icm

On the Gentzen Theorem

by
H. Rasiowa and R. Sikorski (Warszawa)

Recently Kanger [4] has published a proof of the completeness
theorem for some modification of the Gentzen formalism (1), In consequence
he has given — for that modified formalism -~ the first model proof of
the Gentzen Hauptsatz (1). The essential point of this modification is
that all the applied rules of inference are equivalence rules, i. e. they
always transform premises into equivalent conclusions. The idea of
Kanger’s proof is similar to that of Beth [1].

Another interesting modification of the Gentzen formalism has
recently been given by Oraig [2].

This paper contains a simplification of the proof of Kanger. More
exactly, that simplification is the subject of the second section of our
paper. To outline the main ideas of the proof, we restrict ourselves to finite
sequents only. The general case can be obtained in the analogous way.

The most essential point of Gentzen's idea is that theorems of the
predicate caleulus can be proved in his formalism by passing from shorter
formulas to longer ones only. This aim may be also realized, without
the Gentzen notion of a sequent and the sign = (2). Some modification of
the Gentzen formalism of the kind mentioned is the subject of the first
section of our paper. It is a continuation of Kanger’s idea. With every
formula a of the first order predicate calculus, we associate uniquely it
diagram, i. e. a system of finite sequences of formulas shorter than a;
such that it gives either a proof of a in the formalism under consideration
or a countermodel for that formula. The idea of diagram is, indeed, the
same as that of trees used by Beth.

1. Diagrams of formulas. Let 2 be a formalized language of the
first order predicate calculus. We suppose that:

1° the signs of bounded individual variables arve different from the
signs of free individual variables, the formel being denoted by &, 7%, ...,
the latter by z,v,...;

(1) Cf. Gentzen [3] or Kleene [5].
(3) See e. g. Schiitte [6].
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9° the set of all terms is denumerable, iz,

(1) CERCTRIT

is & sequence (fixed in this paper) containing every term exactly once.

The get of all formulas in 2 is defined in the usual way, i. ¢. as the
smallest set containing all elementary formulas and cloged with respeect
to logical operations. More exactly, every expression of the form

O(Tiys ooey Tap)

where o is an m-argument predicate is an elementary formule or w formula
of order 1. If a is a formuls of order n, then the negation. (— «) iy a formula
of order n-+1. If ¢, § are formulas of orders <n and ab leagt one of them
is of order m, then the disjunction (aw f), the conjunction (a~pg) and
the implication (a—pg) are formulas of order n--1. If a(w) is a formula

of an order u with a free individnal variable x and the sign £ ‘does

not appear in a, then its particularization (U a(E.)) and its generalization
‘ ¢
(ﬂ a(§)) are formulas of order n--1.
&

We say that a formula a is shorter than a formula f prowdud the
order of a is less than the order of ﬁ

In the sequel a, 8, ..., a(x), B (@), .
formulas in £.

We recall the definition of validity of formulas. By a realization of
the language .2 in & non-empty set J we undersfand a mapping Dt which
with every n-argument fuhetor ¢ (n=10,1,2,..) of £ associates an
n-argument function g from the Cartesian product J"= J X ...xJ
(n times) into J, and which with every m-argument pledwate 0
(m=1,2,...) associates an m-argument function gy from the Cartesian
product J' ™ mto the two-element Boolean algebra B. Let a be any formmnla
of £ with » free individual variables &, ..., z,. Interpreting

(a) all predicates ¢ in .2 as the corresponding funetions om;

{b) all functors ¢ in £ as the corresponding functions P

(e) all individnal variables as variables running trough J;

{d) the logical connectives v, A, —, — as the signs of corrosponding
Boolean operations in B;

(e) the quantifiers U ﬂ as the signy of infinite Boolean joins and
meets re,
eL‘JJ, EQ’ specmvely,

. etic. will denote exelusively some

we can consider a(z i y into
sider a(z,, ..., #,) as a function ap(a,, ..., v,) from J* into B.
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We have the identities

(avPlm=amvfm, (— &)= —am,
(2) (@ B)m= am Py, (ﬂa(f) Uaﬂn
(@B

= dm > Pm, (Ua( O Uaﬂn(f);
& EeJ
which may be agsumed. a8 the inductive definition of am.

A formula o is said to be valid in a realization M in a set J # 0
if ap is identically equal to the unit element \/ of B. It is said to beé
valid in a set J # 0 if it is valid in every realization 9t in J. Hence, a is
not valid in the set J = 0 if there exists a realization M in J, such that am
agsumes the zero element A of B at least once as its value. o is said to
be valid if it is valid in any set J # 0.

The letters I" and A (with indices if mecessary) will always denote
finite sequences of formulas, the empty sequence included. If I" is
2 SeqUeNce oy, .., ap and I is a sequence By, .., M. (m>0, n=0),
then I', a, I'" is the sequence oy, ..., am, a.‘, Bty -y fn- The meaning of the
symbol I', a, I, B is similar.

A formula, a is said to be indecomposable if either it is elementa,ry,
or it is the mnegation of an elementary formula.

A sequence I' of formulas is said to be indecomposable if it is formed
exclugively of mdecomposables formulas. In particular, the empty sequence
is indecomposable.

A sequence I" is said to be fundamental if it contains simultaneously
a formula o and its negation (— «).

By 8 scheme we shall understand a pair {I", I'*} or a triple {I', Ire, rmy
(of non-empty sequences of formulas) written usnally in the forms

I r
(3) 5% and oy

respectively. I" is called the conclusion of the scheme, and I'% I are
called its premises. More exactly, if the scheme is of the second form (3),
then I'® and I are called the left and the right premise respectively.
If the scheme is of the first form (3), then I'® is called simultaneously
the left and the right premise.

In the sequel we ghall consider only the followmg schemes where I’
denotes an indecomposable sequence (maybe empty):

D) IF(?FL
Fz —(av f), I’
(—D) PCaT DR, T


Artur


T Tya, I
I’,(%Ja(f)),l“’

60 H. Rasiowa and R. Sikorski
I’v(ahﬁ)v-[” .
© P7a,]v;[‘7lg’f.—ﬁ
I, (—(anﬂ)),T'
=0 T, e, h), "
Iy{a=>$), [
@ I’,(-—a),ﬁ,]”
(1) Iy(—(a—B)), I"
Ia,l"; Iy {—B), r
(—N) I (=(za), I

(E) == ‘where 7 i§ a term
Ty af7), I', (LEJ a(f))
Iy (~(J @), I
(—E) e —
I, (Q —a(), I
r, (ﬂ af 5)) I where 2 is a free individual variable
(U) e " which does not appear in any formula
© " Tya(z), I in the conclusion
I~y a(®)), I
U =) =),

E(LEJ(_a(s)))T*F"

The letters i, j will denote exclusively finite sequencds

{4) by ey fin
or infinite sequences
(3) ‘ By Bay o

of nombers 0 and 1.

We s}flall write j < i if j is an initial (proper or DON-Proper) segmeont
of i, If i is the sequence (4), then # i called the length of i. If i is tho
sequence (4), then i,0 and i,1 denote the sequence Tyy wry by 0 a0l
Gy wees fing 1 respectively. The empty sequence (the case of m == 0 in (1))
is admitted and will be denoted by Q. The length of O is 0 and O < i
for every 1. ) ' ‘ )

. By % diagram of & formula o in £ we shall understand a mapping
which, with some finite sequences i, associates some non-empty finif&
sequences Oy of formulas, and which is defined by induction as foll()Ws;
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1) Qo is the sequence composed only of the formula ew;

2) O and 2,; are defined if and only if £ iz neither fundamental
nor indecomposable. Then £ can be assumed fo be the conclusion of
exactly one of the schemes (D), (—D), (C), (—C), (I)y (D), (—N), (E),
(—E), (U), (—U). Define 2,4 and £, a8 the left and the right premise
of that scheme, respectively. If that scheme is (E), we assume additionally
that the term 7 mentioned in (E) is the first term in the sequence (1)
such that a(r) does not appear in any sequence 2; with j<Ci. If that
scheme is (U), we assume additionally that the variable s mentioned
in (U) is the first free individual variable in the sequence (1) of all terms,
guch that o does not appear in any formula in £y.

Observe that the diagram {2} of o is uniquely determined by .
The diagram is gaid to be finite (infinite) if the set of all sequences i
for which £; is defined is finite (infinite). ]

2 is said to be an end sequence of the diagram of e if £, is either
fundamental or indecomposable, i. e. if Qo and £;; are not defined.

TeworeM 1. (i) If the diagram of o formula o s finite and all end
sequences are fundamental, then o 45 valid.

(i) In the opposite case, o is not valid in an enumeradle set.

Proof of (i). If I" is a non-empty sequence of formulas, let ar be
the disjunction of all formulas in I. Observe that

(6) if I' is a fundamental sequence, then ar s valid.

If
i [,
% T T

is any of the schemes (D), (—D), (C), (~C), (), (=), (—N), (E), (—E),
{U), (—1U), then

Ie Ire;

T =)
is a rule of inference, i. e. the following property holds: if aro is valid
(if ap and omq are valid) in a realization M in a set J #= 0, then 50 is ar.

This remark, together with the definition of the diagram {2 of

a formula o, implies the following property of the diagram: :

(1) if og,, and aq,, are defined and are valid, then ag, is valid.

Hence we infer that if the diagram of o is finite and all end sequences
are fundamental, then, for every @ in the diagram, ag, is valid. In par-
ticular o == aq,, s valid. .
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Proot: of (ii). If the hypothesis of (i) is not swt;isfi.(@, then there
exists a sequence j for whieh one of ‘the following conditions holds (3):

(A) j is finite and Q; is an end sequence which 48 not ]’.undamemal,

(B) j is infinite and, for every finite i <j, 0, is in the diagram of w.

Tiet ¥, be the set of all indecomposable formulas appearing in at least
one £, i <j. Observe that if i<i'<j and an indecomposable formula
appears in 2;, then it appears also in Q. Since no &; (i < j) is fandamental,
for every elementary formula

0(Thyy -or s Thy)

at most one of the formulas (T, .y Ty (—0(Thyy oy i) is.in .
Tet J be the seb of all terms (i. e. the set of all =, 7g, ... in (1)).
Let M be any realization of £ in the set J such that

{x) . Ty oeey Tm) == P(T1y ooy Tma) 5

i. e. such that, for every. m-argument functor ¢, the value of the
corresponding function gy (from J™ into J) at the point (vy, ..., Tw) is
the term @(Ty, ., Tm)-

Every realization Mt of .2 in the set J of all terms with the above-
mentioned property (+) is called canondcal.

‘We shall precede the proof of (ii) by some lemmas op eanonical
realizations.

Let M be any canonical realization of £ in the set J of all texms.
According to the general definition (p. 58) if @ = a(®y, ..., @,) 18 & formula
with free individual variables a, ..., &,, then ay is a function from J™
into B, i. e. for every substitution of some terms 7, ..., 7%, f0r &y, ..., ¥n
respectively the valne of apm at (@, ..,a,) i3 a fixed element of B.
Specially interesting is the case where that substitution is the identity,
ie. 5, = for i=1,..,n The value of ap at that special point of J™
will be denoted by of.

By definition,

(8) if B is obtained from a by the substitution of Thysooes Ty JOT Dpy vy Uy

then the value of om at the point z, = Thyy ooy B Ty, 18 0qual to P

It follows from the definition of F, (see (A) or (B)) that

(C) If o=/, then the set Ty contains ai least one ndecomposable
formule o such that ol = /.

) .Indeed, let F be the set of all formulag appem‘ing in at least one £,
i<j. Let a be the shortest formula in F such that afy = \/, Then the
formula « is indecomposable.

(*) This follows e. g. from the compactness of the Cantor discontinuam.
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Tor suppose that « is decomposable. Then there exists a sequence
i<j (i #£j) such that £; is of the form

Iy a, I
with indecomposable I
If a is of the form

) (Y e@)),

then the formula y of the form {ﬂ(~ﬁ(§))) is also in P, has the same
£

length as o and yh= V.
If a is of the form
(10) (—(n @),

E .
then the formula y of the form (U(—ﬂ(&))) is also in F, has the same
¢
length as a, and yi = V.
If a is of the form
(11) (B—v),

then the formulas (—p) and ¢ are algo in F, their lengths are not greater
than the length of « and either (—pg)fh =V or yh = V.

Therefore we may assume in our consideration that o is neither of
the form (9) nor of the forms (10), (11). ;

Let i’ be the sequence obtained from i by adding eifher0 or 1 at
the end, such that i’ < j.

If o hay one of the forms

(Boy), (—(BYB) Bay)y (B D) (—B>0), (=8 (Qﬂ(f)%

then it immediately follows from the definition of the schemes (D),
(=D), (C), (—C); (=X), (—=N), (U), and from the definition of £y that
Q4 i8 of the form

Iy oy, I

where a, is shorter that « and agy,= V. This contradicts our hypothesis
concerning the length of a. .
It remains only to consider the case, where « is of the form

(o BE) .

In that case j is infinite. Then, by the last of identities (2), there exists
a term v such that the formula

y = B(1)
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gsatisfies the condition
yim=V .

Tt follows from the definition of the diagram (see the additional assumption
to the scheme (E) in 2)) that there exists a finite sequence i' guch. that
i <i"<jand y appears in Q. Since y is shorter than e, this contra-
dicts the hypothesis concerning the length of a. This proves Lemma (C).
To prove (i) let M be the following canonical realization in the
set J of all terms: the funetions gy arve defined by (x); if ¢ is an m-argu-
ment. predicate, then the value om(Tk,..;Ts,) Of om ab the point
(Thyy ooy Tay) €J™ B8/ if the formula (—o(7iy, -y T,,)) Delongs to Iy
and it is A in the opposite case. Then, for every formula a in F,,

ah=A.
This implies, by (C), that
(‘)371 =N,
i, e. that o is not valid in the realization M. This completes the proof

of Theorem 1.
As we have observed in the proof of (i), if

T .
po;ﬁi

is any of the schemes (D), (—D), (C), (—C), (I), (=1, (—N), (E), (—E),
(U), (~U), then

I~

or

T

=

|

Ie Ie;m
T and T

may be treated as the corresponding rules of inferences, denoted re-
spectively by (D*), (—=D*), (C*), (=C¥), (I*), (~I*), (—N¥), (E*), (—E*),
), (U

The following statement results immediately from Theorem 1:

CoRoLLARY 1. The set composed of all formulas which can be obtained
from fundamental sequences by means of the rules of inferences (D*), (—D*),
(C%), (~C%). (I*), (=I*), (—=N*), (B*), (~E*), (U*), (~U*) ooincides with
the set of all valid formulas. This set coincides with the set of formulas o
having o finite diagram whose all end sequences are fundamental. The dia~

gram (?]‘ any such formula o determines a formalized proof of w n the
formalism under consideration.

2. Diagrz‘uns of sequents. We shall agssume here the terminology
and the notation of the previous section.

. ansider a ffo.rmalized langnage 2 of the firgt order predicato ealculus
satisfying conditions 1° and 2° mentioned in section 1. Besides finite
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gequences of formulas in .2 we shall consider sequents, i. e. expressions
of the form

(12) I'= 4

where I' and A are finite sequences of formulas (which may be empty).
The sequence I' will be called the antecedent and the sequence 4 the
succedent of that sequent. Sequents will be denoted by Z, I7 with indices
if necessary.

'We recall the definition of validity of sequents. Let Mt be a realiza-
tion of .2 in a set J 5= 0. Let yp be the conjunction of all formulas in I’
if I' is & non-empty sequence of formulas, and a fixed formula of the
form (au(—a)) in the opposite case. Let 8, be the disjunction of all
formulas in 4 if & is non-empty, and a fixed formula of the form (a (—a))
in the opposite cage. In particular, if I' (4) is composed of only one
formula B, then the conjunction yr (the disjunction &) reduces to this
formula 8. Interpreting the sign = as the Boolean operation of the co-
difference (4) in the two-element Boolean algebra B and yr, d4 as the
function (yr)m and (84)m respectively, we can treat the sequent 2 of the
form (12) as the function Zgp= (yr—8s)m. A sequent & is said to be valid
in the realization M in the set J if Ly is identically equal to the unip
element \/ of B. It is said to be valid in @ set J 5= 0 if it is valid in every
realization Mt in J. X is said to be valid if it is valid in every set J 5 0.

A sequence will be called elementary if it is empty or composed only
of elementary formulas. A sequent will be called elementary if ifis ante-
cedent and succedent are elementary sequences.

A sequent will be called fundamental provided its antecedent and
succedent contain simultaneously a formula a.

In the sequel we shall consider some schemes for sequents, i. e. some
pairs {X, 2} or triples {Z, 2° 2*} of sequents written in the form

Py z
% 3 20
> will be called the conclusion of the scheme and Z° 3 the left and the

right premise, respectively (in the case of %’, X0 will be called simulta-

respectively.

neously the left and the right premise).
We shall examine the following schemes (I, 4 denote here elementary

sequences only):

Iyaup),['=4
Ta,I'=a ; B, =4

I"=A,(av p), 4’

(DS) T=4,0, 8,4

(DA)

(%) For any elements a,b of a Boolean algebra 4, we define the codifference
a-»b as —avb.

Fundamenta Mathematicae, T. XLVIIL B 3
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Iy(anp), ['=4" _I'=d,(anp), A
(CA) W NAEY ©S) =i d; 1'sa i
I'y(a>$), I'=4" F’:>/],(a—;[}), A.’
(IA) 1—1’ .1—”=>AI, o ; I‘I, ‘B, -lwl:’Al (IS) "":I'V/,“&'__;;A;/j"“k]f*
1",(——(1),1"’::»4’_ : ‘ I"=A.(—a), A
(NA) T =7 (NS) Tamd, A
I, (sz a(é)),l”»A' =4, (ng a(E)),A’
E R e Es TR TR N L s |
(EA) Iyofe), I"=4" (ES) I'=d4,a(z), 47, (U a(8))
I’,‘(ﬂ a(f)) y = A
(UA) £ (US)

Iya(z), I, (Q a(f)):»él'

where v appearing in (ES) and (UA) is a term, and # occurring in the
schemes (EA) and (US) is a free individual variable which doecs nof
appear in any formula of the conclusion of the scheme under consideration.

By a diagram of a sequent II we shall mean a mapping which with
some finite sequences i of numbers 0 and 1 associates some sequents IT;,
and which is defined by induction as follows:

1) II, is identical with the sequent II;

2) 1Ly and I, are defined if and ounly if I is neither fundamental
nor elementary. Suppose that the length of i iy even. If the antecedent
of II; is not elementary, then II; can be treated as the conclusion of
exactly one of the schemes for antecedents, i. e. (DA), (CA), (IA), (NA),
(EA), (UA). Then I, and IL; are the left and the right premige of
that scheme respectively. Xf the antecedent of I7; ig elemen{;a;ry, then
Ihy and IT; are equal to IT,. Suppose now that the length of i is odd.
If the succedent of I7; is not elementary, then I7; can be considered as
the conclusion of exactly one scheme for succedents, i. e. (DS), (CS), (IS),
(NS), (ES), (US). Then IT, and IT;, are the left and the right permise
of that scheme respectively. If the succedent of I is elementary, then
1L, and IT;; are equal %o I7;. .

More9ve1', we assume that if the scheme (ES) (the schemo (UA)) has
l.)een applied, then the term r appearing in (ES} in (UA)) is tho first torm
in the sequence (1) of all terms such that a(r) does not appear in the sucee-
dent (in the antecedent) of a sequent 1Ty with, j <. If tho seliomo (EA)
or (US) has been applied, then the variable mentioned in thoe s
(EA) or (US) is the first free individual variah quenco (1
that 2 does not oceurs in any . formula in J7;.

Observe that the diagram {1} of IT is uniquely detormined by 1.

shome
le in sequence (1) such
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IT; is said to be an end sequent of the diagram of I7 if it is either
fundamental or elemenfary.

TacorEM 2. (1) If the diagram of @ sequent IT is finite and all end
sequents are fundamental, then IT is valid.

(ii) In the opposite case, II is mot valid in an enumerable set.

The statement (i) follows immediately from the definition of diagram
and from the facts that every fundamental sequent is valid and that
the validity of premises of the considered schemes in a realization It in
a set J % 0 implies the validity of the conclusion.

The statement (ii) can be established in an analogous way to that
used in the proof of Theorem 1 {ii). In fact, if the hypothesis of (i) is
not satisfied, then there exists a sequence j for which one of the following
conditions holds:

(A7) j is finite and II; is an end sequent which is mot fundamental,

(B’) j is infinite and, for every finite i << j, Il is in the diagram of II.

Let A,, (8,) be the set of all elementary formulas which appear
in all antecedents of IT; (i <j) (in all succedents of I (i<Cj)). Let
B, = A,-+8,. Notice that if i < i’ < j and an elementary formula ocours
in IT;, then it also occurs in I7,. More exactly, if it oceurs in the ante-
cedent (in the succedent of I7;), then it also occurs in the antecedent
(in the succedent) of IIy. ‘

Since no IT; (i <j) is fundamental, we infer that no elementary
formula p(7z,y -y Tr,) APPeEATS simultaneously-in the antecedent and in
the suecedent of the same sequent II; for any finite i < j.

Let M be any canonical realization of 2 in the set J of all terms.
For every sequent £ of the form (12), let us set

Z% = (yr—>04)
where the meaning of of for every formula o of £2 is the same as in the
proof of Theorem 1 (ii).

It follows from the definition of E, (see (A') and (B’)) that the
following statement holds:

(O') For every canonical realization I, if ITy =/, then the set E,
contains at least one elementary formula a such that either @ ¢ A, and dw= A,
or ae8, and ol = V.

Tg prove (ii) let Pt he the following canonical realization of £2: the
functions g are defined by (x); if ¢ is an m-argument predicate, then
the value pm(7a,s .-y T,,) OF om 2t the point (Tx,; .. s &) ed™ is \/ if the
formula @(Ta,, -y Thy) belongs to A,, and is A in the opposite case.
Congequently,

o=\ for every u«in 4,, ah= A for every a in 8.
5%
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Hence, by (C’
ence, by (C'), M= A
i. e. IT is not valid in the realization 9. Thus Theorem 2 iy proved.
- If
z o _E
SR Y P

is any of 'the schemes (DA), (DS), (CA), (CS), (IA), (IS}, (NA), (NS),
(EA), (ES), (UA), {US) then
px] So; 3t

5 and 5

may be treated as the corresponding rules of inferences denoted res-
pectively by :

13)  (DA*), (DS*), (CA¥), (CS¥), (TA¥), (I8*), (NA™), (NS*), (EA*), (ES¥),
~ : (UA"), (US*).

The following statement immediately results from Theorem 2:

CorOLLARY 2. The smallest set containing all fundamental sequents
and closed with respect to the rules of inference (13) coincides with the set
of all valid sequents. That set coincides with the set of sequents IT having
a finite diagram, oll end sequents of which are fundamental. The diagram
of any such sequent IT determines a formalized proof of IT in the formalism
under consideration.

As an immediate consequence of Corollary 1 and Corollary 2 we
obtain the following

CoROLLARY 3. A formula o is derivable in the formalism considered
in Corollary 1 if and only if the sequent I's a, where I' is the empty sequence
of formulas, is derivable in the formalism considered in Corollary 2.

The following rule of inference

F'=>A',a s CL,11”=>A”

PI,PII=>A17AII

is called cut in the Genteen formalism.
From Corollary 2 we immediately obtain

_Tlm G.ENTZEN THEOREM. A sequent IT is derivable in the formalism
considered in Corollary 2 if and only if it is derivable

in the formalism
eviended by adding the cut to the set (13) !

of rules of inference.
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