On a class of rings

by

B. Gleichgewicht (Wroclaw)

I. In the present paper we use the term ring for any additive Abelian group closed with respect to the product operation such that the two-sided distributive law holds (see e.g. [1], [3]). When the associative law for products also holds, we call the ring an associative ring.

A ring R is called a τ-ring if there exists an element $\tau \in R$ such that for every $a, b, c \in R$ the following equalities hold:

(i) $a(bc) = (a(c))b$,

(ii) $\tau(ra) = a$.

The aim of our note is to give a complete representation of τ-rings.

First of all we shall prove that conditions (i) and (ii) are mutually independent.

Let N be the ring of all integers with the usual addition and with trivial multiplication: $ab = 0$ $(a, b \in N)$. It is easy to verify that condition (i) is satisfied for every $a, b, c, \tau \in N$, but N does not satisfy condition (ii).

Further let Q be the ring of all quaternions. Obviously, equality (ii) is satisfied for $\tau = 1$.

Now we shall show that there is no element $\tau \in Q$ satisfying (i) for every $a, b, c \in Q$. Suppose the contrary. Setting $a = b = c = 1$ in (i), we get the equality $\tau = 1$. Consequently, in virtue of (i), we have the equality

$a(bc) = a(cb)$ $(a, b, c \in Q)$.

Hence follows the commutative law $bc = cb$ $(b, c \in Q)$, which is impossible. Thus (i) is not true for Q.

II. The following statements are a direct consequence of the definition of τ-rings.

(a) τ is not a left divisor of zero in R.

In fact, the equality $r\tau = 0$ implies the following one: $r\tau a = 0$, whence, by (ii), $a = 0$.
(b) Every element \(a \in R \) can be represented by the product \(a = ra' \), where \(a' \) is uniquely determined by \(a \).

Putting \(a' = ra \), we have, according to (ii), \(a = ra' \). Further, from the equalities \(a = ra' \), \(a = ra \); it follows that \(r(a'-a) = 0 \), whence, by (ii), \(a' = a \).

(c) \(r \) is a right unit element of \(R \).

Setting \(a = b = r \) in (i) we get the equality \(r(\tau c) = (\tau c)r \). Hence, in virtue of (ii), \(c = cr \) for every \(c \in R \).

We remark that except \(r \) there is no right unit element of \(R \). In fact, if \(a = a' \) for every \(a \in R \), then, according to (ii) and (c),

\[
\tau \xi = \tau \tau \xi = \tau \tau = \tau .
\]

Consequently, we have the following assertion:

(i) \(\tau \) is uniquely determined by conditions (i) and (ii).

(e) For every \(a, b \in R \) the equality

\[
\tau(ab) = ba
\]

holds.

In fact, substituting \(a = r, b = a \) and \(c = b \) in (i) and taking into account (ii), we have the equality

\[
\tau(ab) = \tau(rb)a = ba .
\]

(f) For every \(a, b, c \in R \) the equality

\[
(ab)c = a(bc)
\]

is true.

From (i) we obtain the equality

\[
\tau(ab) = \tau(\tau(b))a .
\]

Consequently,

\[
\tau(\tau(c)) = \tau(\tau(b))a .
\]

Hence, using (e), we obtain our assertion.

The generalization of the above formula is given by the following one:

(g) For every system \(a_1, a_2, \ldots, a_n \in R \) (\(n \geq 3 \)) the equality

\[
\tau(...(a_n a_{n-1}) a_{n-2} \ldots a_1(\tau a_{n-1})\tau a_{n-2} ... \tau a_1)...(\tau a_n) = a
\]

holds.

We shall prove our formula by induction with respect to \(n \). For \(n = 3 \) our formula is identical to (f). Now let us suppose that it holds for every \(n \)-tuple. Consequently, for the \(n \)-tuple \(a_1, a_2, a_3, \ldots, a_{n+1} \) we have the equality

\[
\tau(...(a_n a_{n-1}) a_{n-2} \ldots a_1(\tau a_{n-1})\tau a_{n-2} ... \tau a_1)...(\tau a_n) = a
\]

Substituting in (f) \(a = a_1, b = a_2 \) and

\[
\tau(...(a_n a_{n-1})\tau a_{n-2} ... \tau a_1)...(\tau a_n) = a
\]

we obtain our formula for every \((n+1)\)-tuple \(a_1, a_2, \ldots, a_{n+1} \in R \). Formula (g) is thus proved.

From (e) and (g) the following statement follows:

(h) For every system \(a_1, a_2, \ldots, a_n \in R \) (\(n \geq 3 \)) we have the equality

\[
\tau(...(a_n a_{n-1}) a_{n-2} \ldots a_1(\tau a_{n-1})\tau a_{n-2} ... \tau a_1)...(\tau a_n) = a_1
\]

III. Let us consider an associative ring \(R_o \) with the unit element.

Further, let us suppose that \(R_o \) is a ring with involution, i.e., for every \(a \in R_o \) an element \(a^* \), called the adjoint of \(a \), is defined such that the conditions

\[
(a + b)^* = a^* + b^*, \quad (a^*)^* = a, \quad (a^*)^* = b^* \quad a^*
\]

are satisfied, where \(\cdot \) denotes the product operation in \(R_o \).

An element \(a \in R_o \) is called self-adjoint or Hermitian if \(a = a^* \).

Obviously, the unit element of \(R_o \) is Hermitian (see [4], chap. II and V).

In the sequel we shall denote by \(\mathcal{K}(R_o) \) the set \(R_o \) with the usual addition and multiplication defined as follows:

\[
ab = b^* \cdot a .
\]

If \(R_o \) is the ring of real square matrices of fixed order, then \(\mathcal{K}(R_o) \) coincides with the ring of

\[
\tau \text{ r and o (see [2]), who has applied it widely to problems in astronomy.}
\]

In general, we shall call \(\mathcal{K}(R_o) \) the crassovian ring generated by \(R_o \).

THEOREM 1. If \(R_o \) is an associative ring with involution and having the unit element, then \(\mathcal{K}(R_o) \) is a \(\tau \)-ring.

Proof. To prove our theorem, it suffices to show that in \(\mathcal{K}(R_o) \) the two-sided distributive law and equalities (i) and (ii) are true.

Using (1), we have the equalities

\[
a(b + c) = (b + c)^* = a^* = c^* \cdot a = ab + ac ,
\]

\[
(b + c)^* a = a^* \cdot (b + c) = a^* \cdot b + a^* \cdot c = ba + ca .
\]
Moreover, denoting by e the unit element of R_e, we have the equalities

\[e(a) = (ea)^* = e = (ea)^* = (e^* + e)^* = a, \]
\[a(bc) = a(e^* + b) = (e^* + b)^* = a = (b^* + e)^* = b^* + (e^* + e)^* = (b^* + e)^* = (b + e)^* = (b + e) = [(c + e) + a]b = (a + e)c, \]
\[= [(c + e) + a]b = (a + e)c. \]

Consequently, equalities (i) and (ii) are satisfied for $\tau = e$. The theorem is thus proved.

Now we shall give the complete representation of τ-rings. Namely, we shall prove the following theorem:

THEOREM 3. Every τ-ring is equal to the cracovian ring generated by an associative ring with involution and having the unit element.

Proof. Let R be a τ-ring and let R_e denote the set R with the usual addition and $*$-multiplication defined by the formula

\[a \ast b = b(\tau a). \]

Now we shall prove that R_e is an associative ring having the unit element with involution

\[a^* = \tau a. \]

Using (2), we obtain the distributive laws:

\[a \ast (b + c) = (b + c) \ast (\tau a) = b \ast (\tau a) + c \ast (\tau a) = a \ast b + a \ast c, \]
\[(b + c) \ast a = a(\tau (b + c)) = a(\tau b + a(\tau c)) = b + a + c \ast a. \]

Further, according to (c), we have the equality

\[(a \ast b) \ast c = (b(\tau a)) \ast c = c(\tau (b(\tau a))) = c(\tau a b). \]

Hence, using (i), we obtain the associative law

\[(a \ast b) \ast c = c(\tau b)(\tau a) = (b \ast c)(\tau a) = a \ast (b \ast c). \]

The element τ is the unit element of R_e. In fact, by (ii) and (c),

\[a \ast \tau = \tau (\tau a) = a, \quad \tau \ast a = a(\tau a) = a. \]

From (3) and (e) follow the equalities

\[(a + b)^* = \tau (a + b) = \tau a + \tau b = a^* + b^*, \]
\[(a^*)^* = \tau (\tau a) = a, \]
\[(a + b)^* = \tau (a + b) = \tau (b(\tau a)) = (\tau a)b = b^* \ast a^*. \]