COROLLARY (Vaught). The sentence σ_n is equivalent with the axiom of choice.

It is an open problem whether or not each σ_n, with $n \geq 3$, is equivalent with the axiom of choice.

References

UNIVERSITY OF CALIFORNIA.
LOS ANGELES, CALIF., U. S. A.

Reçu par la rédaction le 9.8.1959

Measures in homogenous spaces

by

A. M. Macbeath (Dundee) and S. Świerczkowski (Wrocław)

1. Notation. Generally our notation will follow that of Weil [W] and Halmos [H]. Let G be a locally compact topological group, H a closed subgroup. Let G/H be the homogeneous space of cosets xH with the usual topology so that G acts, by left translation, as a transitive group of homeomorphisms of G/H. The natural mapping $G \to G/H$ will be denoted by φ but sometimes we shall use the shorter notation \bar{x} instead of $\varphi(x)$ for the projection xH of x in G/H. We shall also use \bar{x} to denote a generic element of G/H. We use $dx, d\bar{x}$ to denote integration with respect to the Haar measures in G, H, and $\lambda(x), \theta(\bar{x})$ to denote the modular functions in G, H ([W], p. 39).

For any topological space X, $L(X)$ denotes the class of continuous real-valued functions with compact support and $L_+(X)$ denotes the subclass consisting of non-negative functions. Similarly $B(X)$ denotes the class consisting of all extended real-valued Baire functions on X, $B_+(X)$ the non-negative ones. (Extended real numbers include the values $\pm \infty$ as well as the ordinary real numbers.)

A set $Q \subseteq X$ will be called an LB-set (locally Baire) if $Q \cap E$ is a Baire set whenever E is a Baire set. A function which is measurable with respect to the ring of LB-sets will be called an LB-function. It is convenient to extend the notion of a set of measure zero to LB-sets as follows. If Q is an LB-set and μ is a Baire measure we say that $\mu(Q) = 0$ provided that $\mu(Q \cap E) = 0$ for each Baire set E. If $\mu(Q) = 0$ then we say that almost every x in X belongs to $X - Q$. If f, g are LB-functions, N is the set $\{x : f(x) \neq g(x)\}$, we say that $f = g[N]$ if $\mu(N) = 0$. These definitions do not introduce anything new if X is a σ-compact space.

All measures we consider are non-negative Baire measures in the sense that they are defined on the ring of all Baire sets; our usage of the term “Baire measure” differs thus from that of Halmos [H], where a Baire measure is assumed to be finite on compact sets.

2. Definitions and main results. A Baire measure μ on G/H is called (following Weil) relatively invariant with factor $h(x)$ if $\mu(xE) = h(x)\mu(E)$ for each Baire set E and $x \in G$. Then $h(xy) = h(x)h(y)$
and Weil ([W], p. 42-45) showed that such a measure can exist only if
\[h(\xi) \cdot A(\xi) = \delta(\xi) \quad \text{for each} \quad \xi \in H. \]

If \(G \) admits no non-trivial homomorphism into the multiplicative group of positive reals, and \(H \) is not unimodular, there can be no relatively invariant measure in \(G/H \). This situation occurs when \(G \) is the group of 3 by 3 real matrices with determinant 1 and \(H \) is the group of matrices of the form
\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & a & b \\
0 & 0 & 1
\end{bmatrix}.
\]

Thus if we wish to have a class of measure which exists for every homogeneous space \(G/H \), we must weaken our demands about invariance. In this paper we define a class of measure with an invariance property which is weak enough to guarantee that such measures exist but which turns to be strong enough to imply a connection with the Haar measure.

Definition 1. A non-vanishing Baire measure \(\mu \) in \(G/H \) which is finite on compact sets is called pseudo-invariant if, for each pair of compact sets \(C_1, C_2 \subseteq G/H \), there is a finite real number \(k \) such that \(k \mu(C_1 \cap C_2) = \mu(C_1) \cdot \mu(C_2) \). In particular, \(\mu(E) = 0 \) if and only if \(\mu(E) = 0 \).

A pseudo-invariant measure is positive on every non-empty open set. For if \(U \) is open and \(\mu(U) = 0 \), then \(\mu(U) = 0 \). Each compact set \(C \) can be covered by a finite union of sets \(U \), so \(\mu(C) = 0 \) and the measure vanishes contrary to definition.

If \(f \in L_1(G) \), then the expression \(\int f(\xi) d\mu \), regarded as a function of \(\xi \) is constant on cosets \(xH \) and is therefore really a function \(\mathcal{f}(x) \). It is well known that \(\mathcal{f} \in L_1(G/H) \). The mapping of \(L_1(G) \) in \(L_1(G/H) \) defined by
\[\mathcal{f}(x) = \int f(\xi) d\mu \]

is linear and monotone. Since (2) is invariant under taking limits of monotone sequences of non-negative functions, we derive that (2) defines also a mapping of \(B_1(G) \) in \(B_1(G/H) \). In particular, if \(E \) is a Baire set in \(G \) and \(\mathcal{f} \) denotes the characteristic function of \(E \), then
\[\mathcal{f}(x) = \int \chi_E(x) d\mu(x). \]

Let \(\mu \) be a Baire measure in \(G/H \). For every Baire set \(E \subseteq G \) define
\[\mathcal{f}(E) = \int \chi_E(x) d\mu(x). \]

It is obvious that \(\mathcal{f} \) is a Baire measure in \(G \).

Definition 2. The measure \(\mu \) will be called inherited if \(\mathcal{f} \) is absolutely continuous with respect to the Haar measure.

If \(\mu \) is inherited, then, by the generalized Radon-Nikodym theorem (proved in § 3) there is a non-negative LB-function \(h(x) \) such that
\[\int h(x) \chi_E(x) d\mu = \int \mathcal{f}(E) d\mu(x). \]

The function \(h \) is called the factor function for the inherited measure \(\mu \). It is obvious that the above equality implies
\[\int h(x) f(x) d\mu = \int \mathcal{f}(E) d\mu(x) \]
for every \(f \in B_1(G) \).

Our main results are as follows. We follow Halmos in calling two measures equivalent if each is absolutely continuous with respect to the other.

Theorem 1. For any \(G, H \) there exists at least one pseudo-invariant measure in \(G/H \). Any two pseudo-invariant measures in \(G/H \) are equivalent.

Theorem 2. An LB-function \(h(x) \) is the factor function for an inherited measure if and only if, for each \(\xi \in H \), and for almost all \(x \) (in the Haar measure)
\[h(x) A(\xi) = h(\xi) A(\xi). \]
(This theorem is a generalization of Weil's formula (1).)

Theorem 3. A measure \(\mu \) in \(G/H \) is pseudo-invariant if and only if \(\mu \) is inherited and the factor function \(h(x) \) is essentially bounded away from 0 and \(\infty \), on each compact set \(C \), i.e., for each compact set \(C \) there are real positive numbers \(k_1, k_2 \) such that \(k_1 \leq h(x) \leq k_2 \) holds for almost all \(x \in C \).

3. The Radon-Nikodym theorem for \(G \). In this section we justify the use made of the Radon-Nikodym theorem in the last section to obtain the factor function \(h(x) \), even when the usual condition of total \(\sigma \)-finiteness is not satisfied. Our proof is based on a condition of Oxtoby, as indicated by Halmos ([H], p. 132, Ex. 10, p. 256, Ex. 1).

Theorem A. If \(\nu_1 \) and \(\nu_2 \) are Baire measures in \(G \), \(\nu_1 \) is finite on compact sets and \(\nu_2 \) is essentially continuous with respect to \(\nu_1 \), then there exists a non-negative LB-function \(h(x) \) such that, for each \(f \in B_1(G) \),
\[\int f(x) d\nu_1(x) = \int f(x) h(x) d\nu_2(x). \]

The function \(h \) is unique in the sense that if \(h^* \) also has the above property, then \(h = h^* \).

We first show that \(G \) satisfies Oxtoby's condition, i.e., that \(G \) is the union of a disjoint class \(D \) of Baire sets of finite \(\nu_1 \) measure with the property that every Baire set can be covered by a countable subclass of \(D \). To show this consider an open subgroup \(\Gamma \) of \(G \) which is \(\sigma \)-compact.
Every I-coset is a countable union of disjoint bounded sets, let D be the family of all these bounded sets. Now every compact Baire set is contained in a finite union of I-cosets since these are open, and therefore also in a countable union of sets $D \in D$. Since every Baire set is the subring generated by countably many compact sets (Hilbert theorem, p. 24, Theorem D), the family D does what is required.

To prove Theorem 4, apply the Radon-Nikodym theorem (in the form given in [Hilbert], p. 131, § 31, Ex. 7) to each space $D \in D$. On each space D there is a function $h_D \in B_1(D)$ such that, for every function $f \in B(G)$,

$$
\int f(x) dx = \int h_D(x) f(x) dx.
$$

or, for every $f \in B(G)$,

$$
\int f(x) dx = \int h_D(x) f(x) dx.
$$

The function h_D with this property is essentially unique. The function $h(x)$ on G such that, for each $D \in D$, $h(x) = h_D(x)$ when $x \in D$, clearly satisfies (4), and any such h is essentially unique.

4. Pseudo-invariant measures on G. In this section we prove Theorems 1, 3 for groups, i.e., we prove the following theorem.

Theorem B. Any pseudo-invariant measure on G is equivalent to the Haar measure. More precisely, any pseudo-invariant measure ν is definable by an equation of the form

$$
\int f(x) d\nu = \int f(x) W(x) dx,
$$

where W is an LB function essentially bounded away from zero and infinity on every compact set.

To prove that ν is equivalent to the Haar measure, we have to show that, if E is a Baire subset of G, then E, ν and the Haar measure both vanish or are both positive. If F is an σ-compact open subgroup of G, which contains E (Hilbert § 67, Theorem A), the Haar measure carried over from F will be a Haar measure in F, and ν will be pseudo-invariant in F. Thus it is enough to prove the equivalence part of Theorem B for F instead of G.

Having proved the equivalence, the existence of an essentially unique Radon-Nikodym derivative $W(x)$ follows from Theorem A. The property of $W(x)$ that we have to establish consists its values on a compact set C, which is also contained in an open σ-compact subgroup Γ. Thus it is enough to prove Theorem B for a σ-compact group, and we shall assume, in this section only, that G is σ-compact.

Let $G' = G \times G'$ be the group of ordered pairs (x, y) with Baire measure $\nu' = \nu \times \nu$, and G'' the group of ordered triples (x, y, z) with Baire measure ν''. We denote by ν the Baire measure in G which is determined by the condition

$$
\int f(x, y) d\nu = \int f(x, y) d\nu''(x, y)
$$

for $f \in B(G')$.

If $f(x, y) \in B(G)$, then for each fixed x, by definition 1, the functions $P(x) = \int f(x, y) dy$ and $Q(x) = \int f(x, y) dx$ are both zero or both positive. Thus the Radon-Nikodym theorems has a positive function $\nu(x, y)$ such that for each $f \in B(G)$

$$
\int f(x, y) d\nu = \int f(x, y) d\nu(x, y).
$$

An analogous argument, expressing out the integration with respect to y first, and then with respect to $\nu''(x, z)$, will show that, if $f(x, y, z) \in B(G''(x, y))$ and $\gamma(x, y, z)$ is any continuous mapping $G'' \to G$, then the integrals

$$
\int f(x, y, z) d\nu''(x, y, z), \quad \int f(x, y, z) d\nu''(x, y, z),
$$

both vanish or are both positive. In particular, if T denotes the transformation

$$
T(x, y, z) = (x, x^{-1}y, z),
$$

then $\nu''(E) = 0$ if and only if $\nu''(TE) = 0$.

Lemma 2.1. The function $\nu(x, y)$ may be chosen to be bounded away from zero and infinity on every compact set.

Proof. We can alter $\nu(x, y)$ on a set of measure zero, so it is enough to show that $\nu(x, y)$ is essentially bounded on every compact Baire rectangle. Let M, N be compact Baire subsets of G. By definition 1, there are numbers $\lambda_1, \lambda_2 > 0$ such that, for any $f \in B(G)$ vanishing outside $M \times N$,

$$
\lambda_1 \int f(x, y) dy \leq \int f(x, y) d\nu \leq \lambda_2 \int f(x, y) dy.
$$

Integrate with respect to $\nu(x)$.

$$
\lambda_1 \int f(x, y) dy \leq \int f(x, y) d\nu \leq \lambda_2 \int f(x, y) dy.
$$

Thus $\lambda_1 \int f(x, y) dy \leq \lambda_2$ almost everywhere in $M \times N$, and the lemma follows. We shall assume from now on that ν is bounded away from zero and infinity on every compact set.
Let \(\Phi(x, y, z) \in L(\mathcal{G}) \). We shall obtain a functional equation for \(J \) by transforming the following integral in two ways:
\[
I(\Phi) = \int \Phi(x, y, x^2z) \, d\pi(x, y, z).
\]

Firstly, we have, by Fubini's theorem and (5),
\[
(7) \quad I(\Phi) = \int d\tau(z) \int \Phi(x, y, x^2z) \, d\pi(y, z)
- \int d\tau(x) \int J(x, z) \Phi(x, y, z) \, d\pi(y, z)
+ \int d\tau(y) \int J(x, z) J(y, x^2z) \Phi(x, y, z) \, d\pi(y, z)
= \int J(x, z) J(y, x^2z) \Phi(x, y, z) \, d\pi(y, z),
\]

On the other hand, if we write \(g(x, y, z) = J(y, z) \Phi(x, x^{-1}y, z) \), we have
\[
(8) \quad I(\Phi) = \int d\tau(x) \int J(x, y) \Phi(x, x^{-1}y, y) \, d\pi(y, x)
- \int d\tau(x) \int J(x, y) J(y, z) \Phi(x, x^{-1}y, z) \, d\pi(y, x)
+ \int d\tau(x) \int J(x, y) g(x, y, y) \, d\pi(x, y)
= \int J(x, y) g(x, y, y) \, d\pi(x, y).
\]

Comparing the two expressions (7), (8), equal for all \(\Phi \in L(\mathcal{G}) \), we deduce the equation
\[
J(x, y, z) = J(x, y, z) J(x, z) \| x \|^2.
\]

Applying the transformation \(T \) defined at (6), we have
\[
(9) \quad J(x, y, z) = J(x^{2-1}y, x^{2-1}z) J(x, z) \| x \|^2.
\]

If \(E \) denotes the subset of \(\mathcal{G} \) for which the equation (9) is false, and if, for each fixed \(z \), \(E_z \) denotes the set of \((x, y) \) for which it is false, then
\[
\nu(E) = \int \nu(E_x) \, d\pi(y) = 0.
\]

Thus there is at least one value \(y = a \) such that \(\nu(E_a) = 0 \). If \(J(x, a, z) \) is denoted by \(V(z) \), then by (9),
\[
(10) \quad V(z) = V(x^{-1}a) J(x, z) \| x \|^2.
\]

Now let \(d\pi \) be the integral on \(\mathcal{G} \) defined by
\[
\int f(x) \, d\pi(x) = \int f(x) V(x) \, d\pi(x).
\]

Lemma 2.1 shows that \(V(x) \) is bounded on every compact set, so that every \(f \in L(\mathcal{G}) \) is \(\pi \)-integrable. Since \(V(x) > 0 \), the measures \(\pi \) and \(\pi \) are equivalent, and Theorem B will follow if we show that \(\pi \) is a Haar measure, i.e., that for each fixed \(f \in L(\mathcal{G}) \), the function
\[
\int I(f(t)) \, d\pi(x)
\]
is a constant. Since \(f \) is uniformly continuous, with compact support, the function \(I(f(t)) \) is continuous, and the set \(\mathcal{N} \) of \(t \) for which \(I(f(t)) \neq I(f) \) is open. We shall show that \(\pi(\mathcal{N}) = 0 \), and Theorem B will follow since the empty set is the only open set with \(\nu \)-measure zero, as shown in § 3. Let \(g \in L(\mathcal{G}) \). Apply the formula (5) with the variables \((x, y) \) replaced by \((t, x) \) and the function \(f(x, y) \) replaced by \(f(x) V(x) J(t^{-1}x) \). Using (10), we have
\[
\int I(t) g(t) \, d\pi(t) = \int f(t) V(x) g(t) \, d\pi(t, x)
= \int J(t, x) V(t^{-1}x) f(x) g(t) \, d\pi(t, x)
= \int V(x) f(x) g(t) \, d\pi(t, x)
= \int g(t) I(t) f(t) \, d\pi(t).
\]

Thus, for every \(g \in L(\mathcal{G}) \), we have \(\int (I(t) - I(e)) g(t) \, d\pi(t) = 0 \). From this it follows that \(\pi(\mathcal{N}) = 0 \), \(\mathcal{N} = \emptyset \), and Theorem B follows with \(W(x) = I(1) V(x) \).

5. On the existence of certain functions. Later it will be necessary to make use of a function \(F(x) \) with the properties given in the following theorem, where \(S(f) \) denotes the minimal support of \(f \), i.e., \(S(f) = \{ x : f(x) \neq 0 \} \).

Theorem C. There exists a continuous non-negative function \(F(x) \) defined on \(G \) with the following properties

(i) For each \(x \in G \), \(F(x) = 1 \);

(ii) If \(G \subseteq H \) is compact, then \(\varphi^{-1}(G) \cap S(F) \) is bounded.

Let \(V \) be any bounded neighbourhood of \(e \). A set \(Y \subseteq G \) is called \((V, H) \)-separated if \(V \cap \nu \cap V \cap H = \emptyset \) whenever \(x, y \in Y, x \neq y \).

Lemma 5.1. If \(Y \) is \((V, H) \)-separated, and \(C \subseteq G \) is compact, then the set \(\varphi^{-1}(C) \cap Y \) is finite. More generally, if \(D \subseteq G \) is compact, the set of \(y \in Y \) for which \(\varphi^{-1}(C) \cap D y \neq \emptyset \) is finite.

Proof. Let \(U \) be any neighbourhood of \(e \) such that \(U U^{-1} \subseteq V \).

Now \(\varphi^{-1}(C) \) can be covered by a finite union of sets of \(U \) (since \(C \) is contained in a finite union of sets \(\varphi(Ua) \)). \(\varphi^{-1}(C) \cap Y \) is thus finite, since
each set UxH contains at most one point y of Y if, for, on the contrary, $y, z \in Y \cap UxH$, then $y \in U^{-1}xHH^{-1} \subset VzH$, and Y is not (V, H)-separated.

The second part of the lemma follows from the first on replacing the set C by the set $E = D^{-1}C$; since $\varphi^{-1}(C) \cap Dy \neq \emptyset$ if and only if $y \in \varphi^{-1}(E)$. This completes the proof of Lemma 5.1.

Since φ is completely regular, there exists a non-negative continuous function $g(x)$ equal to unity within the bounded set $V^{-1}V$, but equal to zero outside some compact set D. Having chosen $g(x)$, we define another function $f(x)$ by the relation

$$f(x) = \sum_{y \in Y} g(\varphi(y^{-1})).$$

The series may contain infinitely (perhaps uncountably) many terms, but, as we shall now show, only a finite number of them differ from zero.

Lemma 5.2. Let C be any compact subset of G/H. Then there is a finite subset Y_0 of Y such that, if $x \in C$, then

$$f(x) = \sum_{y \in Y_0} g(\varphi(y^{-1})).$$

Further $S(f) \cap \varphi^{-1}(C)$ is bounded and the functions f, j are continuous.

Proof. If $x \in C$, i.e., $x \in \varphi^{-1}(C)$, and $g(\varphi(y^{-1})) \neq \emptyset$, we must have $\varphi(y^{-1}) \in D$, $x \in Dy$. Thus $Dy \cap \varphi^{-1}(C)$ contains the point x and so is non-empty. By Lemma 5.1, this can be true only if y belongs to a certain finite subset Y_0 of Y, and the first part of the lemma follows.

Next,

$$S(f) \cap \varphi^{-1}(C) = \bigcup_{y \in Y_0} S(g(\varphi(y^{-1}))) \cap \varphi^{-1}(C) \subset \bigcup_{y \in Y_0} (Dy : y \in Y_0).$$

The last set is compact because D is compact and Y_0 is finite.

For the continuity, it is enough to show that f, j are continuous on compact subsets, since $G, G/H$ are locally compact. On $\varphi^{-1}(C), O$ compact, f is a finite sum of functions $g(x) = g(\varphi^{-1})$. Since $g(x) \in L_1(G)$, $g(x)$ and φ^{-1} are continuous, and the lemma follows.

Proof of Theorem C. Now let Y be a maximal (V, H)-separated set, and define $g(x), f(x)$ as before. Then $f(x) > 0$ for every x if $f(\varphi(x)) \varphi(x) - 0$, then $f(\varphi(x)) = 0$ for $\varphi(x) \in H$, and, for each $y \in Y$, $g(\varphi(y^{-1})) = 0$. Hence $\varphi(y^{-1}) \notin V^{-1}V$, $\forall x \in (V, H)$-separated, contradicting the hypothesis that Y is maximal.

Set $F(x) = f(x)/f(\varphi(x))$. Then $F(\varphi(x)) = 1$, F is the quotient of two continuous functions, and, since $S(f) = S(F)$, Theorem C follows.

Let μ be an inherited measure on G/H, with factor function $h(x)$. Thus, for each $f \in L_1(G)$,

$$I(f) = \int f(x) \mu(x) = \int f(x) h(x) dx.$$

(11)

Let $\sigma \in H$. If $f(x) = f(\sigma^{-1}x)$, we have $f(x) = h(x) \delta(\sigma^{-1}x)$, so that

$$\delta(\sigma) I(f) = \int f(x) \mu(x) = \int f(\sigma^{-1}x) h(x) dx = A(\sigma) \int f(x) h(x) dx.$$

Thus, for each $f \in L_1(G)$,

$$\int f(x) (h(x) - h(x) \delta(\sigma^{-1}x)) dx = 0,$$

proving that the equation (3) must be satisfied for almost all x.

Suppose conversely that $h(x)$ is any LB-function satisfying (3). Let $F(x)$ be any function which satisfies the conditions of Theorem C. For each $g(x) \in L_1(G)$, we have $g(x) F(x) \in L_1(G)$. Define a measure μ in G/H by

$$I(g) = \int g(x) \mu(x) = \int g(x) F(x) h(x) dx.$$

(12)

Then the measure μ is an inherited measure with factor function h since by Fedorin's theorem, (3), Theorem C (i) and the properties of A, δ ([W], p. 39-40), we have, for $f \in L_1(G)$,

$$\int f(x) \mu(x) = \int f(x) F(x) h(x) dx = \int f(x) h(x) dx = \int f(x) A(\sigma^{-1}) h(x) dx$$

$$= \int f(x) h(x) dx \int \delta(\sigma^{-1}) F(x) h(x) dx = \int f(x) A(\sigma^{-1}) h(x) dx = \int f(x) h(x) dx.$$

This completes the proof of Theorem 2. We note that the measure associated with a given factor function must necessarily be unique (if it exists at all) because of (11). Thus we obtain the same measure μ independently of our choice of function $F(x)$ in equation (12), provided that $F(x)$ satisfies the conditions of Theorem C.

7. Pseudo-Invariant measures. Let μ be a pseudo-invariant measure on G/H. Then F is a pseudo-invariant measure on G, since, if $x \in C$, and $\varphi(t) \in C_1 \subset G, C \subset G$, then $S(f) \subset \varphi(S(f))$, and there is a number k such that

$$\int f(x) \mu(x) dx = \int f(x) \mu(x) \leq k \int f(x) \mu(x) = k \int f(x) \mu(x).$$

It follows from Theorem B, § 4, that \(\mu \) is inherited, with a factor function which is essentially bounded away from zero and infinity on each compact set.

Conversely, let \(h(x) \) be any LB-function satisfying (3), and bounded away from zero and infinity on each compact set. We shall show that the measure defined by the equation (12) of § 6 is pseudo-invariant. We have to show that if \(\mathcal{C} \) is a compact subset of \(G \) and \(g \in L_1(G/H) \), then there exists a constant \(k \) such that, if \(t \in \mathcal{C} \), \(f \leq g \), \(f \in B_r(G/H) \), then

\[
\int f(\mathcal{E}) \, d\mu(\mathcal{E}) \leq k \int f(\mathcal{E}) \, d\mu(\mathcal{E}).
\]

The set of \(x \) such that, for some \(t \in \mathcal{C} \), \(g(\mathcal{E}) F(t^{-1}x) > 0 \) is bounded, as a result of Theorem C (ii). Thus there is a number \(k \) such that, if \(t \in \mathcal{C} \) and \(g(\mathcal{E}) F(t^{-1}x) > 0 \), then \(h(t^{-1}x) \leq kh(x) \). Using this inequality and the invariance of the Haar measure, we derive:

\[
\int f(\mathcal{E}) \, d\mu(\mathcal{E}) = \int f(\mathcal{E}) P(\mathcal{E}) h(x) \, dx = \int f(\mathcal{E}) P(t^{-1}x) h(t^{-1}x) \, dx \\
\leq k \int f(\mathcal{E}) P(t^{-1}x) h(x) \, dx = k \int f(\mathcal{E}) \, d\mu(\mathcal{E}).
\]

The last equation holds because \(F(t^{-1}x) \) as well as \(P(x) \) satisfy the conditions of Theorem C. Thus Theorem 3 is proved.

Finally we prove Theorem 1. Let \(\mu \) be a pseudo-invariant measure and \(F \) again a function satisfying the conditions of Theorem C. Then, if \(f \in B_r(G/H) \), we have \(\mu(f) = \int f(\mathcal{E}) P(\mathcal{E}) h(x) \, dx \). Since \(h(x) > 0 \), \(\mu(f) \) vanishes if and only if \(f(\mathcal{E}) P(\mathcal{E}) h(x) \) vanishes except for a set of Haar measure zero in \(G \). This condition is independent of the particular pseudo-invariant measure \(\mu \) chosen, so any two pseudo-invariant measures are equivalent.

To show that at least one pseudo-invariant measure exists, we consider the inherited measure defined by the factor function \(h(x) = F(x) d(\mathcal{E}) h(t^{-1}x) \), which is non-zero, continuous, and satisfies the equation (3) identically.

References

Reçu par la Rédaction le 31. 9. 1959

Added in proof: We have since shown that in Theorems 1 and 3 pseudo-invariance can be replaced by the weaker condition that \(\mu(E) = 0 \) implies \(\mu(E) = 0 \), where \(E \) is an infinite-dimensional normed space.

Added in proof: A simpler proof of this fact has been communicated to the author by Professor H. H. Corson.

Mappings into normed linear spaces

by

V. Klee* (Copenhagen and Seattle)

We contribute a few new fragments to a still fragmentary theory—that of the topological structure of infinite-dimensional normed linear spaces. § 1 is concerned with a problem of Fréchet [6] and Banach [1]: Are all infinite-dimensional separable Banach spaces homeomorphic? Kadeč [7, 8] recently obtained an affirmative answer for the case of reflexive spaces. With the aid of a mapping theorem of Whyburn [29], we are able to extend the reasoning of [8] to cover all infinite-dimensional separable conjugate spaces. § 2 begins with some remarks on linear transformations of spaces \(G \), extending a result of Banach and Mazur [5].

In conjunction with a theorem of Bartle and Graves [3], this leads to some interesting corollaries such as an embedding theorem of Dowker [5] and the fact that every metric space of cardinality \(\leq \) admits a biunique continuous map onto some totally bounded metric space \((\cdot) \). An example in § 2 substantiates a conjecture in Michael's selection theory [24]. A few other results are obtained and some unsolved problems are stated.

§ 1. The theorem of Kadeč. A subset \(X \) of a metric space will be called a *Tečkevich set* provided each point of the space admits a unique nearest point in \(X \). An **admissible norm** for a normed linear space is one which generates the same topology as the given norm.

Kadeč first proved [7] that all infinite-dimensional separable uniformly convex Banach spaces are homeomorphic, then later observed [8] that the relevant consequences of uniform convexity can be obtained in more general spaces. By careful analysis of his reasoning, one arrives at the following conclusion.

1.1. **Theorem** (Kadeč). Two infinite-dimensional normed linear spaces \(E_1 \) and \(E_2 \) are homeomorphic if (for \(i = 1, 2 \)) there exist an admissible norm \(\| \cdot \| \) for \(E_1 \), a linear subspace \(F \), and a linearly independent sequence \(j_i \) in \(F \) such that the following three conditions are satisfied:

* Research fellow of the Alfred P. Sloan Foundation.

(†) Added in proof: A simpler proof of this fact has been communicated to the author by Professor H. H. Corson.