

) dReme}r_k. 4.5, The preceding results do not hold for finitely gener-
;,I ed coefficient groups. For, the Cartan [3] computation of the groups
th(n , 'rfb) shows tha,?; if @ is a finitely generated Abelian eroup and if » > 2,
ﬁe(ia:;tsoi; ?Zome lln?ne P > 2, the cohomology ring of K (&, n) with coef-

« 0 Zy, containg non-trivial cup products of arbitrari i1
dimensional elements. Thus, we have vy TRy postive

PROPOSITION 4.6. If G is a finitel i
6. enerated G
%2 2, then cat K (G, n) = oco. - Abetian group ond §

This is also the reason for which m i i
. § ; ost of the estimations given in § 3
involve only invariamts of X disregarding the coefficient group.

iom
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