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Structure maps in group theory
by
B. Eckmann (Zirich) and P. J. Hilton (Birmingham)

Introduction and notation. In [3] the authors elaborate a theory
of structure maps in general categories. If the category C admits direct
products the notion of group structure (*) and the group axioms may
be formulated entirely in terms of the maps of the category; and
this enables us to carry over to categories other than categories of sets
and element-maps certain classical notions of group theory. Moreover
the definitions and results may be dualized and applied to categories
admitting free produets. We also discuss in [3] various generalizations
of the classical notions of group theory, for example, the notions of unions
and intersections of subgroups.

Among the concrete categories to which the notions of [3] may be
applied is the category & of groups and homomorphisms; indeed the
notions and terminology of [3] were in part inspired by the category &.
The present paper consists of a fairly detailed discussion of the application
of the notions of [3] to the category @. In the course of this discussion
we naturally find ourselves introducing ideas and adopting arguments
peculiar to the category of groups. Thus, unlike [3], we claim here no
generality for our results which are all group-theoretic, and the present
paper is intended to be, more or less, readable independently of [3], owing
to [8] merely its motivation.

If @ is a category of the type considered in [3] and if Xy, ..., Xa
are n objects of @ then there is a natural (zelf-dual) map

w X% %X XX XXy

in @ from the free product of X, ..., Xs to the direct product. An im-
portant general construction described in [3] consists of the two (dual)
factorizations of the map x, namely, ‘

M1 - P ®
N Cul D AT (e e

(F) X%.%$X=X"—>
=X1X...X-X1l7

(" X% . % Xp= 1.X2; ...—>RX£‘)G+1X—') ...—)n—IX':l;nX .
) =X]X...XXn,

(1) And, of course, semigroup structure.
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where X”,PX, 1 <p<n, are defined as certain generalized intersectiong
and unions. The factorizations (F) and (F') were used in [3] to define
the two dual concepts of length, X) and U'(X), of an object X of @.
Precisely, let us single out the map »*1 in (F) and wiite o for P
T'=T(Xy, ..., Xy) for X"™*. Then if X, = ... = X, = X wo have folding
map d: X"— X and we define U(X) <n if there exists a structure map
u: T'— X such that uo=d. A dual procedure yields the definition of
U'(X).

It turns -out (Theorem 1.1) that, in the category &, the factorization
(F’) is trivial for ¢ > 1 in the sense that ox ig an isomorphism if ¢ > 1;
it follows therefore that V(@) < 8 for all G e¢@. On the other hand the
factorization (F) coincides, in @, with that described in [6], Proposition 2.3,
where it is shown that each #? is an epimorphism. Thus in testing the
length (@) of @ € @ it is sufficient to look at the kernel of o= xn~1 apq
see whether the map @ annihilates thig kernel. If go, the map induced
by d on’ the quotient group G"/kerc o7 is the corregponding structure
map. Let X;% ...% X; % - % Xu be the free product of the X; with j 4
and let 7;: X" — X % ... % X; % ... % X, be the projection off X;,i=1, ..., n.
Then kerx»"—! = kers is just the intersection of the kernels of the pro-
jections n;, so that the study of the length (&) in @ leads naturally to
a consideration of the brojection kernels kers; and their intergections.

We recall that in a general category C of the type congidered in [3]
the property I1(X) <1 ig equivalent to the statement that X admits
an H-structure; for an H-gtructure map on X ig a map

#: XXX X guch that by = ptg =1,

where ¢, ¢, embed X ag the first, second factor in X x X sand gy = ui, =1
if and only if ux = d where »x: XX > XxX, Dually (X) < 1 if and
only if X admits an H'-structure, Section 1 of this paper is devoted to
broving the triviality of (F)in @ for ¢ > 1 and studying H- and H’-struc-
tures in @; it turns out that U(@) < 1if and only if @ is abelian and I'(@) <1

generators for kero and the proof that I(@) is just the nilpotency class
of & (Theorem 2.17 ; 8ee also [1]). We also Prove a theorem (Theorem 2.19)
which generalizes the result that the free group [G,, @, € G~ Gy is freely
generated by commutators (95 82), g1 ¢ Gy Gae Gy, g, # ¢ ) # 6.

The notations of sections 1 and 3 are descibed either in the foregoing

thos.e of [5] appearing in the foregoing introduction augmented as follows.
Iflisan 7-string (ordered subset of elements of the ordered get 1 ) 2y

then, if j ¢ I, I, is the (r—1)-string obtained from I by removing j, and,
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if j ¢ I, I is the (r+1)-string obtained from I by adjoining j. We adopt
the notational convention that the left-normed commutator

(915 [92r s [G-1s g41--.]]

s etten [g1s oes G0 -
We also write a” for b~ ab, where a,b are group elements. |

The authors wish to acknowledge the benefit -of eorrespondlfﬁcﬁ
with T. Ganea in developing the ideas of this paper. It is hoped to pu : s])
later a joint paper with Ganea discussing t}%e n.otlon .of n-megm:} afts:eories
in general categories, and in special categories including G an g
appropriate to algebraic topology. . t

1. Dual lengths in §. To define the d\}al lelllgths in @ we d_m;l]ie
construct the groups T = T(Gy, ..., Gu) and T' = T'(Gy, ..., Gu) an

X morphisms
natural homomorp o: ¥ .. %G1,

¢ TGy X ... X Gy
Certainly T(G,) = T'(Gy) = (e); also T(Gy, Gy) = Gy X Gy, T’(Gl.’ G,) ? gl::gg
and, for n = 2, 0 = o is the natural map » from the free ?10(?.110‘ y » 1:
to t’he direct product (2) @&, x @,. In fact, quite generally, o’ coincides wi
the map "~'x in the factorization .
e
Gy % o % G =G 52F > .. >G5 TG > . >"TG G
1 .er n =

(F) = G X X G

of the natural map #: Gy % ..% Gu—>Gy X ... XG,.: We nm.vv p.r(z;e g,
TueEoREM 1.1. For q>1 the map " 48 an isomorphism: “G— H

in particular o’z T" 22 Gy X ... X Gn if 1> 2. . e s a
Proof. It is plainly sufficient to prove St.ha,t }.is= o];to ;_5 o

- e 1. Since
isomorphism,. where % = "~1xo...o%, ¢> 1. . ‘ ‘ nd
lizortzxglapins to’construct a left inverse of 4. To do th}stwetﬁraithilxzea:egss;r1§
i bructi %G and A appropriate to G-
tion of the construction Iof ; [asegoy ©
i = ‘ here is a natural em g
For any string I let G = ‘>‘<IG,. ItJCIt

. G’I

% @ —G% let ©’: @'"@ also be the embedding map. We form ]I?iq
and impose the relations , ,

(@) =il(a), we@, fgznz.m ‘*w

§ ) 3 . ., . ma’

The resulting group is ?G. The inclusions ¢ together yie | 2 p11|=a »
—™@ which respects the defining relations for ?@ and thus induces a map
?G—™@ which is precisely the map 4.

(*) These remarks 'follow from the general theory; see [3]..
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Let us write # =y, where =,y ema(- ¢, to indicate that o and y
=

repregent the same element of ‘@ and let us write {#} for that element:
let us also write J(z)I for the image, in % &, of # ¢ '. Tinally, we will agreé
to identify 2 ¢ ¢/ with i72 € @' if no confusion is to be feared. With thege
notational conventions we ob firgt 6, if g} i £ §
ot observe first that, if gie Gy, ge @y, i IR
(1.2) G0 = (92 (9%, el jed.

For let K be any ¢-string containing ¢ and 4 t i = ==

or Jet ¥ g-8iring coutalning ¢ and j; then (gi) = (g%, (g7 = (g,),

(G (97)7 = (i) (97)% = (g2 (G3)F = (g (g)* .

Now if we adjoin a finite number of trivial groups to the collection
Gy, ..., Gy we affect neither their direct product nor *@; thus there is no
real loss of generality in supposing that g|n, say n = kq. We suppose thig
and understand by I(r) the g-string rg+1,r¢+2, ..., (r +1)q, for r =0
w3y k—1. We may now define 7: "G— ¢ by , ,

T(Gis ey gn) = {g1y -y gY@ (Gat1y vy 922)1(1)'--(gn—q+1: seey Gu)TE=1}

‘We,.must first prove that v is a homomorphism; to do this it.ig clearl
sufficient to establish that {(grz41, ..., glr+1))7®} commutes with {gs +1y
...,g(5+1)q)j(’)} if s But then I(r) and I (8) are disjoint and (g’qﬂ,
oy Jorrng) ™ = (grgpa)TO (96r402)™5 (Yo, oy Jorng)™® = (g, +’1“)I(a;
(g(,,,pq)-’(a). Thus the required commutativity relation follows from? (1.2)
and v is & homomorphigm. .
Finally we show that ©A=1. Let p,: 6*—@® 1o the natural
projection, r =0, ..., k—1;if I A I(r) =8, p(G) = e. Then, if p.(z) = a,
(270 = (z,)I. Now to show that 74 = 1 it is gufficient to prove thaTi;
Az} = {w}for x e ¢ ; or, in the more elaborate notation, 74 {('w)’ }= {(m)"}
But 2{(@)7} = (), so0 Plainly A {(#)} = {(@)TO L (@ FO-1)} = {(1, >}
o (@e—1)T} = {(2)7}; and the theorem is proved. '
COROLLARY 1.3. For any group &, T(@) < 8.

o Now only the triv,ial group hag length 0. It remains then to consider
de groups of length I’ = 1. These are precigely the non-trivial groups @
a nnttlx}g & map u: GG % @ such that oy = 4: GG x &, where 4
;&;1 the f:hagona,l map and o the natural map »: G % G—@ x G. We refer to
e pair (@, u) as an H’-object and to # a8 an H'-structure on @, and prove
‘fr »TﬁORE,M 1.4. Ti.w group G admits an H'-structure if and only <f it is
ee. Thus U(G) =1 if and only if G is free and non-trivial.
Lt Proo’f. Let ”G be free _and let {g;} be a set of free generators of G.
Gi=>Gi, §i—>g:’ copy @ into the first and second factors of G ¥ @ re-

spectively; then the map u: G—G % G defined P ;
Seen to be an H’'-gtructure. ned Y ulgi) = gig s enily
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We now prove the converse. Consider, for any group @, the subgroup
F = o1 (4G) of G% (. Grant for the moment that ¥ is free. Then if uis
an H'-gtructure, g maps G monomorphically into F, so that @ is itself
free.

Tt remains to show that B iy free. This may be done by an application
of the Kuros subgroup theorem, but » more direct argument is to hand (2).

Namely, wo show that if {»} ranges over the elements of G different
from. ¢, then the eloments {s;v'} constitute a free generating set for F.
Tt ds obvious that they are free. Now any olement of F, being also an
elemoent of (/3% (, iy oxpressiblo ag

(1.5) s g B on B

where ag, fiy € 6. ' Wo argue by induction on the ‘length’ n that  belongs
to the group generated by the elements vy, If n = 1, then oz = (ay, fy)
o that a; == f; and @ = e or & is itself one of the proposed generators.
Now suppose tho assertion proved for elements of length < #, and con-
gider (1.5). Then if 4 == @y~ oy @fy ", it is clear that y~*is of length < n.
It follows that y is exprossible in terms of the chosen generators and so
therefore is @. This completes the proof.

In considering H'-struetures in a general category we may investigate
associativity and commutativity. An associative H'-structure is a comonoid
structure in the gsengo of [7] and we have Xan’s theorem ([7], Theorem 3.10).

TuroreM 1.6. Let (G, u) be an associative H'-object. Then G is a free
group and those elements ¢ e O, different from e, swch that u(g)= g’y con-
stitute o set of free generators of @.

For the sake of completeness we sketch briefly the proof of Kan’s
theorem. It ig already clear from the proof of Theorem 1.4 that the ele-
ments ¢ % e such that wu(g) == ¢'g" coustitute a free set of elements, and
it remaing to show that they generate & if u is associative. Let y ¢ G and
lob w{y) == ajfy... s P (compare (1.5)). Then it is not difficult to show
that the associntivity of w irmplies that p(e) = aidl, w(fs) = frbn,
and Theorem 1.6 then follows by induction with respect to the integer n.

Thoeorems 1.4 and 1.6 show that, within the category of groups, we
may charaeterize both frea groups and their sets of free generators without
any reforenco o the eleoments of the groups in question, but simply in
terms of the maps of the eatogory.

Certainly any group admitting an H'-structure admits an associative
H'-gtructure; for thoge groups are just the free groups and the H'-structure
described in the proof of theorem 1.4 is clearly associative. Theorem 1.6
shows that every associative H'-stinweture ig, in fact, of the described form.

(*) This argument was suggested to us by M. Kneser.

Fundamenta Mathematiceae, T. L (1961) 15
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However there do exist non-associative H'-structures. Thus if G is free
cyclic generated by g and if ¢ is an element of [G, G] different (*) from ¢
or[g”, ¢'], then u(g) = ¢’¢"' ¢ is a non-associative H'-structure. Thus non-
trivial free groups admit infinitely many H'-structures; we stress this
because of the contrast with H-structures below.

‘We now prove

THEOREM 1.7. An H'-structure on a non-trivial free group is non-
commutative.

Prool. Let g belong to a free generating set for the free group G
and let u: G—>G%G be an H'-structure. Then there exists ¢ e[G',d"]
guch that

ug=4gg'e.
Let 71 G%@—>G%G 1nterchzmge the factors. Then = maps [@', @] into
itgelf and
Tuy =g"'9'¢c,

2 ot

where ¢ =7c. Thus if u is commutative, ¢'g” ¢ = g'’g’'e, or
(1.8) [y, 9”1 =L,

Now [, @"]is a free group freely generated by elements [a’, 3”’] where
a, B e, as e B+ 6 and G, ¢ clearly have the samoe length with respect
to this generating set. Thus (1.8) purports to be a relation between members
of a free generating set which is impossible. It follows that p is not com-
mutative.
Recall that, given two H'-objects (&, p) and (K, ), a pw'mm/étwe map
@: (G, pu)—(K,v) is a map @: G—K such that (P¥P)ou =1»oP. Now
by Theorem 1.6 an associative H'-object is just a free group w1th a proferr ed
.free generating set. We may thus assert

TeeorEM 1.9. Let (G, u), (K,v) be two associative H'-objects. Then
a map O: G—K s primitive if and only if ® maps each preferred generator
of G to e or to a preferred generator of K.
Proof. The sufficiency is obvious. Conversely let @ be primitive
and let g be a preferred generator of G. Then if Dy = h, vh= (D% D)uy
=(P%D)g'g" = (Pg) (Pg)" =H}"'. Thug h=e or h is & 1)10]011‘0(1 goner-
ator of K.
. CoroLLARY 1.10. Let (@, u) be an H'-object and lot G% @ be given the
induced H'-structure. Then if G is non-trivial p: G—>G %G is not primitive
Proof. By the general theory u is primitive if and only if it is

associative and commutative. Thus the corollary follows from Theorem 1.7
or from Theorem 1.9.

() We use @/, G" for the first and second factors, respectively, of G*d,
considered as subgroups of G *G.
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Again we may point out the contrast with H-structures in @; see
Corollary 1.14. In fact we now turn our attention to the dual story. Then
the group T(Gy, ..., Gn) is just the group G"~ considered in [5] and the
natural homomorphism ¢ is the epimorphism

o=x"" ">G"".

Now congider the cage Gy =..= Gy = @G; then (@) < n if and only if
there is & map u: @ '@ such that d = po: " —@, where d is the homo-
morphism G"—@& which is the identity on each factor of G". However,
gsince o I8 an epimorphism, we have

ProroSITION 1.11. Let [G™] be the kernel of o. Then 1(G) < if and
only if A[G™] = (e). Moreover if 1(G) < n the map p: @~ '—@G is unigquely
determined.

Again 1(@) = 0 if and only if @ is trivial. We study groups G with
1(@) > 1 in the next section and direct our main attention here to groups ¢
with 1(G) = 1. The situation is very simple and is described in the following
theorem.

An H-object is a pair (G, u) consisting of a group @ and a map
u: @ xG->@ such that d = po: G% G—G, and 1(@) =1 if and only if
@ is non-trivial and admits an H-structure. Then

TaEOREM 1.12. The group @ admits an H-structure if and only if it
is abelian. The H-structure is them uniquely determined and is associative
and commutative.

Proof. Let @ be an abelian group (5). Then the homomorphism
u: @ x @@, given by

(1.13) slg,

is plainly an H-structure. Conversely let u: & x G@—G be an H-structure
and let g, h e G- Then u(g, €) = g, u(e, ) = k. But (g, e)(¢, h) = (e, h){(g, e)
go that gh = hg and @ is abelian.

It now follows from Proposition 1.11 that (1.13) is the unique H-strue-
ture on @ if @ is abelian. Tt is manifestly associative and commutative.

h) = gh

COROLLARY 1.14. If (G, p) s an H-object and G X @ is given the
induced H-structure then p: G X G—@ is primitive. Indeed, for amy two
abelian groups G, K every homomorphism G—K is primitive.

This last result illustrates a general theorem on categories in which
the natural map o is an epimorphism. Confining our attention still to the
category @, suppose 1(@) < nand u: G" '@ is the structure map. Suppose
also 1(K)<n with structure map »: K" '—XK; then a homomorphism

() Which we will not write additively.
15*
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@: G~K is primitive if Gu=»P"" where " : @ K™ ig induced
by &.
ProposITION 1.15. Bvery homomorphism @: G—K is primitive.
Proof. Consider the diagram

St he
¢¢n \me-l iw
KSR LK

Then Quo = &d = dP" = v0d" = »0"'g; but o: @ =G is onto so
Q3,u = ’U@n_l.

2. The projection kernels (%), Let I = (45 <y ) Do an r-string,
that i3, an ordered subset of the ordered set {1,2,...,n) containing r
elements. We define an I-commutator in G" = G1%... %@y inductively with
respect to [I| = . Thus if |I| =1 and I = (i) then an I-commutator is
just an element of G, the normal closure of G;in G". If [I| > 1 then an
I-commutator is a commutator (97, gx] where (J,K) is a partition of I
and g; is a J-commutator, gx 15 a K-commutator. Further a left-normed
I-commutator is defined inductively in the obvious way: every I-commuta-
tor i8 left-normed if [I|=1 and, if |I|> 1, a left-normed I-commutator ig
an I-commutator [gs, gx] such that [J] =1 and gx is left-normed. Let
N(I) =N(, ..., i,) be the subgroup of @" generated by all I-commutators
and let Vy(I) be the subgroup of G generated by all left-normed I-com-
mutators. A simple inductive argument shows that a conjugate of a (left-
normed) I-commutator is a (left-normed) I-commutator, so that N (I)
and Ny(I) are normal subgroups of G". We first prove some elementary
Propositions about I-commutators.

PROPOSITION 2.1. Hvery right-normed I-commutator
obvious way) is equal o a left-normed I-commutator.

Proof. We use the commutator identity
(2.2) [a,0]=[b"", a’]
to establish the induction on |I |- For if » is a right-normed I-commutator
then z = [y, ] where ¥ is a right-normed Ij-commutator and 2 e Gy for

some j ¢ I. By the inductive hypothesis ¥ =1y', where y’ is a left-normed
Ij-commutator so '

. @ =[y, z]'zv[yly ?]= [+, 4]
and thus @ is equal to a left-normed I-commutator.
Since the inverse of a left-normed I-commutator is a right-normed

I-compmtator, it follows from Proposition 2.1 that every element of
Ny(I) is expressible ag g product of left-normed I-commutators.

(defined in the

(*) Bee the introduction for an explanation of the notations used.
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PRrOPOSITION 2.3. If (J, K) is a partition of I then
(M), Ny K)] C No(I) .

Proof. It is clasgic that if 4, B, O are normal subgroups of a group &
then .

(24) [(4, B10]C (B, O14][(C, 4], B].

‘We now prove the proposition by induetion on |J|. If [J|= 1, then
every element of N;(K) is expressible as a product of left-normed K-com-
mutators and the commutator identity

(2.5) [0, ] = [o, 2l[@, yT*

shows that every commutator [, v], u € Ny(J), v € Ny(K), belongs to N¥y(I)

hat the proposition is proved in this case. .
o Now sup%oé% the proposition proved for par_tit?ons (J. ! ,.K’) of I with
|J'| < |J|, where |J| > 2. In the light of (2.5) it is sufficient to prove
that if % is a left-normed J-commutator and v is left-normed K-con.lmutajcor
then [w, v] € Ny(I). Since |J|>2, = [s,t] where s ¢ G; and £ is a left-
normed J;-commutator for some j ¢J. Thus

[w,v] € [[Gy, Ny(J )], N )]
C [y, [NdT5), NI [ NI ), Gy No(E)]] By (2.4) _
C[Gy, MINILNYT), Ny(E"], by the inductive hypothesis
C N(I), again by the inductive hypothesis.

THEOREM 2.6. N(I)= NyI). - o

Proof. This'is trivial if |I|=1; assume it true for strings I m;h
|| < |I|, and |I|>2. Then it is sufficient to prove that if y ¢ N(J),
z e N(K) for some partition (J, K) of I then [y, 2] e Ny(I). But

[y, 2] €[N (J), N (K)] ‘
= [NyJ), Ny(K)] by the inductive hypothesis
C NyI) by Propositions 2.3.

COROLLARY 2.7. Hvery I-commutator is ewpressible as a product of
left-normed I-commutators.
It is evident that if = projects G" off G; and if ¢ eI then (N (1)) = (e).

i .N(I) _(;kerm = @; y

50 that

(2.8) NG

The main theorem of this section establishes that the inclusion (2.8)
is actually an equality:
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TrEOREM 2.9. N(I) = G;.
i€l

Proof. We have only to establish the inclugion m@i C N(I). This

is trivial if |I| = 1 and we proceed to prove it if |I| = 2. It is then plainly
sufficient to take n = 3; for this case we change notation, writing ¥, ¢, H
for @, Gy, Gy where I =(1,2). We write ¥ for N(I) = [F, @].

Let # ¢ F ~ G; then @ may be written as

@ = frginfadshs .. fmgmbm, fie P, g3 €@, hye H,
where gihy @ohs ... Jmbm = filyfahy ... fuhm = e. Then

& =figihy o FneaGmer By fnJimes Gt oo B g7
=figily ... fm—zgm—ahm—zfmﬂhm—lfmh;tl—lh;al—zg;iz hflgflmod.N,
commuting gm—; With Ay fmhmsy,
=figihy ... fm——agm—ahm»sfm—zhm—zfmﬂhm—1fmh;zl—1h;zl—2h;1l—sgv;1—s

B g mod N,
commuting gm—p With hum—sfm—y by fmbmer ks ,

= fily ... fm—lhm—lfmh;nl—lh;ai—z v BT mod N ,
= fiby oo fnrBner Fbim

=@,

Thus the theorem is proved if |I| = 2.

. We no“t pl‘*oceed, by induction on |I], assuming the theorem true
c;r strings I' with |I | <|Ij, where |I|> 2. There is clearly no real loss
o1 generality in taking I= (1,2,...,7) and this we will henceforth do.

ith a Vie to estalblishin i i
) g the 1nductl (4] St ¥
vv W. \% Bp we Plo Ve a lemma aznd

LEMma 2.10. Let (J,K)bea it
) / partition of (1,2, ...,8—1),let @, a’ € N(J
b,V e N(K), and lot a = a'mod N(J°), b = b”médl(r(zc’).)’mhevz O
[a, b]=[a’, I mod N (1, 2, ..., ).
Proof. We have a = ua’, b = vb' where u e N(J°), ve N(K®). Thus
[a, 8] = [ua’, b]
=[u,0]"[0’,] by (25)
=[a’, bmod N (1, 2, ..., 8)
= [a', ob']
=0, V), o by (2.5)
=[d, ¥ Jmod N (1, 2, ..., ).
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COROLLARY 2.11. If fi, ..., i1 i8 @ permutation of (1,2, .. ,t—1),
if Gus O € Gg, ond gl = grmod N (j, 1), k=1, ..,1—1, then [g1, ..., g1l
= [g], ey Ji-1JmMOd N (1, 2, ..., 1)
Proof. We apply Lemma 2.10 to prove that [gm,...; i1l
=[Gy oy Gim1JOQN (jm, ..., J1—1, 1) successively for m =¢—-1,..,2, 1
We now return to the proof of the inductive step establishing Theo-
rem 2.9. Let # € m Gy; then certainly a ei@ G; so that, by the inductive

hypothesis,
@ =00 ... &

where ¢; = [gjuy vy Girady Gip € Gy =1y s & =1, 000y 7=15 J1y ooy fro1
being a permutation P; of 1,..,7—1. We now project ¢; off G,. We
obtain an element

65 = [Giry -y Girl s

where g}, is the projection of g;, off G,. Then clearly gj, = ¢j,mod Gj, ~ G,.
But since our theorem is already proved for 2-strings we know that

G, ~ G =N{jx, 7).
Thus

gikEgékmodN(jk"r)y k=1,2,..,r—1,

and we may apply Corrollary 2.11 to infer that

¢; = cjmod N(I).
Then
@ = 616 ... 6g mod N (I);

bub ojes ... ¢, is just the projection of » off &, and so ¢ies ... ¢g = € since
#¢@,. Thus # e N(I) and the theorem is proved.

In [5]—and, of course, in the study of llength 1(G)—we were
particularly interested in the case in which I is the full set (1,2,..,%).
Then Theorem 2.9 implies (see also [1])

COROLLARY 2.12. [G"] 48 generated by the set of all (left-normed )
commutators

[.(/11’ ""gfn]i g!keghg; k=1,...,’)’l:.

where §,, ..., jn 8 @ permutation of 1, .., n.
In [5] we introduced the homomorphism ”: F->F, 1<p<n,
defined in terms of the factorization ()

w1

@ -
n—1

of the natural map » by A7 = #¥ o..on™ ", Then X' =#, A’ =#"" =0
and [G"] = kerA"™*; the group keri' is the Cartesian subgroup of " and
the groups ker A were called in [1] generalized Cartesian subgroups of G".

(2.13) @ @5 @
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For any string I let us call the left-normed I-commutator (9515 ooy 95,
special if g, belongs to the normal closure of Gy, in Gy, k=1, ... s |Ir[,
- Then the following assertion is plainly a generalization of Corollary 2.12,

TEEOREM 2.14. ker1” is generated by the set of all special left-normed
I-commutators, where I ranges over all strings such that |I| > p.

Proof. Define 4% = "o ...0 %" @*>G® for ¢ > p. Then 7™ —
and ™ plainly maps ker % into ker 29, Lot 77~: ker 172 kor j0-1
be the induced map, so that (2.13) induces the factorization

(2.15) KerJ? %5 keriPmt s | oy jpnt1

We now congider the transformation % G%—@" given by (2.12)
ot [5], and claim that it maps ker 22 into ker #%. For ker A ig just F,(G%
and 1 is plain that, if g e Fp(6%), then Oy(g) = ... = O,(g) = g, Bo(g) = .
= ﬂ,,_.l(g) = ¢. Since 6, maps into Fy(G%) and f, maps Fy(@% into .Fs(G")
and since the subgroups F, form a decreaging filtration, the assertim{
follows from the definition of 4. ’

It is now immediate that the transformation n?: G2— @9+ -
rem 2.5 of [5] maps kerA™ into kerA*?™ and 111171718 inducis h‘q(?fkchl'l;’(’)’q
~ker/™** guch that 77% = 1. Since ker s C ker ;P21 g follows that

the map o of Proposition 2.19  of [6] maps X [G;]xkerd® onto
[T|m=g+1

.2+ ; ;
ker JP4+2, Thus, by iteration, the (1,1) correspondence

7 >1< (Gl 6"

of Theorems 2.20, 2.21 of [5] maps X [G4] onto keri?,

This proves the
theorem. > ’

CoroLLARY 2.16 keri” is the normal cl
. osure of the
by all left-normed I-commutators with |I| = p-+1. ! rovy genereied

thaﬂﬁRemark l: It.follows readily from the proof of Proposition 2.1
i ege;y special right-normed I-commutator ig equal to a special left-
laz;m;, o’ -;:l?mn_mtator. Thus in Corollary 2.12, Theorem 2.13 and Corol-
2 © given generating sets generate the a i y
semagroups—inverges are not required. I)PI“OPI'MW sronps que

et aJI:ema,rk 2. N (I') i{s, of course, generated by all left-normed I-com-
018, 'However, it i8 clear that it ig also generated by the smaller
set consisting of left-normed I-commutators '

[g}':; oY) g}’:] -

where g, @y, k=1 ; "
; 1 ?s Ve @ B=1,...,7; and fy,...,4, is a permu-
tation of the elements of 7, This follows by an evident in(il,mti’o;, usinI; (2.5).

H . .
ere again N(I) is generated qua semigroup by the given get of elements.
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Let us now suppose that Gy = ... = Gy = G and let d: G"—@ be the
map which is the identity on each factor. From Corollary 2.16 we immedi-
ately infer (see [1])

THEOREM 2.17. The homomorphism d: G"—G maps keri” onto the
(p+1)st term Ger of the lower central series of G. Thus d[G"] = dkerc
=dker "t = G™; hence the length of G is precisely dts nilpotency class.

We close this section with a brief study of the algebraic structure
of N(I). We first observe

TeeorEM 2.18. If |I| > 1, N(I) ds free.

Proof. It is clearly sufficient to consider the case |I| =2, and we
may then suppose that # = 3. It is clear however that.[Gy, Gy] = Gy ~ G,.
is contained in the Cartesian subgroup of Gy%G»%Gs. Since the Cartesian
subgroup is free (see [4]) so is [Gy, @,].

Let ;D H;, i=1,...,n, andlet N(I; &), N(I; H) refer to the groups
N(I) computed from the groups Gy, ..., Gu; Hy, ..., Hy regpectively. Then
Higman's argument in [5] applies here to show that, if |I[> 1, N(I; &)
is 'a free factor in N(I; H). We may also infer easily from the definition
of N (I) that epimorphisms @;: G;—H; induce an epimorphism of N (I; @)
onto N (I; H).

We would wish to show that if each G is a group complex and |[I| > 1
then N (I) is a free group complex (see [6]). The argument given by Cohen
in [1] will apply to this situation provided we can establish the facts
when |I| = 2. This we now proceed to do.

Let F', @, H be 3 groups. We will describe a set of free generators
of the group F ~ G C F%G%H; this set will be canonical in a sense which
will be made clear later. Let, then, 8 be the set of commutators

[ foe, g gl

where f; e F, gie @, hiy ks H, fi 5 6, i # €, hi # hoyay T & brr.
‘We prove
TuEoREM 2.19. The set 8 is o free generating set for F ~ Q.
Proof. Let T be the set S enlarged by the removal of the restrictions
fi# e, gs# 6, hg 5 hiyy, Fi % iy, Then the group N generated by T
coincides with the group generated by S and we prove that § is a gene-
rating set for F ~ G by showing that ¥ =F ~ G.
‘We firsgt observe that N is normal in F¥%@G%H; this follows from the
identities
[y, 87 = [vf, 8106, 11,
[y, 81 = (g, v1lv, 041,
[y, o' =", 8",
“wherefeF, geG, he H, y=f..fur, 6 =gi* ... gur.
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Now, by Remark 2, F ~ @ is generated by commutators i 1
JeF, gel, a,f e F%G%H. Thus it remains to show that [f° gﬁ]’e ]\;
for all f, g, ¢, #; by the normality of & it is sufficient to take ﬁ_; ¢. We
will complete the argument with the help of the following reduction Ierﬂma

LEMMA 2.20. Let feF, ge@, w,v,w, e F%GXH and let [
et N.
Then [, gl N if (i) veF and [(v™")*,gle N or (ii) ve @ and [f“,,g;]]ZN,

Proof of Lemma. Consider first the case (ii). We use the identity
(2.21) [¢°, 7] = [0, elle, 7I[e, o]".

1 T
TBus i, ¢° ][—:w[v, L, g7, o, where 7= g%, By hypothesis
[f v,wv] e N and [f*, g]e N and N is normal. Thus [f*’, * ™ ¢ N so that
[f*™, gl e N as asserted.
Case (i) is proved in the same way: we consider [f, ¢®"™ i

: g ] and inter-
change the roles of ¥ and G. We omit the detail roburn to ¢
oo o Toles ils and return to the proof

Any element a ¢ F%G%H is expressible ag
a=figihy .. fugnhn, fi e, g;e G, h; ¢ H;

if o is precisely so expressible we write la) <
! < n, and say that a admits
le}:;%th 7. Supjpl)(;:e that a admits length 1 so that o ’=- f191h, - Now obviously
{Sf 01 =), ) e I and [%, gi] < ¥ 50 that, by 2.20 (ii), [f2%", g]c ¥,
1]11ppose now that [f°, g]¢ N for all f e, 9@, e P%G%H with 1105)] ,g n—1
;;v er«zhn ?Zl;ahfmd let o = Bfugnha, with 1(8) <n—1. By the inductivé
By};o esis [/, g] ¢ N and rff, gn] € N so that, by 2.20 (i), [/, g] e .
T;;ism;z hav_letpl(‘lov;ﬁ;d that [(f,")"™, g]e N so that, by 2.20 (i), [fnontn g7 e N
m e e - . . 3 ;
o g e induction and establishes that & ig a generating set
It remains to prove that § is a free i
T : generating set. The reader will
pe i?lmlha,r with the argument when the group H ig trivial (7). The argumvgnt
in the general case is essentially the same and we will omit the details
Thﬁl completes the proof of Theorem 2.19. '
e free generating set S is, in a sl i
° frec , slightly generalized sense, verbal
:neflt?fn;lx ;i]ilafsr the property that, it F,, Gy, Hy are subgroups 01‘3’111 G aﬁ
;i X s H H
andd b © free generating set for F, ~ G, (normal closure in Fo% Gy % Hy),

(2.22) : S=8n(Fond).

For plai ; i 2l
= th; a;:lnn;glbsovc 8; and if s s.S ~ (Fy ~ Gy) then s is expressible in terms
ers of 8, and this would contradict the freedom of S unless

) It ¢ = [,f,p 9l i=1,2, vy then 0510:1.

_ « = ¢ only if, f i
and 6 =cy,. Y 1, for some i, ¢

= &
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s e S,. Relation (2.22)—or indeed the nature of § itself—shows that
it Gy, ..., Gu are complexes and |I| = 2, then N (I) is a free group complex.
‘We may then use the arguments of [1] to show that ‘verbal’ free generating
sets may be obtained for N (I) whenever |I|>2 and thus, if G, ..., Gu
are group complexes, N(I) is a free group complex provided I} = 2.
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