Sur la compactification des espaces métriques

par

R. Engelking (Warszawa)

Dans leur travail [1], J. de Groot et R. H. McDowell ont introduit la notion de \((\Phi_n, r) \)-compactification pour un espace métrique \(X \), \((\Phi_n, r) \) étant une famille de transformations de \(X \) dans \(X \). On appelle ainsi un espace métrique compactifié \(\hat{X} \), dont \(X \) est un sous-ensemble dense, s'il existe une famille \((\Phi_n, r) \) de prolongements des \(\Phi_n \) sur \(X \) à valeurs dans \(\hat{X} \). Ils ont aussi prouvé que pour chaque espace \(X \) métrique séparable et chaque famille dénombrable \((\Phi_n) \) il existe une \((\Phi_n, \cdot) \)-compactification ; plus encore, si \(\dim X < \omega \), on peut supposer \(\dim \hat{X} < \omega \). On a posé dans [1] le problème de trouver une \((\Phi_n, \cdot) \)-compactification \(n \)-dimensionnelle pour un espace \(X \) de dimension \(n \) et une famille \((\Phi_n) \) dénombrable. Le présent travail donne une solution de ce problème.

Nous nous proposons de prouver le théorème suivant :

\textbf{Théorème.} \(X \) étant un espace métrique séparable de dimension \(\leq n \) et \((\Phi_n) \) une famille de transformations de \(X \) dans \(X \), il existe une \((\Phi_n, \cdot) \)-compactification \(\hat{X} \) de \(X \) telle que \(\dim \hat{X} \leq n \).

\textbf{Démonstration.} On peut supposer que les fonctions superposées \(\Phi_n \) et l'ensemble \(I \) de \(X \) appartiennent aussi à \((\Phi_n) \). Admettons dans \(X \) une métrique \(\rho \) totalement bornée telle que les fonctions \(\Phi_n \) soient uniformément continues dans \(\rho \) (cf. [1]).

Pour chaque \(m = 1, 2, \ldots \) nous définissons par induction un recouvrement \((\cdot) \) de \(X \) par:

- si \(m = 1 \), la famille \((\cdot) \) est vide ou contient une seule partie ouverte de \(X \);
- si \(m > 1 \), la famille \((\cdot) \) est définie de manière récursive par:

(a) \(\delta(U^n_m) \leq 1/m \) (\(i = 1, \ldots, k_m \)),
(b)\(\operatorname{rang} U^n_m \leq n \),
(c) pour chaque \(1 < m \) et \(s \leq k_m \) il existe un \(r \leq k_{m-1} \) tel que \(\Phi(U^n_m) \subseteq U^n_{m-1} \)

et une famille de fonctions \(f^n_1, \ldots, f^n_{k_m} \) satisfaisant aux conditions \(f^n_i : X \rightarrow [0, 1] \).

(1) Le mot "recouvrement" signifie toujours "recouvrement fini et ouvert". Un recouvrement \(\mathcal{U} \) est contenu dans \(\mathcal{V} \) (ou \(\mathcal{V} \) contient \(\mathcal{U} \)) si pour chaque \(U \in \mathcal{U} \) il existe un \(U \in \mathcal{V} \) tel que \(U \subseteq U \).
L'ensemble des systèmes $\langle n, i, e, \epsilon \rangle$ étant dénombrable pour
$n = 1, 2, \ldots, i = 1, 2, \ldots, \epsilon = 1, 2, \ldots, k_i$ désignons par (n, i, e) le numéro
du système $\langle n, i, e \rangle$. Posons:

$$
\bar{g}(x, y) = \sum_{\alpha = i}^{\infty} 1 \left(f_{\alpha}(x), f_{\alpha}(y) \right) + \sum_{\alpha = i-1}^{\infty} 1 \left(f_{\alpha}(x) - f_{\alpha}(y) \right)
$$

pour $x, y \in X$.

On voit sans peine que \bar{g} est une métrique dans X, équivalente à ϵ. Soit $\delta(\mathcal{U})$ la \bar{g}-diamètre du recouvrement \mathcal{U}; nous démontrons que
lim $\delta(\mathcal{U}) = 0$ ce qui fournira en même temps la démonstration du fait que X est totalement borné dans \bar{g}.

En effet, étant donné un $\varepsilon > 0$ prenons un M tel que $1/2^M < \varepsilon/4$.

En vertu de la continuité uniforme des fonctions f_{α} il existe un δ tel que $g(x, y) < \delta$ implique $g(f_{\alpha}(x), f_{\alpha}(y)) < \varepsilon/4M$ pour $n \leq M$, soit $1/N < \delta$.

Il existe évidemment N_i sup $(\max n - 1)$ tels que

$$
\sum_{n = i}^{N_i} \frac{1}{2^n} \leq \frac{\varepsilon}{4M}
$$

Prenons maintenant $r \geq \max(M, N, N_i)$ et $x, y \in U_r$, par un simple calcul on obtient $\bar{g}(x, y) \leq \varepsilon$ ce qu'il fallait démontrer.

Supposons maintenant (X, \bar{g}) plongé, par le procédé bien connu,
de façon isométrique dans un espace \tilde{X} métrique complet (cf. [3], § 29 VII). Désignons aussi par \tilde{g} la métrique dans \tilde{X}. X étant totalement borné, \tilde{X} est un espace compact. Les fonctions f_{α}, α étant uniformément continues dans \mathcal{U}, peuvent être prolongées sur X (Vidette I de X est une des fonctions ϕ_{α}), désignons leurs prolongements par $\bar{g}_\alpha (x, y)$.

Désignons maintenant:

$$
\bar{g}_\alpha = \left(f_{\alpha} \right)^{-1}((0, 1])
$$

puisqu'on a en vertu de (f_{α}):

$$
\sum_{\alpha = i}^{\infty} \left(f_{\alpha}(x) \right) \geq 1,
$$

et $\bar{g}_\alpha = \{ \bar{g}_\alpha, \ldots, \bar{g}_k \}$ est un recouvrement de \tilde{X}.

On a aussi $\hat{U}_r \subset \tilde{U}_r$ et, par (e), $\hat{U}_r - \tilde{U}_r$ (fermeture dans \tilde{X}), d'où $\lim \delta(\mathcal{U}) = 0$.

322 R. Engeling

Compactification des espaces métriques

\begin{align*}
& (f) \sum_{\alpha = i}^{\infty} f_{\alpha}(x) \geq 1 \\
& (g) \text{ si } x, y \in U_{\alpha} \text{ pour un } r \leq k_m \text{ on a pour chaque } i < m:
\end{align*}

$$
|f_{\alpha}(x) - f_{\alpha}(y)| < \frac{1}{2^{m-\varepsilon - 1}} \text{ où } s = 1, \ldots, k_i.
$$
Si $\mathfrak{U} = \bigcap_{n=1}^N \mathfrak{U}_n \neq \emptyset$, il existe $x \in \mathfrak{U} \cap \mathfrak{X}$, car \mathfrak{X} est dense et \mathfrak{U} est ouvert dans \mathfrak{X}, ou voit donc que rang $(\mathfrak{X}) = \text{rang} (\mathfrak{U}_n) \leq n$, ce qui achève la démonstration de notre théorème en vertu de [3], § 40, IV.

Remarques. 1. Si la famille de fonctions (ϕ_n) est vide, on obtient du théorème de ce travail la théorème de Hurewicz sur la compactification n-dimensionnelle d'un espace métrique séparable de dimension n. La démonstration donnée ici semble plus simple que celle de Hurewicz dans [2]; elle est indépendante du théorème de plongement dans I^{2n-1} (cf. [3], § 40, VII).

2. Si les fonctions (ϕ_n) prouvent leurs valeurs dans les espaces métriques séparables \mathfrak{X}_n le théorème reste vrai, la démonstration étant légèrement modifiée (y. e. le premier terme de la définition de \mathfrak{U}) aura la forme

$$\sum_{n=1}^{\infty} \frac{1}{2^n} (\phi_n(x), \phi_n(y)),$$

(ϕ_n) étant une métrique bornée dans \mathfrak{X}_n. Les fonctions prolongées (ϕ_n) prouvent alors leurs valeurs dans les compactifications \mathfrak{X}_n de \mathfrak{X}.

3. M. C. Kuratowski a attiré mon attention sur le problème intéressant d'établir la catégorie de l'ensemble des homéomorphismes f de \mathfrak{X} dans I^{2n+1}, telles que $f(x)$ soit une (ϕ_n)-compactification de \mathfrak{X}, dans l'espace (I^{2n+1}, \mathfrak{X}).

Travaux cités

Reçu par la Rédaction le 30.5.1959

On the determining of the form of congruences in abstract algebras with equationally definable constant elements

by

J. Słomiński (Toruń)

As we know all the homomorphic images of any abstract algebra A are determined (up to isomorphisms) by the congruences in A. Therefore the knowledge of the form of all congruences in A is very important. For some abstract algebras the form of congruences is already determined, e.g. in any group, ring and boolean algebra. Let $G = \langle G, \cdot, e, e \rangle$, $R = \langle R, +, -, 0 \rangle$ and $B = \langle B, \cup, \cap, e \rangle$ be any group, ring and boolean algebra. Every congruence \sim in these algebras has one of the following forms:

1° for all x and y in G, $x \sim y$ if and only if $x \cdot y^{-1} \in N$, where N is a normal subgroup of G,

2° for all x and y in R, $x \sim y$ if and only if $x + (-y) \in I$, where I is an ideal of R,

3° for all x and y in B, $x \sim y$ if and only if $x \cap y' \cup x' \cap y \in J$, where J is a boolean-ideal of B.

The sets N, I and J are whole abstraction classes of congruence \sim in G, R and B determined respectively by the unit $e = x \cdot x^{-1} = y \cdot y^{-1}$ of G, the zero element $0 = x + (-x) = y + (-y)$ in R and by the boolean zero $0^* = x \cap x' \cup x' \cap y \cap y' \cup y' \cap y \cap y' \cap y$ in B. Hence it follows that every congruence \sim in G, R and B has one of the following properties:

1° for all x, y in G, $x \sim y$ if and only if $x \cdot y^{-1} \in e$,

2° for all x, y in R, $x \sim y$ if and only if $x + (-y) \sim 0$,

3° for all x, y in B, $x \sim y$ if and only if $x \cap y' \cup x' \cap y \sim 0^*$.

The properties 1°, 2° and 3° are very similar. We see that the ways of the determining of the form of congruences in G, R and B are analogical. J. Łoś has set the following question: Can be determined the form of congruences in every equationally definable class \mathfrak{A}_e of algebras with equationally definable constant elements in an analogous way as in groups? The solution of this problem is negativ (see (5.5)).