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4. The special case of dendrites. A dendrite may be defined
a8 a Peano continuum which contains no simple clogsed curve. Ag has
been noted elsewhere, a Peano continuum is arcwise connected and among
the Peano continua the property of being a deundrite is equivalent to
being hereditarily unicoherent. It follows at once from Theorem, 1 that
a dendrite has the fixed point property for upper semi-continuous, con-
tinuum-valued mappings and, as remarked in the introduction, Wallace
has previously obtained this result by other methods. In view of Plun-
ketit’s theorem we may assert the following at omnce.

TuEOREM 3. If X is a Peano continuum then the following statements
are equivalent.

(1) X s a dendrite,

(2) X has the fized point property for the class of upper semi-continwous,
continuum-valued mappings,

(8) X has the fimed point property for the class of continuous, closed
set-valued mappings.
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Axiomatizability of some many valued predicate calculi
by

A. Mostowski (Warszawa)

In a paper published in Volume 45 of the Fundamenta Mathe-
maticae I proposed a generalization of the logical qunatifiers. Another
generalization applicable in the two valued as well ag in the many valued
cases has been proposed and discussed by Rosser and Turquette [7].
According to their conception a quantifier is a function which correlates
a truth value with a non-empty set of truth values (I disregard here
a more general notion considered in [7] in which sets are replaced by
relations). Rosser and Turquette ([7], Chapter V) discussed the problem
of axiomatizability of the functional calculi with arbitrary quantifiers
under the assumption that the set of truth values is finite and Rosser
(in an address read at the 1959 meeting of the Association for Symbolic
Logic and published in [6]) discussed a similar problem under the assump-
tion that this set coincides with the interval [0,1]. In the present paper I
take up the problem of axiomatizability under a more general assumption
that the set of truth values is an ordered set which is bicompaet in its
order topology. The method of proof is illustrated in Section 3 where I
discuss the case of a finite set of truth values and obtain a part of results
of Rosser and Turquette. The chief feature of results set forth in the
present paper is their non-effective character: I prove the existence of
complete sets of axioms and rules of proof for the calculi in gquestion
without exhibiting them explicitly; the existence proofs are based on
Tichonov’s theorem.

1. Syntax. We consider a “language’” 8, whose expressions are
built from the following symbols: @y, @y, ... (individual variables), F, 7, ...
(predicate variables with § arguments, §=0,1,2,..), Fos F1s ) Fa
(propositional connectives), Qy, Ly, ..., Qp (quantifiers). We denote by p,
the number of arguments of &, (s =0, 1, ..., a). Formulas are expressions
which belong to the smallest class K such that: (i) atomic expressions
Flzg, ... @y belong to K (n,§ =0,1,.., 4,=0,1,.. for e=1,2,..,4);
(ii) if 0<s<<a and Py, ..., Py, belong to K, then so does Fub ... Dy;
(ii) if 0 <8< b and & belongs to K, then so does Quu,P, ¢ =0,1,...

12%
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The distinction between free and bound variables of a formula is
agsumed to be kmown. A formula without free wvariables is called
closed. The result of the substitution of ¢ for @, in @ is denoted by
Sb (/c) D.

Besides §, we shall also consider systems obtained from §, by ad-

- junction -of constants ¢, ¢, ... whose number may be finitc or infinite
of any power. The ‘“‘rules of formation” (i)-(iii) remain the samo with the
amendment that each ; in (i) can be replaced by a congtant.

We choose a Godel numbering of expressions of Sy and denote by Mg
the Gédel number of @; the expression with the Godel numbor » is denoted
by %. We assume that the functions Mam ™ and e, b arve recurgive and
increasing. From this assumption it eagily follows:

1.1. The following functions are recursive:

0 . [ N
(a) hln) =0,1,2,38 according as # is an atomic formula, & formula
which begins with o connective, a formula which begins with a quantifier
or % 18 not a formula or is undefined.

, (b) fan) =3,%,0 according as fin) =1 and % Dbegins with 7R
filn) =2 and % begins with Qu, or fi(n) £ 1, 2.

() filfsm)=0 if fim)#1 or j=0 or j> Py Told, ) = g5 of
filn) =1 and % has the form Fegigs ... gy, -

(d) fim)=1gq, fin)=r if fin)=2 and % has the form Qg
fin) = 0 = fi(n) in the remaining cases. o

2. Semantics. Let Z be a set, ¢, a mapping of Z x...x Z = 2P
into Z, Q: a mapping of 2% (1) into Z (0 < s < a,0 <t <b). Let D bo
a subset of Z. We call elements of Z truth values, those of D distinguished
truth values; g, are interpretations of conhnectives and @ interpretations
of quantifiers,

A model pf 8, (or of a system regulting from 8, by the adjunction
of c.onstaims) in a set X i a mapping u satisfying the following conditions.
po i defined if @ is an individual constant or a predicate variablo; in the
former case ww <X, in the latter uweZ¥ = ZX*XxwxX 00 97 i the
number of arguments of #. A wvaluation of 4 is an extonsion & of p such
that the (.ion}a%n of % consists of all individual congtants, predicate varia-
bles and mﬁhylduzul variables; if @ is an individual variable, then s e 4.
W_henever B8 a valuation of p we denote by Wz the set of all valu-
ations v of 42 which are identical with z except possib].’y for the argument #,.

'Let v be a valuation of u and let & be a formula. We define b iIa{-
duction the value of @ at » (denoted by Val,®) | T

() 2% denotes the set of all non-void subsets of Z,
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if @ is Pl ... t; (where each #,is. either an individual variable or an
individual constant), then Val,® = v(F}) ((t), ..., »(is));

it @ is FeDy... Pp,, then Val,d = @(Val, Py, ..., Val,Pp);

if @ is QP then Val,d = Qy{Val,¥P:g e Wy,}).

The following lemmas are easily proved:

2.1. If p is a model and v a valuation of u, then Val,® ¢ Z for every
formula P. :

2.9. If o', " are valuations of a model u and if v'wy ="' m,; for all ¢
such that o, is free in @, then Val,® = Val,~P.

9.3. If @ is closed, then Val,® depends only on the model p of which v
is a valuation.

Val,® is denoted in this case by Val,®d.

2.4. If ¢ is an individual constont, v o valuation of a model pu, v € Wy,
v'@y = ve, then Val,Sb(w,/c)d = Val,D.

A formula @ is called satisfiable if there are a set X, a model x in X,
and a valuation » of u such that Val,® e D; @ is valid if Val,® ¢ D for
every set X, every model x in X and every valuation v of u.

8. N-valued logies. In this section we assume that Z = {0,1,..., N—1}
where I is a positive integer and that D = {0,1,..., M —1} where M is an
integer < N. We define a sequence of systems Su; S, is the system described
in Section 1, Sy results from S, by adjunction of constants Asgs where
h=0,1,.,N—1,¢=0,1,2,.. and & is a formula of S, which is not
a formula of S,_; and has at most one free variable z,. Let S, be the
union of all systems S,. It is not difficult to see that a Godel numbering
of expressions of S., can be chosen so that TApge ! is a recursive function
of h,q, @ Tt follows that there exists a recursive function ¢ which
enumerates the Godel numbers of all individual constants of S» and
recursive functions f1, fi, /3, /3 satistying conditions analogous to 1.1 (a)-(d)
but with “formula’ replaced by “closed formmula of 8.

Let u, u’ be models in X of systems Su, S, m > n, m=1,2, ..., co.
If w'c = uc for every individual constant of S8, and = W' I, for
i,j=0,1,.., then we say that u' is an estension of u. The following
lemmasg are obvious:

3.1. If p is a model of Sn, p' is extension, and »,v' are valuations
of w, ' such that vag = »'m, for every ¢, then Val,® = Val,® for every
formula @ of 8.

3.9. If un is a model of S and py.1 is an extension of us (n=0,1,2, ...),
then there is a model py 0f Seo Which is a joint emtension of all the un's.
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8.3. Hwery model u of 8, can be ewiended to & model ue 0f Sy in such
o way that for every formula D of Se with at most one free variable wy the
following equation holds (?)

(1)  {Val,@: v is a valuation 0f pe}
= {Val, 8b (%) A0g,0)D; ..., Val, S (0/Ay—140) B} .

Proof. Put g, = p and agsume that an extension us of x4 has been
constructed. such that u, is a model of 8, and that

(2)  {Val,@: p is a valualion of uy}
= {Val,,Sb(9/40,0,0) P, .., Vel S (0 A ym1,0,0) P}

for every formula @ of 8,-;, with at most one free variable . This as-
sumption is clearly satisfied for n = 0 for §,_; in this case is empty. We
shall extend un to a valuation pniy 0f Spyy and we therefore have to define
tny1dsge for §=0,1,.,N~1, ¢=0,1,.. and such @ which are
formulas of 8, but not of §,—; and which have at most one free variable @y
Let @ be such a formula. Since the set {Val,®: ¢ is a valuation of e}
is contained in Z, we may assume that it consists of integers 8y, ..., Sm < N
where 1 <<m < N. Choose valuations p; of ¢n such that Val,& =s,,
and put pnyidige = g, for i=1,2,..,m, Ynsr A 00 = omw, for
f=m+1,.., N—1. The mapping u,.; thus dofined is an extension of M
and hence of u. If @ is a formula of 8,_; with at most one free variable Zq,
and ¢ is a valuation of ., then p restricted to symbols of S, is a valuation
of pn and hence we have equation (2) from which, in view of 3.1, we obtain

{Val,@: ¢ is a valuation of ..}
= {Val, , 8b(2,/4¢40)9, ..., Val, | 8b () AN_1,4,0) D} .

If @ is a formula of 8, but not of 871, then the same equation holds
true in view of the construction of Unt1. Thus we obtain a sequence of
suecessive extensions u, of u satistying (2) for each n. If ue is a joint
extension of the models u,, then clearly equation (1) holds for every
formula @ of 8, with at most one free variable 2q.

W.e gha]l now express arithmetically the notions of satistiability and
of validity. We put fi(j,n) = 8D (@304 1y Vi) T ()7 3 fi(n) = 2
and 0<j< N and feli, n) = 0 otherwige. Furthermore we put fi(k, n)
= 8b{@,1,,/F () Fo(n)7 it fin) = 2 and fi(k, ) = 0 otherwise. Tunctions
fs, f; are recursive.

() {(): ...t...} denotes the set of all f(t) where ¢ satisties the condition ...2...;
{a, b, ..., m} denotes the set consigting exclusively of a, b, ey M
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Let a be a function from integers to integers. We call a an A-model
if the following conditions are satisfied:
(3) it 0 <fi(n) <3, then 0 < a(n) < N; a(n) =0 for film) =38 ;
(4) it fin) =1, then a(n) = g (@ (AL, n); s @ (A2 M));

(8) if fi(n) =2, then () (do) -, Gv—1)x {(F)v [a (faG, ) = a]
2 [a(%) = Q,g(,,,)({%y ey qN—l})]};

(6) it fin) = 2, then () (Ef)y[a (fi(%, )} = a(falf, »)] -
3.4. A closed formula ® of 8, is satisfiable (valid) if and only if
a(T®7) < M for an (every) A-model a.

Proof. Let e be a model of Se and put a(n) = Valf,w(%) if 0 < ﬁ(’l"b)
< 8, a(n) = 0 otherwise. First we show that if ue satisfies (1), then a is

an A-model. o
Condition (3) is obviously satisfied. _
If fi(n) = 1, then & = F,fs(1,n) ... 73(D > ™) and hence
a(n) = Val, (%) = @ (ValuFs (1, 2); ey Valuof3(Py10y» %))
= jam (¢ (AL, M) s @ (1P fieny» m)) -

This proves (4). _
If fi(n) = 2 then 7 = Q,®,/s(") and hence

a(n) = Val,,, (%) = @ ({Val,ﬁl(n): v is a valuation of ,uoo}) ’
whence by (1)
o~ 3!
a(n) = Q1 ({Valio 8D (B A i 7im) F5 (M) +ees
. F1
Vo, Sb (@30 Ay gt i) T (1))
= Qim ((Valuo f3(0,5 1), ooy Val, o N =1, 7)}) -
This proves (5). .
It fin) =2 then fi(k,n) = Sb (zyw/f(k)fs(n) and hence by 2.4
alfi(%, n)) = Val, Fi(k,n) is equal to Valfs(n) where ¢ eWg, —and
. . - P i
0%ty = Hoof (k). By (1) there is a ) j <N suf.l% that  Val,fs(n)
= Val, Sb (@04, a1 Ts (0) = Val fild, n) = e (falf, n))-
Thig proves (6).

(®) (i, §y ...s P)y means: for arbitrary integers 4, §, ..., p < N; similarly (E4,§, ., D)y
means: there are integers ¢,7,..,p<XN.
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Now let a be an A-model. We define a model pe 0f Sy in the got X
of all constants of S as follows: for ¢ in X We DUl gt = ¢ and we Jet
eolh to be a function p such that w(uy, ..., us) = a("Fh, . wayT) for
Upyoeey Uy In X .

For any formula @ of 85 we denote by & the set of closed formulag
of S which can be obtained from @ by substitutions of individual con-

stants for free variables; and by & the et of formulag of S, which have
at most one free variable and which regult from @ by substitutions. Wo
shall show that if @ is a formula of S, and ¥ ig in @ then

Val, ¥ = a(TP7) .

Case 1: @ is an atomic formula. In this cago any ¥ in @ has the
form Flu, ... u; where u,, .. .y Uy € Xoo and henco by the definition of oo

Val,, ¥ = a(TFy ... uT) = a(T¥7) .
Case 2. O has the form FD, .. (Dp! In this case any ¥ in & has the
form &,¥%, .. . ¥y, where ¥, ig in &, for i = 1,2,..,p; and hence
Val, ¥ = py(Val, ¥, ..., Val, ]’w) .
Using inductive assumption and (4) we obtain
Val, ¥ =g (¥, ..., a(TH, y 1) = a(T¥)
because (") = 1, fiTYT) = j, fili, TP = " for § =1,2,..,p;.
Case 3. @ has the form ijqﬁ' In this case any ¥ in & has the [01m

Q@1 where IT is in £ or in & a.ecordmg a8 @, is or iy not free in A
a
Subease 8% w, 4s not free in 5. In this case IT is closed and

Val,, ¥ = Q,({Val, IT}), ()

= r ;
and hence fll, T or i=0,1, s N1

Valuo ¥ = Q5 ({Val,, fo(0, "%, ..., Val, FAN -1, re)y),
whence by the induective agsumption and by (5)
Val, ¥ = Q,({a (fi(0, T¥), ..., a (AN —1 T = ar)

Subca,se 3b, 2 -
q 9 free in 5. In thi " .
able @, and § case II hag just one free vari-

Val, ¥ = Q,({Val II: ¢ is a valuation of poo}) .

val ]I]f 0 $ la Vsalua,tmn of e then gmy = ¢ iy in X, and hence, by 2.4,
al,, Sb (w/e) IT. T ¢ = 9(k), then by the inductive a,hsumptlon

() {a} is the unit set with the sole element g.
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and the remark that Sb(s,/e)IT is in & we infer that the right hand side
is equal to Val,. fr(, ~%7) = a(fi(k, 7)) and hence, by (6), to affs(j, )
where § is an integer < N. Conversely o (ﬂ,(j, f“P"‘)) is an element of the
set {Val,IT: o is a valuation of ux) for a(fs(j, "¥7)) = Val,JT where
0€ Wau, and 0%y = piocdjgm = Ayqn. This proves that

Val,, ¥ = Q;({a (70, "), oy a (AN -1, o))

and hence by (B) that Val, ¥ = o(T¥).

Now let @ be a closed formula of S,. If @ is satisfiable then there is
a model u of S, such that Val,® < M. We extend u to a model peo of S
satisfying (1) according to 3.3 and obtain thus an A-model « such that
a(n) == Val, % whenever 0 < fi(n) < 8. In particular, a(TP) = Val, P
= Val,® < M. Conversely if there is an A-model o such that a(T9 ) < M,
then there is a model ye of S in the set X such that Val, @ =a(TP)
< M. Restricting uw to symbols of §, we obtain a model g of §, in X
such that Val,® < M and thus & is satisfiable.

If & iy valid and o is an A-model, then (as shown above) there is
a model u of S, in X such that Val,® = a(7¢ ) and hence a("91) < M.
Conversely, if this inequality holds for every A-model « and u is a model
of 8, in a set X then there is an extension of x to a model pe 0f S in X
satisfying (1). We proved above that there is an 4-model a« such that
Val, & = a("®7) and hence Val,® = Val, & < M which shows that & is
valid. Theorem 3.4 is thus proved.

3.5. The predicate “® is a closed satisfiable formula of 8, is ex-
pressible in the form (Ea)g ()R (?i(w), @) where R is & recursive binary
relation, H = {a: (o) (a(2) < N)} and (Ea)z means: there is an o in H.
The predicate “® is a closed valid formula of S, is ewpressible in the dual
form (a)g (Ex)8 ( (@), |"¢—|) with recursive 8.

Proof. There is obviously a recursive predicate ¢ such that: @ s
a closed formula of Sy = C(T ).

By 3.4 we have the equivalence:

{D is a closed and satisfiable formula of Sy}
= 0(T07) & (Ea) (2)(9) ([(o < fil#) < 3)D (0 < a(a) < )]
&[(f(@) > 3) 2 (a(a) = 0)] & (i) = 1) D Er)as [ r = fiw)
& (a(a) = g (4 (1, @), -, alfitwr, )]}
& {(A(@) = 2) D (goy v Ev-2)w (o (i) (r = fi(2))
& (o (filf, 2)) = 4) D (a(@) = Qul{go; - an-1}))]}
& {(A@) = 2) v [a (Aty, 2) = a7, 9]} & (o707 < 1)
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The above predicate can be written in the form (5)

(1) O(Fe7) & (Ea)(@, y) P (2, a(@), a(fi(1, ©)),
ey @ (ﬂ(p: m)), a(ﬂ!(oy “")); ey @ (ﬁ(N"'] ’ m)); Q (ﬂ(f’/’ m)); a(l—([’b—]))

where p = max(py, ..., Pa) and P i3 a recursive predicate with N +p 44
arguments. '

Let K(n), L(n) be the usual pairing functions, f(n) = max (K (),
1 .
foft, E(m)), ..., falp, K (), 130, (), oy 5(N =1, K (n)), fi{L(n), K (n))
and denote by (s); the exponent of the j-th prime in the prime power

expangion of s (ef. Kleene [3], p. 230). Put ¢(j, 8) == (¢),=1, It I
is the predicate (%) ’ 0= et e

0(t) & Seq(s) & (m)lh(s)+1[(f (@) < Th(s)) & (1 =5 h(8)) D
P{K(0),0 (K@), 8, {1, (0, ] ., (o, K o), 5]
[0, E @), ), s o[4(F~1, K(a), 8], o fi{L(a), K (2), 5]

c@,s»]

;ﬂzﬁf(? 1;]1? efquigralentt tfo (Ea)z (2) B (a(z), "@7). This accomplishes the
oI the 1irst part of 3.5. Proof of the second part ea bained
by taking dual formulas. ' b obtuinet
i t?;b.f;;’h}e ;et C(Z)f clos}edblvalid formulas of 8, is recursively enwmerable
of closed satisfiable formulas o 8 @ ¢ f o recursi

oy oot of o i of 8 18 a complement of @ recursively
. Iéroof. By_Kbnig’s "‘Unendliohkeitslemma,” (cf. [B], p. 126) the set
{%t (Ed)m (@) R (a(a), n)} is a complement of g recursively enumerable

86 a{]na}cll the set {n: (a)H(.Em);S' (E(w) , n)} ig recursively enumerable.
eorem 3.6 can obviously be inferred from results in [7], Chapter V.

4. The case of a continuous set of truth values. In sections
‘;7115&:]1 :ilflid(;rz gj igsur;llfa that b = 1, i.e. that we are dealing with just two
that Z is a ﬁneeﬁ 1chdwe denote by symbols \/ and A. We shall assume
subset 2’ and that i ordered _001?11)1%0 (") set with a denmmerable denso

at the interpretations @y, @ of the quantifiers aro defined as

Q(Y)=1ub.Y, QUY)=glh. Y for 0 #YCZ.
Similarly, "

The system &8, C,
20,0 Ve'a0

5) N s . .
v, .s-( )go Ote;hmj) o E?z; of the fm];';eneﬂs of Z there is a recursive relation T such that
2 Yas veey ZV.-I = W5 -y qN— == g for arbitrar
((3 féq (8) ;s t,}’xe predicate s lis a sei}uence num{)e:’fgf ﬂ[IZL;]I 81; qgﬂo, == o
omplete” means that every non void subset of Z has a;1 I:u‘b. ;md a g.lb.

as in Secm.on 3, we deline a sequence of auxiliory systems Sy.
+1 13 obtained from 8, by adjoining constants B

o
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for ¢ =0,1,2,..., 2 in Z’ and every formula & of Sy which ig not a for-
mula of Sp—i and which has at most one free variable . The notion of
an extension of a model is the same ag in Section 3 and Lemmas 3.1 and 3.2
remain valid. We denote by S. the union of systems Sy.

4.1. Every model pu of 8, can be extended 1o a model pi 0f Soo in such
a way that for every ' in Z' and every formula @ of S with at most one
free variable g the following conditions hold:

(8) ¢ = Val, Vo @ or 2non>Val, Sb (@4 By g,0) D ,
¢ < Val, Aa@ or 2non<Val 410 S0 (@] Ot g,0) P -

Proof. Let w, = p and assume that an extension un of w which is
a model of S, has been defined in such a way that

(9) # =Val, Vo or 2non > Val,Bb (@g/ Bt g,0)P
# < Val, Aw P or 2znon < Val,=Sh (@] Cr0,0) P

for every 2’ in Z’, ¢ =0,1,2,... and every formula @ of 8, with at
most one free variable z,. This assumption is satisfied if m = 0 since
in this case S,_; is empty. We ghall now extend pn to & model of Spia
and have therefore to define uy41By,g0 and finy1C g0 for every 2 in Z,
g=0,1,2,.. and every formula @ of §, which is not a formula of Sp-1
and which has at most one free variable ;. Let @ be such a formula and
put ¥ = {Val,®: o ¢ W,,,}. If Lub. ¥Ynon < ¢/, then there is a o in W,
such that Val,Pnon < 2'; we choose a ¢ of this sort and put pni1Byge
= og. If Lub. ¥ >#', then we choose fii1Bwge arbitrarily. If gl.b.
Yuon > 2, then there is a o in W, such that Val,®non > 2'. We choose
again a o of this sort and put pni1Crge = oo If glb. ¥ =2/, then we
¢ho08e i1 Cyge arbitrarily. The mapping pps: thus defined is an ex-
tension of us and hence of w. If @ is a formula of 8,—, with at most one
free variable ,, then Val,,, \/ @ = Val,, V2@, and Val,,,,Sb(¥4/By.ge)®P
= Val,, b (#,/Bye0)P, whence in view of (9)

2’ = Val,, . V2P or 2'mon > Val,,, Sb(#/Byg0) P .

The same formula holds true if & is a formula of S, which is not
a formula of §,—, a8 we immediately see from the definition of pn41 and 2.4.
A similar relation is also provable for the formula Aws,®. We thus see
that the sequence un of models gatisfies (9) for every = and every for-
mula @ of 8,_, with at most one free variable z,. It is now obvious that (8)
is true if we choose as u. the joint extension of models us.

Remark 1. Theorem 4.1 holds under the assumption that Z is
a complete lattice and Z’ an arbitrary subset of Z.

We denote by ¢ a fixed function which enumerates the eclements
of Z'. Tt is easy to see that a Godel numbering of expressions of §; can be
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so chosen that MBimge | T Crinee | Do recursive functions of r, ¢, g,
indeed we can choose ag these Godel numbers any integers tmiquelg:
determined by ¢, @ Tand r. It follows that there oxists a Godel numbering
of formulag of §; such that the Godel numbers of closed formulas and the
Godel numbers of formulas with at most one free variable form recursive
sets. From this it follows again that it is possible to enumerate the ex-
pressions of 8, in such a way that the Gddel nwmbers of the constants
Big0, and Oy g0 of 8, are recursive functions of r, ¢, M, Continuing
in this way we infer that there is a Godel numbering of Se such that the
Godel numbers of the constants Byyge, Crpyge are recursive funetions of
7,4, 7@\ Hence there is a recursive function g which enumerates the
Gddel numbers of the constants of Se. We continue to denoto by T
the Godel number of @ and by % the expression with the Godel 11uh1~
ber of n.

A further easy consequence of the construction of the Gadel numbering
outlined above is that there exist recursive functions fy oees f2 satisfying
conditions similar to conditions 1.1 (a)-(d) but with “form{ﬂa” rep].aoed
by “closed formula of S.”. J

W? pub (e). fi(k, n) =T8b (@20 T ) J3 (n)7 i Fim) = 2 and £k, n) = 0
otherwige. This functiog is obviously recursive. We also put fi(r, n)
= U8,/ By ey o) i fin) = 2, fin)=0 and fa(ry,m) =0

otherwise. Similarly we put falr,m) =T Sb (a5, n»)/Oc(r),ff(vb),7§(n))752(n)_l it -

fi(n) = 2, fi(n) =1 and falr, ) = 0 otherwi th funeti 2 H
intad Ly o7, M) rwise. Both functions f; and f

Using these notations we ghall expr i i
Sng press arithmetically t o
of satistiability and of validity. Y the motions

A mapping y of the integers into Z is if i
' 8 called a B-model if it satisfies
the following conditions: el ratistles

(10)6f fitn) =1, then 1(n) = gy (2 (AL, ), e, 2 (A2 1005 )
() if fitn) = 2 and fitn) = 0, then (1) (x(n) > (A, w)),

(12) if fi(n) =2 and fi(n) =1, then () (x(n) < % (3, ) s
(18) 4f fitn) = 2 and fin) =0, then (r) [¢(r) = x(n)

(14) 4 fim) =2 and fim) =1, then (1) [¢(r) < y(n)

=
VE(r)non > g (far, m))] ,
<
VE(rynon < g (fs(r, n)] .

—_————

() f2 is omitted to preserve

to fy wherens in placo of thy Foes. nalogy with Section 3; f2 will play a role analogous

er fi we shall have two functions 72 and f2.
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4.9. A closed formula D of S, is satisfiable (valid) if and only if
y(F® ) e D for a (every) B-model y.

Proof. Let u be a model of §; construct an oxtengion we of p sat-
isfying (8). We shall show that any function y such that yx(n) = Val, 7
it 0<fin)<3 is a B-model.

Condition (10) is obvious. Condition (11) follows from the fact
that if fi(n) =2 and fi(n) =0 thon Val, % is the Lub. of a set ¥
of which Val,‘mﬁ(k, n) is an element. Proof of (12) is gimilar, To
prove (18) let us assumo that fi(n) =2 and fa(m) =0 and ¢(r)non
> g(n) = Val, % = Val,, Vs, Tsn). It follows from (8) that {{r)non
> Val, Sb (@ g0/ By oo 15 (1) = Val, fir, n) =  (filr, n)) . Henco
£(r)non > x (fa(r, n)). Proot of (14) is similar.

Now let x be a B-model and let Xe bo the sot of all constants of Seo.
Define a model gew 0f Sw in Xe Dy taking uwt = ¢ for ¢ in KXo and by
letting uoF} to be a function y such that p(e, ..., &) = (T ... ¢7)
for arbitrary ¢, ..., ¢; in Xe. We shall prove that if @ is a formula of 8w
then
(15) Val, ¥ = 3(T¥7)  for every ¥ in é.

Case 1. @ is an atomic formule. In this case ¥ has the form
Flo, ...¢; with 6, ..., ¢; in Xoo and hence (15) follows from the definition
of peo.

Cage 2. @ has the form F;Py ... Dp,. In this case (15) follows from (10)
and the inductive assumption.

Case 3. @ has the form \/z,5. In thig case ¥ has the form Vugll
where IT ¢ & or IT ¢ according to whether or not @, is free in 5.

Subcase 3% w, is not free in 5. In this case Val, ¥ = l.u.b. {Val, I}
= Val, IT and hence Val, ¥ = x(TIT) by the inductive assumption.
From (11) it follows that x(T¥7) 3> x(TSb (a7 (k) I ) = x(TI7). If
% (TP were # x(TII7), then by the density of Z’ there would be an 7
such that x(TIT) < ¢(r) and ¢(r)non 3> x(T¥™) which contradiets (13)
since fa(r, ¥ ) = I\

Subecase 3% , free in . In this case Val, W = Llub. {Val Il
o is a valuation of uw}; hence, by 2.4 and the inductive assumption,

Val,,, ¥ = Lub. Val,,,Sb(ao) I
CEXpg
= Lub. 7 (78b (a7 (1) 1) = Lub. g(filk, ")

F=0,1,2,e00 k=0,1,2,..
From (11) we obtain therefore Val, ¥ < x(T¥7). If x(T¥P77) were
different from Val, ¥ there would be an r such that Val, ¥ < [(r) and
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Z(rynon > x('_‘I-f—‘) whence  Val, Sb(@g/Bemg,m) 1T < £(r) and  ¢(r)non
= ¢(TP™). This contradic.‘ts (13) since, by tho inductive aggumption
Val, S (@g/Beoq) T = 7 (fi(r, "¥ 7). ’

Case 4. @ has the form Az,E. The proof of (15) is similar as in Case 3.
The rest of the proof of 4.2 does not differ from the corresponding
part of the proof of 3.4.

Remark 2. Theorem 8.2 holds under the assumption made in
. Remark 1 and the additional assumption that Z’ is a <1(mi1mm:a,ble subsét
of Z such that # <y implies (E¢')ymzu[2 <52 & & non = y].

We congider Z as a topological space in the interval topology (see [1]
Chapter IV, §8). Thus Z is a bicompact spaco (soe L.e., Theorem 14)’
We assume that the functions ¢; (j = 0,1, ..., a) are continuous.

We put p = max(py, 9y, ..., pa) and denote by lower case German
letters (other than m,n) strings consisting of Pp-+5 olements of Z 'The
elements which oceur in guch a string will be denoted. by the 001“1'esp0;1din
Roman let.ters with indices: w = (w, w,, ..., w,, W', w'’, w'’, w). Oonside%
the following condition on (depending on numeric parameters Ny 1)

(i) = 1) 3 (B [(A(0) =) & w = gy, ..., w,))]) &

{0 =2) 2 () = 0) 2 (w > w)] & [(f(m) = 1) (w < )]} &
{(film) =2) & (fa(m) =0)D [€(m) = w)v (¢ (r)non > w")]} & ’
{(fitm) = 2) & (f(n) = 1) > [(¢(r) < w)V (§(r)non < w')]} .

We call this condition briefly 0, ,(m).
By m,n (with or without indices) we denote triples of integers. For

every triple m = (m, k, 7), every cloged form £
ula @ of s
we denote by Ty we the “schema’ Soond every w e 7

w Wy e Wy w'

2 2
(m fa(1, m) ... ﬁ(p: m) fi(k, m) f:(ry m) f%("', m), TP

. w” wlll w ).
. :Zes‘sémll vrite (0, m,n,w,v) if the schemas Tywe and Typs
e nsistent m”tl'le sensge thzut. any equation between the elements of
elemepim ;ows of the schemas implies the identity of the corresponding
sehemI; : To the{hilc()iw? TOZS}IH particular (P, m,n, w, ) implies that

mw,e WA Lyye define mappings of the elements heis

rows onto the elements of the lower rows. oF thelr tmper

4.5. The set {w: Cny(w)} is closed in ZP+° jor any n, r.

e P;'oofl. By the continuity of the functions p; and the remark that
set {w: {(r) > w} is closed and the set {w: {(r) > w} iz open.
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4.6. If D is a closed subset of Z, then a closed formula ® of 8, s satis-
fiable if and only if for every integer s

(Ttgy eeey 1s) (EWgy wooy We) (4 flora [B (D, i, 1y, 105, Wy )
& Cpymf10;) & (W; € D)]

(15)

(we assume that g = (ng, ki, 74)).
If D is an open subset of Z, then a closed formula @ of 8, i valid if
and only if there is an integer s such that

(16) (En07 RALE] ns) (mu: ey mg)(Ei, f’.)s+1[E(Q)’ T,y Ty Wi, m:i)

& Om,n(mi) Dw;eD].

Proof. Let @ be satisfiable and let x be a B-model such that
%(T@7) € D. Choose an integer s and triples n; = (ny, Tyy7i), T=0,1,..,8,
and take

(17)  wy= (x(?’bj), % (ﬁ(l, 'nj)), vy X (]‘g(p, M/j))’ % (ﬁ(k,, fn,,-)),
X (7‘2(717 ”7‘))7 X (f%(T:{y %j)), x(l’“@”l)) .

It is obvious that for arbitrary ¢,j<s the consistency condition
B(D, 1, 1y, 05, ;) is satistied. Since yx is a B-model, (10)-(14) bold true
for j =0,1, ..., s which means that the conditions Cp,(w;) are satisfied.
Finally from %(T®7) e D we obtain ;¢ D. i
Assume now that (15) holds for arbitrary s. For given s,mg, ..., s
denote by Fy,..n, the family of functions y which map integers into Z
and are such that the strings (17) satisfy Op.(w;) and @ e D. The family
Fopms 18 nON-void. Indeed, choose any strings w,, ..., 0; satisfying (15)

and define y on the elements
Mgy fg(la T5) 5 ey fg(P; ) ﬁ(kiy 75) fg('riy 73) 5 fg("iy ny), T
j=0,1,..,8,

(18)

k]

by identifying y restricted to these elements with the mapping Tnjmy,e-
Completing y by choosing its value arbitrarily on elements different
from (18) we obtain (in view of the consistency conditions
B(D,m,y, 04, 05), 4,7 <s5) a function which obviously belongs to
F o+ Since Fu,..n, is closed in the Tichonov topology of Z” (*) (here
we use the agsumption that D is closed), we infer that there is a function x
which belongs to all Fr,..n,- If w; is defined by (17), then we have
Cyry(5) for an arbitrary vy = (ng, kj, r;), whence we infer that yx is
a B-model. Since y(T@) = y(@;) e D, we obtain that & is satisfiable.

Now let D be open and put D' = Z—D. According to 4.2 @ is non
valid if and only if there is a B-model g such that x(7®7) ¢ D'. According

(%) Z° is the space of all infinite sequences of the elements of Z.
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to the part of the theorem which is already proved the condition for
the existence of such a y is exprossible in the form (15) with .D replaced
by D'. Hence the validity of @ is equivalent to (16).

Remark 3. Theorem 4.5 and 4.6 are valid undor assumptions made
in Remark 2 and the following additional asswunptions: Z iy a bicompact
space, functions ¢; are continuous and the sets {(x,¥): v <y}, {(#,y):
znon > y} are closed in Z x Z.

5. Applications. Congider arbitrary relations R, B,, .. with the
field Z and let T be the elementary theory of these relations, i.e. the
applied 1st order functional caleulus in which the predicate variables
are interpreted as Ry, I, ...

5.1. Let the following assumptions be satisfied: the functions @y, ..., pa
and the relation < are definable in T; there is a recursive sequence T, of
formulds of T such that I, defines the set {2: {(v) = 2}; there is a formula
of T which defines the set D; the theory T is decidable; then (a) if D i8 a closed
set, the set of satisfiable formulas is a complement of a recursively enumerable
set; (b) if D ds am open set, then the set of valid formulas is recursively
enumerable.

Proof. For given m,n,® the relation B (P, m,n, w, n) between w
and o is definable by means of a formula of T depending recursively
on P, m, n. The same ig true of the relations C,.(m) and w e.D and
hence of the relation .

(8 Dar 1 [B(D, 1, 117, W4, 0) & Opyr(105) & (Wy e D)] .

If the formula G.no,...,n.,q:, of T (with %= (¢--1)(p+5) free varia-
bles yo, ..., Yx-1) defines this relation, then the formula Hy,, u.e
= (E%0) -+ ) Yi—1) Gng,...ms,0 dofines the relation o

(Ewgy ..., Ws) (3 Nesa [B(D, 1y, 1y, Wy, W) & Oni,ri(005) & W; € D] .

Hence b_y 4.6 the condition that @ be satistiable is expressible (under
1:,he assumption that D be cloged) in the form: (s, 1y, ...y 1) [Huo,nee
8 @ thlaorem of T1. The theory T being decidable and Hy,,.. u,e del)eﬁ:(-i'ilrg
Fecurs.lvgly o1 Tlyy ..., e, TP, it follows that tho set of f":();:"lmfor which @
is satisfiable forms a complement of a rocurgively enumorable sot. This
proves part (a) of 5.1. Proof of (b) is similar.

As a particular case of 5.1 woe noto
it 5.2. If Z z's the closed interval <0, 1> ordered in the usual way, D i3

viher an open interval (mfn, plq) where m, m, p, q are integers and 0 < m/n
<plg<1l or one ‘of the intervals <0, mfn), (p/g, 1>, and if functions
Poy ey Pa_are continuous and definable in the elementary theory of real
closed ficlds, then the set of valid formulas is recursively enumerable.
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Indeed, the assumptions of 5.1 are satisfied since we can takeé as z
the set of rationals contained in Z and as.f(r) the function K (r)/[[K(r)
+L(r)+1]. Obviously there is a recursive sequence of formulas F, of
the elementary theory of real closed fields such that ¥, defines the relation
(0<2<1) &K +L(n+1]< K(r). Decidability of the elementary
theory of real cloged fields is a well-known result of Tarski.

5.3. If Z is the set {0, 1)" of all zero-one sequences ordered lewicogra-
phically, D is the set of sequences a in Z such that a(0) = 0 and p; is a recursive
mapping of Z% into Z, j = 0,1, ..., a, then the se of satisfiable formulas s
the complement of a recursively enumerable set and the set of valid formulas
is recursively enumerable. :

Proof. A mapping ¢; of Z% into Z is recursive if the value ‘which
the funetion @i(a, ..., ap) =y takes for the argument = is a general
recursive functional F(ay, ..., oz, #) in the sense of [41, p. 275 or, in other
words, if the following condition holds: there is an integer e; such that
for arbitrary ap, ..., aps

(ER) 1% (El(k)7 ey ap,(k)5 63y My k) 3
y(n) = U (bhTB(@(E), .., Gy(R), 5,7, K)) -

Z is obviously a lineaxly ordered, complete set. If we choose as Z’ the set
of ultimately vanishing functions, then all assumptions of Theorem 4.6
are satistied since D is closed and open in Z and the mappings ¢; are
continuous according to [2], p. 180, [4], p. 277. We choose the enumerating
function ¢ go that if r = 27+ 2" 4. 4+ 2% —1, (r, <7, < ... <7%), then {(7)
vanighes everywhere except at points 7y, 71, ...) 7%-

Teet us fix an integer s, s+1 triples T, ..., s and a closed: formula P
of §,. The relation (between two elements w;, w; of ZPT5) B(D, g,y 04, W)
ig expressible as a conjunction of equations between the members of w;
and w;; this conjunction depends recursively on 1y, ..., and @. For given
Tty = (g, ki, 7;) the relation Cpr(w;) is equivalent to one of the relations
wzw, w<w, {r)zwvil)<e’,

E(r) SwVE(r) > w0
and again it can be decided recursively to which of the above relations
Opynws) I8 Teducible. It follows that (15) is expressible in the form
(8) (119, +ovy n,)(Eal, very O8) Mg gt

where the as run over Z and Mo, 18 a disjunction (depending
recursively on F®7,my, ..., 1) of conjunctions of the following relations

E(ry) =z o,y

W = @j(Wy, ..y W) 5

Gy = Pi{0yy ey au,,) y G 0y,

L(ry) < oy
Fundamenta Mathematicae, T. L (1961) 13

ogeD.
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We mnow mnotice that o< aye=(n)[w(n) < ap(n)]

coy(n)],  E(rg) <
= (n)[e(ryy ) < a(n)], L(rg) = e = ()[e(ry, n) 2 ailn)], o e D = a,m);"a'
where ¢(r, ) is a recursive function which gives the value of ¢ (*) at point n,
Finally o

Oy = @j(dy y vy av,,j) = (n, k) [-,[ﬂla" (avl(kb oy av,,l(k)y 01y T, k)
2 (U(k) = ay(n))] .

Introdgcing the righﬁ-hand sides of these equivalences for the left-
hand ones in Mo,p,..n, and reducing, wo infor that (15) is equivalent
to a relation of the form ‘

(3) (“0, ey na)(Eaiy ey al)(’”’)Pw,no,....n. (&l(n), ey a,(n), 'n)

where P ig a recursi G b a a
whete ursive relation between ™, 1y, ..., 1y, Gy(n), ..., axn), 0.
Onig’s lemma enables us to replace

(Eayy +ory @) (1) Poug; (al(’n), vy Oy(M), n)

jny (m?P’(r'qTi,n.,,...,na,m) where P’ ig rocursive. Thus, finally, (15)

is equivalent to (s‘,1-1.,, oy gy M) P(TDT 1y, vy 1ty, m), whence we see

that the set of satisfiable formulas is the complemont of a recursively

enumerable set. |

. PfEOf of reiurilive enumerability of the set of valid formulas follows
m the remark that @ is not valid if and only if it hecomes satisfi

after D is replaced by Z—D. ’ ¢ satsbl

6. The_ case of a well-ordered set of truth values. In the
Present section we shall deal with the case when Z is the set of ordi-
pals <v where v is a preassigned ordinal. Z is obviously a bicompact
space but does not possess a denumerable denge gubset. For this reason
the theo'ry set forth in Section 4 is not applicable and wo shall have to
;szha, lshgliltly different technique. The chief obstacle to be overcome
" th: :Exj ](;J;r‘;ilz y(:';):;fll g::].nbermg (in the unsual sense) of the formulag
e s:gg if)ar}:; mtﬁhthe fame system 8, as in Section 4. Formulas of 8,
s onad to ave the rank 0; we agreo that the set of constants of §,
s pEy. ;’H 8 a system obtained from S, by adjoining constants
e;;;;‘i Jf’ ;,w thire §<v, ¢=0,1,2,..,9 ig a cloged formula
o ra,n};; nrf;n n having the form \/a,H and ¥ is a closed formula exactly
vl (foa;wni the form AwH. The constants D0 whose cardinal
and Torms vf /S ;) unco_uptable can be thought of as triples <&, q, D)
o 8 of Spi1 a8 finite sequences of symbols. Formulas of Sps1

sald to have a rank < m+1. We take as S the union of all .
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Tt is easy to see that every formula & of S arises from & well deter-
mined formula @, of 8, by a (uniquely determined) substitution of con-
stants. We now define a “Gédel numbering” of formulas and constants Soo:
For formulas of rank 0 we take as | P the pair <0, "®71) consisting of
the void get and of the usual Godel number of @. If | ¢y and | P are
already defined for constants and formulas of S, then we take &, q,LD
{q, L D>, g, P> as the “@odel numbers” of the constants Dggoe,
B0, Fow 0f Suia. If @ is a formula of Sniawhich arises from a formula P,
of 8, by the substitution Sb(wal/cl...wqr/ar), then we take as _@_j the

ordered pair
(2,70
O e LG ’

(the symbol in paranthesis denotes a mapping which carries g; into | ¢;_j;
to simplify writing we shall sometimes denote this mapping by a single
letter 7).

Let N be the set of “Godel numbers”
put for | & | =(T,TP ) in N

L®_; of formulas of Sx. We

£r®,T) it @ is closed (ie. the indices of all free
AP ) = variables of @, occur in the upper row of T,
3 otherwise;

flLP ) = fg(l_@oj)i
foli, L®_) = <T', 33, 7@ )y  where T" arises from T by restrict-
ing it to such ¢ for which #,is free
‘ in f(j, @ ,

F(LP) = TP 5

F(LP) = (T, fs(T P> . :

Let O be the set of “Godel numbers” of constants of So. We define
fes f25 fas fo a8 follows:
LD, if [P #2 or @y, is not free in

ke, LO_) = o . WD
<T o ( o ), fg(rqs.ﬁ)> otherwise (2);

V s(_De.tu oL P ) it AP )=2, [(LP)=0,
f1(5,L¢J)={f(L eneoao s LD i AP f(LD_)

LD otherwise;
f D)= fﬂ(l_Eh(\_@_l),d’u: I._qj__l) if ‘fl(L_¢_|) =2, fz(L.¢_l) =0,
et L2 ~otherwise;
L) = foll Fraope 1 LP) i [P N=2, RPN =1,
AL D otherwise;

(®) It is assumed that % runs over O.

13*
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Functions f,-f; perform with respect to the present system &, the same
role that functions fi-f3 do with respect to 8,. fy(%, P ) i8 the “Godel
number” of a formula which we obtain from & by dropping the initial
quantifier (if any) and substituting % for the variable bound by thig
quantitier; fy, fs, fo are special cases of f, obtained for special values of %
The notion of extension of a model is the same ag in Section, 3:
Lemmasg 3.1 and 3.2 remain valid. ’

6.1. Twery model-‘u of 8y can be ewtended to & model i, of 8o in such
a way that the following comditions be satisfied for every formula ¢ of 8,
with at most one free variable my: "

(19)  If Val, V@@ is a limit number, then for overy &
§ > Val, Va@VE+1 < Val,, Sb (@) D g\ /y0) P
(20)  If Val, \/®®D is not o Limit number, then
Val,,, V@@ = Val, Sb (@] B\ z,0) P
(21) Val, A @@ = Val, Sb (2e/F g pa,2) D -

Prgof o‘f' thig thgorem is similar to that of 4.1 and can bo omitted.
A fun_emon x v_vl.uch maps N into Z is called a C-model if it satisfies
the following conditions for arbitrary n in N, & in ¢ and &< o:

B2)If i) =1, then 7(n) = ppn(i (f(L, W), s 2 (ful B, m))-
(28)  If fuln) =2 and fy(n) = 0, then y(n) > % (folTe, m)) .

(24)  If fi(n) =2 and fyn) =1 y then y(n) < x (folks, n)) .

(25) 1] fitw) =2 and fyn) = 0, then y(n) =  (fs(n)

V (x(n) 4s a limit number) & [& > y(n)VE+1 < % (&, m)] -
(26) I fuln) = 2 and fyn) =1, then y(n) = 2 (o) '

6.2. 4 closed formula & of 8, is satisfi id) 4
satisfiable lid) 1 A Y i
2P ) eD for at least one (for eac;r,) .0—mod£l % (A 5 and onty i

Proof. It is sufticient to ghow that
_ : at for every model tig-
fying (19)-(21) there is a C-model % such that Y ot 01 B 008

7 2(LP) =Val, & for every closed formula & of Seo

and that every (- , :
holds. ¥ G-model y determines & model s of S such that (27)

The first statement ig r0 ifvi : . .
then the function 4 deﬁnp ved by verifying that it e, satisties (19)-(21),

ed by (27) is a O-model. The second statement

icm

Amiomatizability of many valued caleuli 183
ig proved as follows. Let y be a (-model. Define a model po 0f Sw in ¢
(set of all constants) by putting uec = ¢ for ¢ in ¢ and letting s T, b
a function v such that (o, ..., ¢;) =x(|__11’£01, ey €q ) for ¢y .y ey in C.
Tt is sufficient to prove (27) for every formula @ in Y where ¥ ig an arbi-
trary formula of Se.

The cases when ¥ is atomic or begins with a propositional connective
are dealt with exactly as in 4.3.

Case 3. ¥ has the form \/z,5. Hence @ has the form \/o,H where
€& or HeA according as @, is or is not free in & and Val, &
l.ubb. % (folLey, L® ). In both cases we obtain from (23) x(L9_)
€

o

v

[4
Val,, @. If x(_¥_) is not a limit number, then, by (25),

2(LP_) = 2 (fs(LP_) = 2 (LSP 4/ By 0) H_)
= % (folBgo_, LP) < 1-01';lg)-x (falLe, LP)

which proves (27). If x(_®_,) is a limit number, then again by (25)
(&) [ < 2(.D) D E+1 < 1 (folLDsgos LP)] -
If we had x( P ) > Val, &, then we would obtain
2 (fo(_Deao_sy LP_)) < Val, ®+1 < g {fo(_Deaots LP )

which is a contradiction. (27) is thus proved in Case 3.
Case 4. ¥ has the form A5 Hence @ has the form Az, H where
HeZ or HeE and Val, @ = glb. (fo( o, _P_))- From (24) we obtain
ced

(L9} < Val, @
and from (26)

2 (LP) = x (foL D) = % (fol, Faor LP_)
= gi-;i)-x (fo(o, LP)) = Val, @,

whence we obtain (27). 6.2 is thus proved.

Our next tagk will be to express the conditions for validity and
satistiability so as to make evident their recursive character. To this
end we shall consider an arbitrary but fixed finite set of relations R, , ..., Ry
defined in the set Z and denote by T the elementary theory of relations
Ry, ..., Ry, <. The variables of T will be denoted by Greek letters a, B, ...
with or without indices. We extend T to a theory T* by adjoining varia-
bles m, n, ... (with or without indices) ranging over N, variables k, 1, ...
(with or without indices) ranging over O, variables x,4,.. (with or
without indices) ranging over integers, constants for individual integers
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and symbols f;, ..., f, for funetions f-f,. Variables m,n, ... are N-terms
k,1,.. are C-terms, ¥, 4,.. and numerals (constants for integers) a,ré
o-terms and a, B, ... are Z-terms. If » is an N-term, & a C-term, £ a Z-vari-
able and % an o-variable or a numeral, then fy(#), B(»), Ti(+) are w-terms
5%, ), To(»), Ta(®, ), B(E, »), Fi(»), Ty(») are N-terms. This concludes the
Qescl-iption of terms of T*. Atomic formulas of T* are those of T and oqua-
tions between terms of the same kind. Other formulas of T* are constructed
from the atomic ones in the usual way. It is clear how to define the notion
9f satisfaction for formulas of T* or T. Wo shall write |s=-M[& ’5]
instead: “&;y'..., & satisfy formula M of T and similarly for the L'h:»;n"“ ,?‘:
We shall need two simple lemmas: v
6.3. .Let M be a formula of T* whose bound variables are ewclusivel
the Z-variables and whose free variables are ny, ..., Ny, Kay ooy Ky, 2 !
Let ay, ..., a, be integers, o, ..., ¢, cloments of ¢ and P e e

819 iy 8,
LD = AN P e
- <(c,1,...,c,,u, PO, §=1,2,..,p,

clements of N. Under these assumptions there is a formula M’ of ‘T* depending

recursively on Uy, ..., Uy, 8 g,
vudh o 1y ~es Upy S1ay wony Spuyy Dig s vy TDpg Y,y @y, oo,y Gy M and
(28)  |re M Dy, ..., LPp 1y Gy very Ogy Qg ooy Gy

= == &.Z[f[( ¢ .
M 01y ivy Crugy oovy Cpty vy Cpupy Cuy eevy Cgl

Proof. Values of terms de i i
. pending on the variables ng,...,n, can
be evaluated, ie. represented in the form of numeorals or ;1’1 tl’xe 2,form

Ve ...,'U;) ~y
(ama)
the:; tE!e integers oy, ey Uty TP are effectively calculable from the
eﬁ;l 1;'7’0 » a7 and each d; is either one of the ¢t or one of the ¢p,. Evéry
quation between these values can be expressed as equations betwoeen

;Etclzizzg %1* betv:veen the constants d;. The former equations are then
P Y their truth values. In this way the loft hand side of (28) is

transformed into a condition representable by the right hand sido of (28) .

and !
and til::; jo;mula M’ can be constructed effectively (i.e. rocursively) from M
BOIS Uy vouy Upy Sty vy Spupy T P Yy ey Ty, y.e sy, @

6.4, 2 !
the Z-varff); M be a formula of T* whose bound variables are ewclusively
I avles and whose froe variables are m,, ... my, k k.. %
6t My, ..., my be elements of N, let s Mhyy By gy wuey Koy 2y ey %pe

ks = l—De’”f’%iJ for j=1,2, v
i= g+1,..,h,

j=h+1,..,e,

ky= I_qu,}’»,_,J for
k?’ = |_'F ﬂj,:l,_J ]‘07‘
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and let ay, ..., & be integers. Then there is a formula M’ of T* depending
recursively on g, by @iy vy oy Guy vy @ and M such that '

et MMy y ey Mgy Tory oeey Fooy Gy oeey )
=|=e M L&y ooy Sgy Mgy wony Mgy Mg ooey Ne] -

Proof. Similarly as in the proof of 6.3 we evaluate the values of
terms depending on My, ..., Mgy Kyy coey Kooy 1y ooy Cr and replace equations
between these values by equations between ordinals or between integers
or between elements of N. Equations between integers are then replaced

by their truth values.
Let now M, be a recursive sequence of formulas of T* whose free

variables are A, %y, .y #pyy Diy ooy Ngyy Kay ooy Ko, and whose bound varia-

bles are exclusively the Z-variables.
6.5. There is a recursive sequence Gy, of closed formulas of T such

that
(29)  (w)=ge (%) eory %pyy Tay ey Digyy Kay oovy Kry) M)[e] = (p)Fc e -

Proof. The left hand side of (29) is equivalent to (%)

(By w)u(@ys oy Op)o(Pgy -y Ng )y (C1y ey Cr)0,
=ge Mule, Gy ooy Gpyy Tay ooy Tigys Ouy ooy er,]

where Ny is the set of “Goédel numbers” of formulas of S and Oy is the
set of “Godel numbers” of constants of 8. It will be sufficient to show
(by induction on k) that there exist closed formulas Hpgy,. of T which
depend recursively on h, p, ¢ such that

() (g weey Op)u(Pyy ooy N )y (C1 oons er)o,

(30)
e Mle, yy ey Qpys By oeny Mgy Cry woey Or, ] = ?l=cHnpe -

Consider first the case h> 0. We shall show how to reduce the left
hand side of (30) to a similar condition with h replaced by h—1.
The left hand side of (30) is equivalent to '

(81)  (Wu(@1y ey Op)u(Py ooy Mg )Ny, (C1y ons Cr)oy
[=e M€y Gy eevy gy Py veey Ngyy 1y vony Cr]
& (U)w(@yy «ovy Up o (Ryy oy N )Ny =Ny (C1y - er)ey

=ce Mu[€y Gyy ooy B,y Mry oony Mgy Cay oy cr,]-

If we replace in the second conjunct every n; by

831y eeny Sy .
<(c T ”f) ’ %;'> sy i=10 u,
Ly o>

.y 07',,,1
(1) (x)x means: for every z in X; we denote by « the set of integers.
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where the s; run over integers, the ¢y run over ¢ and the nj over the
set X, g of Godel numbers of formulas of S, with the freo variableg
S41y v ,s,u,, we obtain a condition equivalent to (31). Using Lomma 6.3
we can thewfom replace (31) by an equivalent condition

(Wl ooy Op)o(Ryy ooy Mg )Wy (G g ooy oo,

FoeMule, gy oy Gpyy My e, Ngys Oy vvey Cg, ]

& (U, vy eny Uy Oy ooy Upyy Sty oy Sty e 8gy1y ovy 80,0, o
W

(n{)x”u"-’l

'|=fc'Mu,

. (ng Cyy . ?
( qu)Xga — (015 weey Onyy Crgy oun,y Otwyy veey ("“u”au)("n

e R 7 Mo '”a (61 vers Orys €1ty vy Cop, ]
W

where the formula M’ depends recursively on the indicos. Oontracting
we transform this- condition to a condition

(82)  (Walbyy ey Bi)u(May ooy Bus iy, (A oo
. e Mi[e, by, ...

d”u ) Uh

1 Oty My oeny Mgy Ay e

 dy,] -

We divide this formula into two parts letting the dy in the first part
to run over (_, and in the second over O~ Op—i. I the gocond part
each d; can be replaced either by |__J)e,,‘,,,mj —ox by | By %, or by Fox i3

ie. by <&, ¢, my) or <g;, ms> where my 18 agsumed to run over a subset
of Nyp—y. In this way (32) is replaced by

(33) (“)g»( 1y vy Bt oy oony N oy (s ooy dy)o,
= Mile, by, .., biyy My ey Ty s Dy ooy ay1&
(#)o(by, ..., ba,)o(My vy Naw vy, Di<y,(E1y vy &)z
(my, ..., M)y (s G (7 )‘<1<Vu
(Gitay very G Jo Mgy, o,y My, Nh_l{(.ﬂ My) = ... = filmy,) = 2)
. & (falmy) = ... = fy(my) = 0) & (falmyss) = ... = fylmy,) = 1)
2 l"t'M;[G: by, -:‘btua Ty eoey Munyy <Ery Qyy My cery “

<51'7 /3 'm'i> ) <Q¢+1y mH-1> 1 ey <Q1I“; mllu>]} .

We now use Lemma 6.4 and replace

= * ‘
F”C'Mu[ey bl’ ey btu’ (TR ”wua <§17 Quy My PR

L&ty oy My 5 {Qigr, Magrd 7 2oy Qs My, 0]

by an equivalent condition
1=Z‘M:;.f,qp.--,q,, (e by ...

2 bty My
with I+ dependm
formula .

» My y My,

ey My, El: ey fi}

g recursively on the indices. Further we denote the
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(ayy ey @) [a(my) = 2) & ... & (Fy(my) = 2) & (ﬂ(m, =0)&
(Exmay) = 0) & (fa(mys) = 1) . & (fy(my,) =1)D B %' )
by Mu,i L
(33) is thus equivalent to
() (byy vy Deda (Mg ey N gy (s vy dy, )0

ke MALE, byy veny Btyy Mgy ey Mgy day ooy Oy ]
& ()u(byy o) bi.,,)w(nu ey Mgy My oony mu,,,)Nh_l(":; j)i<:l"£1/u
(G1y ey (luu)wI’—“’C'Mm?i,qp--.,q,,u[e» byy ey Dayy My ooy Py My ony my,]

which, after contradiction can be brought to the same form as the left
hand side of (30) but with % replaced by h—1.
In order to prove (30) it remaing to prove it for h = 0. The left hand
side of (30) has in this case the form -
(W)o(@ry ey ’ nau)Nn IZ'C'Mu[ey Ayy ooy ) ""q‘,] .

ApJo(Pay o Opyr My e

Performing the same operations as in the first step of the reduction of &
to h—1 we are left with a condition of the form
(U)o (s ooy

ap,,)w (N1, ey néu)xo I=fCM1’¢,n;,...,n&u,al,...,awu,e

where M’ is & formula of T and X, is the set of Godel numbers of closed
formulas ‘of §,. Contracting, we finally obtain a condition of the form
p) l=¢Hop,e Where Hyp, is a closed formula of T depending reeurswely
on p and e. Lemma 6.5 is thus proved.
We now repeat with minor changes the construction carried out
on pp. 176-178. Let sequences of p+6 ordinals be denoted by German
letters and their terms denoted by corresponding Roman letters:

11

’ 2 an
= (W, Wy; wury Wy, W'y W, W, WY, W)

where

P =max(Po, -y Pa) +

Assume that the relation w = gj(wy, ..., wp,) is definable in T and 1et
Fjla, ay, ..., ay) be a formula of T which defines thig relation, j=0, 1,
Notice that relatlons ELn, E+1< nand “§ is a limil mtmber” are de-
finable in T (which was supposed to be an extension of the elementary
theory of the < relation). Let formulas which define these relations be
a<p (™), at+1< B, A(a). Consider the relation C(n, &, w) where n e N,
EeZ, weZ" +8.

(**) Whenever convenient we write §> a instead of a<f.
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{(f1(’”') = 1) D (Ef)a+1 [(fz(”) = 7) & (w == QW vny Wp;))]}
& {(f(n) = 2) D [(fu(n) = 0) D (w = w')] & [(foln) = 1) D (w = w')]}
& ((fl(n) =2) & (foln) = 0) D {(w = w")V(w is a limit number)
&LE = wVEFL< 0" & {(fi(n) = 2) & (fufn) = 1) D (10 = wi)) .
p(n,a;]?i:“ rel,a:;csz , i:,’yzl,)’\'r,io;:f% 7 l;l)e:finable in T* by the formula
{(fl(lj) =1)2 (Ej)lil:f-l [(fz(n) = 7) & I'y(ay ey, ..., ﬂm)“
& {(~f1(n) =2)D [!f,(n) =0)D(a> o)) &[(fn) = 1)D (@< a)]}
& ((f(m) = 2) & (fn) = 0) D {(a = @)V A(a) &[(8 > a)V
V(B+1< a"'m) & {(fin) = 2) & (fyn) = 1) D (a = av)} .

We abbreviate this formula ag I'(n, «). The symbol (Ej)as1 18 of course

an abbreviation for a logical sum of a--1 te
: -1 terms. b G
Z-variables are bound in I " - Mot that only

kNext we introduce the “consigtency relation” B (TP, ny, &y, &
;»z, i{lfz,ml,mz) Where_a meN,bieC,bieZ, i=1,2 and & is a closed,
ormula of 8. To define this relation we consider “schomas” Lm0
('”’7 fal1, m), ..y fo(p, 1), folk, n), T, m), faln), fo(n), "7
U w', w’, W', wv, @ )
and
md ;5:;2 th;ut BT, 0y, &y, 5}, Ny, by &, W;, 10,) holds if and only it
; ¥ of any two e?ements in the upper rows of schemas T 1, 2,0
lﬂ,,k,,g,,m,,,p implies thg identity of the corresponding olement;;' l‘11:; 11:,he’
I(:lzv;isr;)fw:l.l The (f)onmiﬁzncy relation is obviously definable in T* by
open formula involving only the identity predi !
; y predicate. We note
this formula as E(x, ny, ky, By, Dy, ky, By oy &),

6.6. If the functions )
) . Doy «+ey Pa Ae CONYINUOUS, Then the st {1o:
18 closed in ZF*® for arbitrary n in N and ¢ 'b’n Z. o oz Oln, £ )

The proof is obvious.

6.7 If the set D is olosed in Z, th i8 satisfi
i and oty o oory e 8, en & closed formula & of 8, s satisfiable
(34) [(:Zo(’r;;_jﬂa)lv(ko) wy oo (&, vy £0)z(Ewy, cory W) (8 Flogs
s My By &4y gy Togy £y w0, ) & O(n, &, w0) & (W € D)] .

If D is open in Z, then a el )
i ther 4w e s, then thatosed formula @ of 8, is valid if and only

(35) (Enay -.., ng)n (Eko, ..., ka)o(Eé&y, ..., &)z (w,, eeey W)

1y e [B(DT. p,
( ;7).+1[ ( ' y Ny kﬂfhnhkh ‘fhm";mzf)&o(m; 5¢,wt)3(?70_1€1))]-
The proof does not differ from that of 4.5
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6.8. If T is a decidable emtension of the elementary theory of the < re-
lation, if the functions @; are definable in T and if the set D is definable
in T and open and closed in Z, then the set of (Godel numbers of) valid for-
mulas of S, is recursively enwmerable and the set of (@odel numbers of)
satisfiable formulas of 8, is a complement of such a set.

Proof. @ is satistiable if and only if (34) holds. Now (34) is equivalent
to the eondition

(36)  (5)lre oy ooy ) (Kay wevs Ke) (Boy -vey Bo) (Eoy ey 0) ML)

where M, is the following formula of T*
(4, osa [B (%, 0, ki, iy 0y, Kgy By o4y a7) & T(0a, Bry o) & A(@i)];

here the quantifier (i,§)s+1 i8 an abbreviation for a conjunction with
(8 +1)* factors, 4 is a formula of T defining D, and @; is the last variable
of the string a;.

By Lemma 6.5, condition (36) is equivalent to (p) l=7 Gpon Where Gpq
is a recursive sequence of closed formulas of T. Since T is decidable, it
follows that the set {T@: () =g Gpron} 18 & complement of a recursively
enumerable set.

The recursive enumerability of the set of valid sentences is proved
by passing to dual formulas. ,

As an example to Theorem 6.8 we can take T to be the elementary
theory of addition of ordinals < o, modifying the addition in such a way
that we+& = w, for every & Decidability of C was proved by Ehrenfeucht
(in a paper not yet published). As D we can take for example the unit set {0}
and as @; any continuous functions definable in T. We obtain in this
way numerous examples of functional caleuli with recursively enumerable
sets of valid sentences.

7. We conclude with some unsolved problems:

A. Let v, v, be two ordinals and Sy, Sy functional calculi defined
in the last paragraph of Section 6 by taking as Z either the set {&: § < @y}
or the set {&: £ < wy,). Do the sets of valid formulas of Soy Ses coincide?

B. Let Z be the set of all subsets of an infinite set X and let g; be
functions definable in a decidable fragment of an extension of the
elementary theory of the inclusion relation. If S, is the funectional
calculus with two quantifiers A and \/ corresponding to this choice of Z
and the g;, iz the set of valid formulas of 8, recurgively enumerable?

C. Same question as in B but with Z replaced by the family of
closed subsets of a topological space.

D. Same question but with Z replaced by the complete lattice of
closed domains of a topological space X. N
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The lattice Z in problem B is mnot separable but methods used in
Section 6 ghould be sufficient to overcome this difficulty. However when
oneé tries to adapt methods of Section 4 to problem B (and to problems O
and D as well) one is faced with the difficulty that mnot only the set
{(@,9): @<y} but also the set {(2,%): wnon > y} should be closed inl
Z X Z. No reasonable topology seems to satisfy this condition and thig
Is the chief reagon why it is an open question as to whether or not methods
similar to those of Section 4 are applicable to our problems.

We ,}imited ourgelves chiefly to the study of quantifiers whose in-
terpretations were the Lwb. and the g.lb. opomtioné. It is easy to con-
struct examples showing that for an infinite Z, e.g. for Z = & < w)
anqther choice of quantifiers may lead to a ‘“functional Ganlcuhm’T iri
Whl_ch the set of valid formulas is not recursively enumerable. It W(;U.ld
be interesting to solve the following problem: ,

B. What is thfa general characterization of gquantifiers which lead
to functional caleuli with, recursively enumerable gets of valid formulag?

w
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The family of dendrites %t-ordered similarly to the
segment

by
K. Sieklucki (Warszawa)

1. Introduction. The continuous mapping f of the topological
gpace X onto the space Y is called the R-mapping if there exigts a con-
tinuous mapping ¢: ¥-+X such that fg = identity ([1] and [2]). It is
easy to show ([1]) that the R-mappings are the same as the mappings
of the form hr, where » is a retraction and » a homeomorphism. i

If there exists an R-mapping f: XX then we shall write Y§ X.

If ¥ < X and X < Y then we ghall write X = Y. If X%Ybu’ﬁ Xa; Y
" 0 oo
then we shall write X < Y. The relation < establishes the partial order
R n

of every class of spaces.
2. The family of dendrites () ordered by the relation §

similarly to the segment. At the end of the paper [2] K. Borsuk

raised the following questions: .
(i) Does there exist an uncountable fainily of spaces ordered by the

relation < %
%
(ii) Does there exist a family of spaces ordered by the relation < in
R»

a dense manner?
(iii) Does there exist a family of spaces ordered by the relation ?

gimilarly to the set of all real numbers?
In the present paper we shall construct the family of dendrites ordered
by the relation < similarly to the segment. It solves the three mentioned
R

problems even in the stronger formulation concerning compact 1-di-
mensional AR-sets. ;

(1) A dendrite is a locally connected continuum containing no simple closed curve.
Dendrites are the same as compact 1-dimensional AR-sets. See for example [3], p. 224

and p. 200,
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