Collections of convex sets which cover a Banach space

by

H. H. Corson (Washington, Wash.)

1. Introduction. It is a well-known theorem of A. H. Stone ([3], p. 160) that each open cover of a metric space has a locally finite refinement (1). However, an example has recently been found ([4]) of a metric space M with a base B such that there is an open cover of M which does not have a locally finite refinement consisting of elements in B. This example suggested the theorem which is the subject of this paper.

Theorem. For any cover U of a reflexive, infinite-dimensional Banach space B, where U consists of bounded convex sets, there is a point x in B such that each neighborhood of x meets infinitely many elements of U. That is, U is not locally finite.

In the proof of the Theorem which is given in section 3, the fact that each closed, convex set which does not contain 0 lies on one side of a hyperplane is used to reduce the problem to a finite-dimensional one. A rather technical consequence of Brouwer’s fixed point theorem, which is proved in section 2, completes the proof.

For convenience, only real Banach spaces will be considered.

2. Lemma 1 and notation. The subject of this section is a lemma which is similar to ([22], Proposition IV LD), but as will be noted, more information is required about a situation which is slightly different from that treated in this result.

First, some notation. Let $(a_i: i = 1, 2, \ldots)$ be a countable collection of linearly independent points of a Banach space. For each integer $s > 0$, let I^s be the set of those elements of the form $\sum a_i x_i$ with $0 \leq a_i \leq 1$ for $i = 1, 2, \ldots, s$. Of course, I^s is isomorphic to an s-dimensional cube.

Let $I' = \emptyset$ and $I^{-1} = \emptyset$. Let $C_i = (x \in I'; a_i = 0)$ and $C_i = (x \in I'; a_i = 1)$. If U is a cover of I', let $U = (U \in \mathcal{U}; U' \cap I' \neq \emptyset)$, but $U' \cap I^{-1} = \emptyset$ where the closure of a subset A of I' is written A'.

(1) A collection \mathcal{V} of subsets of a topological space X is a locally finite refinement of a cover \mathcal{U} of X, if \mathcal{V} is a cover for X, if each $V \in \mathcal{V}$ is contained in some $U \in \mathcal{U}$, and if for each $x \in X$ there is a neighborhood N of x such that N intersects only finitely many elements of \mathcal{V}.
Lemma 1. Let \mathcal{U} be a finite open cover of \mathbb{I} such that (a) if $U \in \mathcal{U}$ and $U \cap C_i \neq \emptyset$, then $U \cap C_i \cap C_{i+1} = \emptyset$, and (b) if $U \in \mathcal{U}$, then $U \cap C_i \cap C_{i+1} = \emptyset$. Then there is a \mathcal{U}-cover for $t = 0, 1, \ldots, s$ such that $\bigcap \{U_t^i : i = 0, 1, \ldots, s \neq 0\} = \emptyset$.

Proof. Since each $U \in \mathcal{U}$ has the property that $U \cap C_{i+1} \neq \emptyset$, then $U_{s+1} = \emptyset$. Define $f(x)$ to be the point in \mathbb{I} whose coordinates are the same as those of x, except for the tth coordinate. The coordinate of $f(x)$ is $x_{s+1} = -\min \{d(x, U_t^i), d(x, U_t^i) \}; (i, j) \neq 0$. It is easily seen that f is a continuous function from \mathbb{I} to \mathbb{I}. Let $f = f_{i=1}^s\{f(x) = d_{s+1}(x, U_t^i)\}$. Suppose that $s = (s_1, s_2, \ldots, s_n)$ is a fixed point of f. (Of course, this notation means $s = \sum_{i=1}^n s_i s_i$.) Then s is a fixed point of each f_i. However, s is a fixed point of f_i if and only if $s \in \mathcal{U}$ or $s = 0$. Suppose $s_i = 0$ for some $1 \leq i < s$. Since $s \in \mathcal{U}$ implies that $s \in \mathcal{U}$ by virtue of (b), it follows that $s_{i+1} = 0$ because s is a fixed point of f_{i+1}. Hence suppose that s has the form $(s_1, s_2, \ldots, s_i, 0, \ldots, 0)$ where $s_i \neq 0$ for $1 \leq i < s$. Since there is an $U \in \mathcal{U}$ such that $s \in \mathcal{U}$, the Lemma follows.

3. Proof of the Theorem. The proof is by contradiction. It will be assumed that \mathcal{U} is a locally finite collection of bounded, convex sets which cover B. One may even assume that each $U \in \mathcal{U}$ is open since (a) it suffices to prove the theorem for separable B (b) for separable B, \mathcal{U} must be countable, and (c) the ith member of \mathcal{U} may be expanded by i^n, the resulting collection is a locally finite cover with open, bounded, convex sets. Using this, a countable number of linearly independent points x_1, x_2, \ldots will be chosen such that the intersections of members of \mathcal{U} with \mathbb{I} form a collection which satisfies the conditions of Lemma 1. This will complete the proof, as the following argument shows. Suppose that the x_i have been chosen in the manner indicated. Let \mathcal{U}^i, $i = 0, 1, \ldots, s$ be defined as in section 2, except we are interested only in that part of each $U \in \mathcal{U}$ which lies in $\bigcup \{U_t^i : s = 1, 2, \ldots \}$. Each \mathcal{U}^i is a finite collection since \mathcal{U} is locally finite. A collection U_0, U_1, \ldots, U_s will be said to be a chain if $U_0 \in \mathcal{U}$ and $\bigcap \{U_t^i : i = 0, 1, \ldots, s \neq 0\} = \emptyset$. Lemma 1 states that there are arbitrarily long chains. Hence, since \mathcal{U} is finite, a standard argument shows that there is an infinite chain U_0, U_1, \ldots, that is, for this collection $\bigcap \{U_t^i : i = 0, 1, \ldots, s \neq 0\} = \emptyset$ for $s = 0, 1, \ldots$. Because each U_t is convex, \mathcal{U}_t is weakly closed (11) p. 2), and hence weakly compact, since U_t is bounded and B is reflexive (11), p. 58). Therefore, there is an $x \in \bigcap \{U_t^i : i = 0, 1, \ldots\}$, and this contradicts the assumption that \mathcal{U} is locally finite.

All that remains is to choose the s_i. Let $\mathcal{U}_i = \{U \in \mathcal{U} : 0 < U < U_i\}$. Pick an $x \in B$ such that $\|x\| = \max \{\text{diameter} (U) : U \in \mathcal{U}_i\}.$ Obviously $\mathcal{U}_i \cap \mathcal{U}_i$ has the required property with respect to P. Suppose that s_1, s_2, \ldots, s_i is chosen such that $(U \cap C_i) : U \in \mathcal{U}_i$ and $U \cap I \neq \emptyset$ is a collection of Lemma 1. Also assume that for each $1 < i \leq t$ there is an infinite dimensional subspace B_i such that $B_0 < B_1 < \ldots < B_t$ and $(\lim_{i \to t} \mathcal{U}_i) \cap (B_0 + \ldots + B_t) = 0$. Here, $B_0 + \ldots + B_t$ means the set of all $x \in B$ such that $x = u + v$, $u \in B_i$, and $v \in I \cap I$. Suppose that B_i is chosen such that $s_i \neq s_i$ for $j < i$, but suppose that $s_i \neq s_i$, $i = 2, 3, \ldots, s$. Let us show how B_{s+1} is chosen. By the definition of \mathcal{U}_i, $(\lim_{i \to t} \mathcal{U}_i) \cap (I^t \cap I) = 0$. Let π be the natural projection of $\mathcal{U} + I^t$ onto B_i. Then $0 \neq \pi(\lim_{i \to t} \mathcal{U}_i \cap (B_0 + \ldots + B_t))$, hence for $U \in \mathcal{U}$ there is a hyper-space h_U in B_i such that $h_U \cap \pi(\mathcal{U} \cap (B_0 + \ldots + B_t)) = 0$. Define B_{s+1} to be $\{h_0 \cup \mathcal{U} : \mathcal{U} \in \mathcal{U}\}$. Since $x \in \mathcal{U}$ is some $U \in \mathcal{U}_i$, $s_i \neq B_i$. Choose s_{i+1} to be an element of B_{s+1} such that $\|s_{i+1}\| = \max \{\text{diameter} (U) : U \in \mathcal{U}_i\}$. $i = 1, 2, \ldots, s_i$. It can now be shown easily that the conditions of Lemma 1 are satisfied, and hence the theorem follows as we have seen.

Remarks. A slightly stronger result has been proved than was claimed. It has been shown that there is a t-dimensional cube $I^t \subset B$ such that infinitely many members of \mathcal{U} meet I^t. I do not know if it may be always chosen to be 0. That is, is there a point in infinitely many members of \mathcal{U}?

Moreover, it is easy to see that the same approach establishes the analogous result for a covering of an arbitrary infinite-dimensional normed linear space by open convex sets, if the family \mathcal{V} of their closures has the following property. Whenever a subfamily of \mathcal{V} has the finite intersection property, then it has a nonempty intersection.

References

Reçu par la Rédaction le 8. 3. 1960