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On the extensibility of mappings, their local properties
and some of their connections with the dimension theory

by
J. Jaron (£6dz)

Introduction

The relations ¢ and 7, defined by Kuratowski (see [10] (), p. 252)
are in a certain sense a generalization of those stated in an important
theorem of Tietze ([9], p. 117) and have been applied to the characteriza-
tion of the important classes of spaces distinguished by Borsuk, such
as the absolute retracts (see [2], p. 159), the absolute neighbourhoods
retracts (see [3], p. 222) and many others. These relations also possess
a number of interesting properties (compare for instance [10] and [11]).

Special attention should be paid to the connection between the
dimension of the space of arguments and the extension of the continuous
mappings into an x-dimensional sphere. The above connection as well
as a number of other interesting properties of the relation z have been
discussed in chapter VIL of book [10] by Kuratowski, and also in his
paper [11] specially devoted to these problems.

In this paper (*) further properties of the relation ¢ (see section 2) —
in particular its local properties — are investigated by means of a re-
lation ¢ (see sections 1 and 3) specially defined for this purpose; some
close and natural analogies with the theory of dimension are also discussed
(see section 4). These congiderations show the role of the extensibility
of continuous mappings not only for the dimension of sets buf also for
some derivative notions, for instance: the disconnection of a space, the

(*) The numbers in brackets refer to the bibliography at the end of the paper.

() This publication is a part of the dissertation presented at the TUniversity in
L6d%z as a Doctor’s thesis in Mathematics. It has been prepared under the direction
of Professor K. Kuratowski, to whom the author wishes to express his indebtedness
for suggesting the problem which led to this work and the friendly care shown during
its realization. .

At the same time the author expresses his thanks to Professor B. Knaster for
the numerous valuable remarks which he kindly made during the preparation of this
paper for printing.
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coefficient of Urysohn, the dimension of connectivity, the manifold of
Cantor, n-dimensionally connected spaces. Some possibilities of a clas-
sification of spaces, analogous to the dimensional one, are to be expected
(see section 5.6).
This is in some connexion with the notions of the normal families
of Hurewicz [6] and of the uni-ordered spaces of G. T. Whyburn [18].
The following considerations may be regarded as a supplement to
paper [1] by P. 8. Aleksandrov, in which various approaches to the
notion and the theory of dimension have been discussed.

‘We shall use the following notation: Let {x,y,2,...} mean a set consisting of the
elements , ¥, 2, -.; in particular <a, b = {{a}, {a, b}} means an ordered pair. (a, b}
means an open interval, whose ends are a and b, [«, b] means the corresponding closed
interval; in particular g = [0, 1. By 6™ we shall mean the n-dimensional Euclidean
space, by & — the set of real numbers, by &V — the set of positive integers.

By &, we shall denote the n-dimensional sphere in the (n-1)-dimensional
Euclidean space: &, = J [# ¢5"™|z] = 11. By @, we denote an n-dimensional disk

k]

in the n-dimensional Euclidean space: Q, = [, [x ¢ B {z| < 1], Qe(x) means a spherical
x

neighbourhood of the point z with the radius ¢ > 0 in the metric space X: Q:(z)
=[Lly <X ol y) < el
v

By E we shall denote the complement of the relation B: 2Ry<=> ~(zRy), by
RcS§ woe mean the subsumption of the relation R relative to the relation §: R cS
<=>(xRy=-28y) and by B- § the product of relations B and §:2(B- 8 Yy<=>[(xRy)- (#Sy)].

By fsg/-‘f we shall denote that f is a continuous mapping of a space & into
a space Y. Two mappings f and g will be equal, f =g, if they assign to each value
of the argument the same value f= g<=-(j(x) = g(x)). By f|F we shall denote a partial
mapping (restriction of f to F), namely f ¢ ‘;2/5 restricted to F' ¢ &. The mapping f* is
said to be an extension of the mapping je Y to the space > A4:

fecf*,

it f* e Y% and 4|4 = f. By YZ| F we shall denote the set of the mappings f ¢ Y7 which
can be extended to the whole space &:

YEF = E (e y”)-?g; ferey®l.

&, = &, will denote that the sets X; and X, are homeomorphic, and f,= f, that
top

the mappings f,,fi € 2% are homotopic.

Closed sets will be denoted by F and open sets by &, with an index, if necessary;
the open neighbourhoods for the point # by Us and those for the set F by Up. The
boundary of the set A relative to the set ¢ will be denoted by Fr;4. The diameter
of the set A will be denoted by d4. .

We introduce the following abbreviations: AR will mean the absolute retrac
and ANR the absolute neighbourhood retract.

We restrict our considerations to the metric separable spaces, though the proofs
of many of the properties are also valid for more general spaces. Only some additional
hypotheses, for instance compactness or comnectivity, will be named explicitely.
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1. Definitions of the fundamental relations and connections
between them

In [10] on p. 252 Kuratowski has introduced the relations v and
7, by means of the following definitions:

1.1. &7 Y means that each continuous mapping f of an arbitrary
closed subset F' of the space & into the space Y can be extended to

the whole space &:
sy L[] [[ Sicrey®

FC&¥ jey? -

ErY=[[ (Y= y57).
Fes

or briefly:

1.2. & v, Y means that each continuous mapping § of an arbitrary
closed subset F' of the space & into the space ¥ can be extended to
some open neighbourhood Ur of the set ¥ in the space &:

gny =[] [| X Dicrey™
FCg 1eYTUpcq 1+

As we know (see [10], p. 260, th. 5), Y ¢ AR is equivalent to ¥z Y
for each & and Y ¢ ANR to &<, Y also for each &.

We introduce a new relation ¢ by means of the following definition:

1.3. The relation ¢, at the point z ¢ &, namely

e Y,

means that there exists an arbitrarily small neighbourhood T, of the
point # in the space & whose boundary FrU;r ¥:

Fo. YL[] 3 (dU.<e FrTzY).

>0 UsCE
The relation ¢, namely

(1.3.1)

Eol,
means that at each point z of the space & the relation & ¢, Y takes place:

oY 2[[]] D@t.<eFrt.r Y.

>0 ze& UzCHE

(1.3.2)

The fundamental convections between the relations defined above
are formulated in the following:

1.4. TarOREM. The relation v implies the relations T, and ¢, but the
converse subsumpiion s, in general, not true:

(14.1) 5 (5 9),
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moreover the relations T, and o do mot imply each other:
(1.4.2)

The proof of the subsumption (1.4.1) has been reduced to the proof
of the two relations: v Cz, and 7 C ¢, which follow immediately from
the definition.

Inequality * # 7,- @ follows from J 7 {0, 1}, Tt {0,1} and T {0, 1}.

To prove (1.4.2) we quote J27,{0,1} and J*% {0, 1} which means
that ~ (7, C ). Similarly from I 7, {0, ..., §, 3,1} and T {0,..., }, 1,1}
it follows that ~ (pC ).

1.5. Some auxiliary relation between the spaces & and ¥/, satis-
fying the condition
(1.5.1)

~(tpC @) ~(pCry).

ExIe Y
will be useful in the following considerations.

Let us note that
(1.5.2) EFxIrY=>F Y,
for & x{0} is a closed subset of the Cartesian product &% x J; therefore
Ex{0}t Y by (2.1.2); since Ex V)&, we have &7 Y according
to (2.1.1).

The converse implication is, in general, not true:

(1.5.3) ~(ErY=>ExIY),

which is proved by the fact that {#}rd, according to (4.1.1) and
{x} x I T &, according to (4.1.2).

»

2. The arithmetical properties of the relation z and the extension
of mappings

9.1. THEOREM of the arithmetical properties of the relation t:

21l [(Ez¥) (Yzgd) (EYl=F Y
(212) FCErY=>F: ¥,
13) |[@r (= ké’ 7)=-%r Y,
°014) [T (%= éf*m Y|=%y,
(2138)  [dreFD) (v (€= ZAk wY)|> £ Y,
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(@16) [(GCEY) @m=GrY,
@1 |G (E=Dany)-2-y,
teT
218) [(AdeFo-Go)(4,Br¥Y) (A+BrY)]=4+B1 Y,
219 [#F,Br¥Y) F+BnY)]=F+Br¥Y,
(2110) (Y #0)- (E+- =+ Y.

From these properties the following are known: (2.1.1) (see [2],
p. 170), (2.1.2) (see [10], p. 254), (2.1.3) (see [11], p. 187), (2.1.4) (see
[11], p- 187); with a somewhat stronger hypothesis Y ¢ AVE (see [14],
., 680).
P The proofs of the properties (2.1.5)-(2.1.9) are immediate.
To prove (2.1.10) let us be noted that {z}7 Y according to [10],
p. 253 and apply (2.1.9).

2.2. THEOREM of the arithmetic properties of the auxiliary relation
defined in 1.5:

221) [(EF=F) Ys Y9 (ExTt Y= xT Y*,
2.2.2

(2.2.2) (FCE)- (ExTIY)]=FxTI=Y,
2238)  |[@xIrY)(F= D F)|=FxT Y,
k=1
@24 |ExT Y- (F= 3 B) ExTnY)]=ExT Y,
k=1
(225)  [reF) (AexTr Y-(£= 3 4 (ExTz Y)]= ExT Y,
Ee==1
(2.2.6-1) [(GCE)- (GxTtY) (ExTY]=axT Y,
(2.2.6-2) [(GC &) (GxInt Tz Y) (ExTrY)=>GxIntIr Y,
@21 [@xIry)-(E= D &) (FxTn, Y= ExIY,
teT
(22.8) (4 eF, Go)- (AxTrY)- (BxTt Y)-(4+B)xT Y
=(A+B)xTIt Y,
229) [(FxIcY)-(BxTzY) (F+B) xsr.,?/p] =>F+ByxIt Y,
(2.210) [(FEXTTY # 0) (Yeonnoctes € ANE)] = (E + {2}) x T 7 y.

The properties (2.2.1)-(2.2.9) are consequences of the corresponding
properties of the relation r and of the topelogical properties of the
Cartesian product.
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Proof of (2.2.10). Since ¥ ¢ ANR, it is connected in each dimension
(see [10], p. 270), in particular in dithension 0; hence it is local arcwise
connected and as connected, it is also arcwise connected. Thus (see [11],
p. 187) It Y. According to (2.2.1), {#}xTJ 7 Y, and thus one can
apply (2.1.10).

We proceed to list some lemmas which are generalization of some
known properties (ef. [8], p. 84, 94) of the n-dimensional spheres.

2.3. Levwma, If K1, Y and E—F 1 Y, then each continuous mapping
of the set ¥ into the space I is extensible to the whole space X:

[(FCEvwY) (F—Fr Y=Y = YIF.

The proof is analogous to that in [8]. For an arbitrary fe 3¥
there exist by hypothesis a Ur and 7, such that fCf e Y% Let
G =F [eolx,F)< olw, ¥— Up)]; thus FCGFCGFC Up. By hypothesis

x

there exists f, such that f,|GF(F—F)Che Y57
‘We define
file) for ze@,

7e) = { folw) for weF-F.

Since £l G(E—TF) = 1,|G(E~TF), f* is defined on the union of two
open sets G and &—F, it is continuous on &.

2.4. Lisnva. It a space & is compact, E v Y and a mapping f, e YT
non-extensible to the whole space & is defined on FyC &, then there exisis
a subset I'* of the space & such that the mapping f, is not eatensible to the
wnion Fy+F* but it is extensible to the union Fy+F, where F is an arbitrary
closed proper subset of the set T*:

[(Fo C Foompact 70 Y)- (foe YT — Y| F)] =
i,;g;_ (fo z yFHF‘]Fo'H foe yFo+FIF0) .

Cym
F;éF

The proof proceeds exactly as in the case of Y = Sn (see [8]).

2.5. COROLLARY. If a space ¥ is compact and T Y but F v ¥,
then there ewist two closed subsets I, and F, of the space & such that F, CF,
and a mapping fe gyF * which 4s not extensible to F, but it is extensible fo
every closed proper subset F of the set I, containing Fy:

gcompact(?‘fv)y»ﬁ' FZI;&‘[(Fl CFZ)' ,]2(7‘5 ypl—' fszlFl .
[ @ crsieyTim)).

ngrz
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TFor the proof it is enough to note that

FTYe> D Dt YT-yIm,
FiCE
and then to apply 2.4 putting Fy =7, and Fy-F*=F,.

2.6. Levna. If &, Y, then the continuous mappings f, and f, of
the space % into the space Y such that F {fyz) # flz)]x Tz Y, are

&

homotopie:
(Fv0 Y- (for Fre Y5 (g o) # A@]x Tt Y =fo=fr .

The proof is analogous to that of a similar property of »-dimensional
spheres: Y = & (cf. [8]); it is based on (2.2.6-2) and 2.3.
2.7, LevmMa, If ExI1, Y and the space & is the union of two
closed sets Fy and Fy such that if fr e YT+ for k=1, 2, then [, [fi{z) # fol)] X
x

x Tt Y, and thus there exists an extension of the mapping f, to the whole
space & which is homotopic with the mapping f, on the set Fy:

(FxTw Y- (& =Fu+Fo)- (fue Y™)-(Ehi@) # Ao x
x Tt Y= D LHhCH (FF=h)].

rey<
The proof is analogous to that of a similar property of the =n-di-
mensional spheres: Y = & (cf. [8], p. 88); it is based on 2.6, on the
domain-heredity of the relation 7, relative to the closed subsets ([10],
p. 254) and on the theorem of Borsuk ([4], D. 218); in the following,
slightly generalized, form:

[(ExTe ) FCD- (i foe YD) (2 D (hClt e Y]~
fi
> D HRCHEeYTF=i);
b3

the proof thereof is an immediate generalization of a well-known. proof
given by Dowker for Y e ANR (cf. [8], p. 86, or [10], p. 278).

2.8. COROLLARY. If X xT 1, Y and the space & iz the union of two
closed sets ¥, and F, such that (FLF,xJ)xJ7 9/, then if the comtinuous
mappings f and g of the space & into the space 9 are homotopic on each
of the sets Fy, then they are homotopic on the whole space &:

[(ExTr Y)- (F =F,+ ) [(F:F) xT1x Tt Y} -
(g€ YD) (fIFL= glF)- (fIF= gF)] =7~ g.

H
Fundamenta Mathematicae, T. XLVIIL 20
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The proof is analogous to that of a similar property of the n-di-
mensional spheres: Y = &, (cf. [8]); it is based on (2.2.6-1) and 2.7,

2.9, LEMMA. If a space & is a union of an arbitrary family {Giher of
such open sets that Fr@ex T« Y and if Y is an ANR, then the continuous
mapping f of o closed subset F of the space & which is extensible to the
union of the set B and the closure G of each set of the family (Gl is
extensible to the whole space &:
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[[Fcg=Y6) FraxTc Y ANR).
ieT _
ey X1che Y- Xicre
i

The proof, exactly as for the analogous property of the »-dimensional
spheres Y = &» (see [8]), is based on (2.2.3), (2.2.6-1) and 2.7

2.10. An immediate corollary, which somewhat generalizes lemma 2.9,
is the following:

[(Fcg = Y6) @6:xgr Y < ANR)- (YF = Y™+ %1)| =Y = ¥4 F.

fe
3. The arithmetical properties of the relation ¢
3.1. TeeoREM. The relation & ¢ Y is a topological invariant:
(EmsId) Ygl) Ee YT Y.
Proof. First we prove that
(E=%) (EeYI=F 0 ¥.

Let % be a homeomorphism h(¥)= &*. We choose an arbitrary
point #* « ¥* and an arbitrary &* > 0. Let = = h7'(z*) and e = g(m, F—
—1HQup(@¥))). By the hypothesis & g, ¥ there exists in & such an
U, that AU, <& and FrU,v Y.

h(U;) is an open neighbourhood of the point «* in &* and A(U)
C Quplz*); thus dh(U,) < e*. Since kb is a homeomorphism of & onto
F*, we have h(¥rU,)= Fri(U,). Hence by FrU,r ¥ and (2.1.1) it
follows that Fri(U.) = Y or F* e, VY.

It remains to prove the implication

(Y=Y Eo Y=L Y,
which results immediately from (1.3.1) and (2.1.1).
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3.2. TEEOREM. The relation ¢ is domain-hereditary for the closed
subsets

(3.2.1) FCEeY=Fog¥y
and also for the open subsets
(3.2.2) GCEoY=>Go Y.

Proof of (3.2.1). By hypothesis for an arbitrary z<F and an
arbitrary &> 0 there exists in & such an U, that d U, < ¢ and FrU,7 ¥/.
The set U = FU, is an open neighbourhood of the point z relative to
the set F, where dU < e. Its boundary relative to F: FryU, is 2 closed
subset of FrU,; thus, by (2.1.2), Frp Ut ¥, which proves that F ¢, Y.

Proof of (3.2.2). Let z ¢ G. Inequality 0 < ¢ < g(v, ¥— @) implies
by hypothesis that there exists in X an U, such that dU,< & and
FrU.v Y. Hence U, C @, and thus U, is an open neighbourhood of the
point « relative to the set &, where Frg U, = Fr U, ; therefore FraU,t Y
and G(Pa: ?/ '

3.3. TeROREM. The relation ¢ is finite domain-additive for the closed sets

Fred. k=1,2, ...,n):»ZquaZ/.
k=1

We shall present the proof, which in general is an inductive one,
for the case % = 2, using the following decomposition in disjoint terms:
B4 Fy = F By + (Fy— Fy) + (Fy—Fy).

If # eF,F, and &> 0, then there exists by hypothesis such an open
neighbourhood U, (k = 1,2) of the point = in Fy that d U, < ¢/2 and
FrUigt Y. The set U;+4U, is an open neighbourhood of the point
in Fy+F,, where d(U;+U,) < ¢ and Fr(U;+U,) CF¥r U, +FrU,; thus,
by (2.1.3) and (2.1.2), Fr(U,+U,) v Y, which proves that F, +F,qp. ¥.

I zeF,—F,, then by hypothesis there exists a neighbonrhood U
of the point z relative to ¥, such that AU < g(x,F,) and FrU + ¥.
Since UF, =10, U is an open mneighbourhood of the point w relative
to F,+F,, which means that F;+Fop, Y.

For z e F,—F; the proof is exactly as above.

3.4. THEOREM. The relation ¢ is domain-additive for open sets:
(Gio Y~teT)=>2tha Y.
teT
Proof. For an arbitrary s, eZG, there exists a certain @ such

that =z, € Gy. By hypothesis there exusts in G, a U, such that dU,
< plzyy D Gi—Gy); thus U, C @, and Fr Uyt Y. Since G, is an open
teT

20*
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set, Ug, a8 an open set relative to Gy is an open neighbourhood of the

point z, in 3 G and also Fre U= G,Us—Us, =FrUs,, and thus
teT

¥r U, Y, which proves thab tZ; Gion, Y.
€

3.5. LmxMA, If o Y, then in the space & there ewists a countable
sequence {Uylresy of open sets such that Fr Uz Y, which is & base for open
sets of the space &:

oY= Y [(mCH @0y []

(Upkew GCX (mp}CH k=1

Proof. By hiypothesis there exists for eaeh point x <& and for
each neSN an open neighbourhood UL’ in the space & such that
aTP <1n, FrUP+ Y and & = 2; U,

Te

By virtue of Lindelof’s theorem we may select a countable covering
(U™ eor from the covering {US},eg. The double sequence (U e
can be ordered into the sequence {U{, UP, UP, ..} = {Uplresw Where

N Up=&, FrUyt Y and the diameters of the terms of the sequence

zvi%h sufficiently great indexes are arbitrarily small.

Hence for any G C & and any # e & there exists a neighbourhood
Uk(,;) € {Uk} with diameter d Uk(z) < o{x, K- G). Hence e Uk(a:) C@ or
GC Y {mC 13(2) Ugey C @, and thus & ——-k‘(Z; Upg. Ordering the sequence

Lz, Z,

zeG
{Uum} aceording to the imecreasing indexes, we receive & subsequence

{Un,}; satisfying the lemma.

3.6. THEOREM OF DECOMPOSITION. If o Y and Y is ANR, then
there exist sets A and B such that ¥ = A+ B and AB = 0, where A is
P, and AtY,B % G and dimB < 0:

KoY ecANR= D [(E=A+B)-(AB=0)-(4¢F, A7 Y-
A4,B
(B eGy-dimB <0)].

Remark. In view of [5], p. 392, it is enough to assume that the
space Y be a local absolute neighbourhood retract.

Proof. By virtue of lemma 3.5 there exists in & a sequence {Ux}
of open sets which are a base in & and for which FrU,v ¥. Let
A= D>FrU,; hence A is a F, and from 2.1.4 it follows that A+ Y.

k=1
The set B=X—4 is @; and for any U; we have BFrU;=0,
whence each point x ¢ B possesses an arbitrarily small neighbourhood
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Uwe, whose boundary relative to the set B: Frg Uyy is empty, which
means that dim,B < 0.

The converse implication can be proved under a weaker hypothesis:

37. (ArY-dimB=0)=44+B¢ Y.

Proof. For any # « 4 + B we have from [9], p. 173 dim(B+ {z}) = 0.
Thus (see [8], p. 27) for each ¢ > 0 there exists an U, in 4 + B such that
dU,< e and FrU,C 4. By hypothesis and (2.1.2) we have FrU,r ¥,
whenece A+Bg, Y.

3.8. TEEOREM. If & space Y is an ANR, then the velation ¢ relative
to the space Y is Fo-domain additive:

FroY cANR= D Fro ¥.
k=1

Proof. Let & = kZ Fy. We define inductively a sequence of sets
=1

{Omimesv a8 follows:
m—1

Cp=Fp— D Ty for

k=1

C,=Fy, m=2,3,..

The sets C, are mutually disjoint and & = )Y Cn. Since
m=1
m—1

=Py (E— kZ Fy), it is itself an F, as an intersection of two sets F,.
=1

Since O, is an open set in F,,, in view of (3.2.2), O ¢ Y. By virtue of 3.6
there exist such sets 4, and B, that Cp = 4, + By, ApBn=10, 4, is

o
an F, and At Y, By is an G, and dimB,, < 0. Let us write A = Y 4y
m=1

o0
and B = ) Bn. We have & = A+ B, where Ar Y from (2.1.3). Since

Mm=1
B C O, and since the sets Oy, are mutually disjoint, we have Bp=BpCn
=]§13,c- Cm=B0On.
In virtue of O, ¢ F, the set B, is an F, relative to B, and therefore
(see [9], p. 172) dim B < 0. Hence, by 3.7, ¢ Y.

3.9. COROLLARY. (dreF, - dro Y ¢ ANR)= Y dvo V.
k=1
Proof. Ay = > Fyp, where, from (3.2.1), Fimg Y. Since kZIAk
=1 =

oo
=Fy+Fu+Fy+..., we have kZIAklp Y by 3.8.
=1
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3.10, CorROILARY. [(A eF, - Gs)- (4, Bo Y < ANR)]=A+Bo ¥.

Proof. Since (4 +B)—A4 ¢F,, it is enough to apply 3.9.

3.11. COROLLARY. F,Bop Y < ANR=F+Bo /.

Proof. Sinee FelF, Gy, it is enough to apply 3.10.

5.12. COROILARY. (¥ ¢ Y e ANR. Y #0)=>F+{alo Y.

It results immediately from 3.11 and 4.3.

3.13. COROLLARY. [(A; 4, 4,4, =0) (drp Y)1=4:+ 4,0 Y.

Proof. The sets A, = (4, +4,)— 4, and A, = (4, +4,)— 4, are
open relative to A,-+A,, and therefore it is enough to apply 3.4.

8.14. CoroLLARY. If Lo Y =0 and & is a compact space, then
the union - {x} satisfies the relation ¢ as well:

&:compactfp ?/#0=>35'+{w}¢ :y

Proof. If 2 e ¥, then &+ {v} = &. If € &, the point » is isolated
in &+ {x}, then & and {x} are separated. Hence, in view of 4.3, 3.13
can be applied.

4. The connections with dimension theory

4.1, THEOREM. A space & is at most n-dimensional 4f and only
f:f E v Sn:

(4.1.1) dmF < ne=Frd.

A compact space & is at most (n—1)-dimensional if and only if
Fx g T cSn:

(4.1.2) dmF<L<n—1<=EFxTr .

A space & is at the point z at most (n+1)-dimensional if and only
if & or Snt
(4.1.3-1)

dim, F<n+le=>F o Sn.

A space & is at most (n-+1)-dimensional if and only if F ¢ Su.

(4.1.3-2) dmF <n+l=FopS.

Yor the proof of the well-known fundamental condition (4.1.1)
see [8], p. 83, or [10], p. 271.

In order to prove (4.1.2) let us note that if dim & < n—1, then
dm(EFxI)<n and (4.1.1) can be applied. Whereas if F XJT 7 I,
then dim(¥ xXJ) < n by (4.1.1) and from the compactness of the space
& it follows that dim (& x J) == dim & +1, whence dim & < n~1.

The hypothesis of compaectness of the space & is indigpensable only
for the proof of the sufficiency of condition (4.1.2).
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For the proof of (4.1.3-1) let z¢&, ¢>0 and dim, F<<n=1.
By the induective definition of dimension ([9], p. 162) there exists an
U, in & such that d U, < ¢ and dimFr 17, < »; thus, in view of (4.1.1),
Fr Ut Sn, which means F g, Y.2

Conditions (4.1.2), (41.1) and (4.1.3) indicate that the relation
defined in 1.5 as well as the relations 7 and ¢ form not only a subsumption
sequence but also — to a certain degree — an inductive sequence for
the dimension of a space. By passing from one relation to the other we
may augment — with %/ = & — the dimension of the space at most
by one.

4.2, CorOLLARY. dim & = nt+l<= ¥ (T  ¢)Ia.

It results immediately from (4.1.1) and (4.1.3-2).

4.3, COROLLARY. A space & is at most one-dimensional if and only
if Eo Y for any non-empty space Y

dnX <l [[Fe¥.
=0

Proof. For any ¢ & and any &> 0 there exists in & an T, such
that dim.Fr U, < 0, which is equivalent (see [10], p. 253) to ¥FrU,1 Y
for each Y 0.

4.4. Lemva. Let E{ztz Fy and for each teT is Fyx Y, Y being
ANR. If in every open neighbgirhood U D F; there is an open neighbourhood
VD F; such that V;C U, and FrVyx Tt Y, then £ Y

[E3 ZF,) (Fir Y eaNR)- [] N (mCV.CTCT)-

TOF; Vs
-(FrV,xSry)]ﬁﬁfry

The proof is analogous to that in [8], p. 90. Let FC X and fe yF .
In view of (2.1.6), (F+Fy)—F 7 %Y, and thus by 2.3 there exists an
ji such that fCfre YT Since Y e ANR, there exist in & a neigh-
bourhood U; of F-+F; and a mapping f; sueh that f;,C f,e YO

By hypothesis there is in & an open set V; such that F CV,CV,C U,
and FrV,xJr Y. Therefore F+V,C U, and FCH(F+Vs)e e YT,
Since & t§ ¥; and FrV,xJt Y, by 2.9 there exists an extension

€ :y* of the mapping f to the whole space &, which proves that & Y.

4.5. THEOREM. If for each point x e & there ewists an arbitrarily
small neighbourhood U, in the space & such that FrlU.xJt Y and if
the space Y is non-empty and an ANR, then Xz Y:

HH DT, <e) FrU,x Tt Y e ANR)- (Y # 0 =X Y.

20 2e& U CE
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For the proof it is emough to assume, in 4.4, Fy = {z} for z ¢ .
In view of [10], p. 253, {#} ¥ and all the hypotheses of the lemma
are satisfied.

In particular, if the space & is compact and Y = &», where n > -1,
the hypothesis of 4.5 is a sufficient condition for dimX < n, exactly as
with the inductive definition of dimension.

4.6. The theorem can be the base for some extension of the analogy
of connection between the auxiliary relation defined in 1.5 and relation r
on the one hand and the inductive definition of dimension on the other.

These relations give rise to a number of concepts, analogous to the
concepts in the dimension theory, for which analogous properties ecan
be proved (e. g. heredity or additivity).

For instance, analogouslty to the set Ay (see [9], p. 164), one can
define for the set 4 C & the sets:

dep=F [] 3 1av.<e 4T U Y1,

z€& £>0 UrCE

dey=F ] X 1@U. <6 (AFrUaxTz Y)].

z€E >0 TpCE

The analogue for the dimension-kernel (see [9], p. 186) is the ¢-kernel
of the space & relative to the space ¥, which is defined as 9 —Fey)-
Theorems analogous to those of the dimension theory can be demonstrated,
e. g. that the sets A,y and Ay gy are G5 or the implication

FoYeANR=> Xpop—Feno Y -

Other examples: the decomposition-theorem (the analogue: 3.6
and 3.7), Hurewicz’s extension theorem for closed sets (see [7], p. 146),
the properties of the cyclic elements in the local connected continuum
(see [10], p. 235) and finally the properties or Uryschn’s coefficient
(see [10], p. 60).

Now we shall deal with the connections between the properties of the
relations under discussion and the problem of the disconnection of a space.

4.7. TeeoreM. If E ¢ Y, then each pair of different points @y and x,
of the space & can be separated by means of a set FC X such that £t Y:

@ meEol. ota)= D [(F—FDM+M,) (e My)-
F,My,MsCE

(MM, + I M, = 0)- (Fz )]

Proof. If & ¢ Y, the space is uni-ordered relative to the family
of the boundaries of the open neighbourhoods U, C & such that Fr U7 Y
{see [13], p. 169). This implies the theorem.
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4.8. TeEoreM. If ¢ Y, Y is ANR and Y # 0, then each pair
of the closed and disjoint sets in the space & can be separated by a set F C &
such that Fr Y-

(B, FoC F 9 Y 7 0)- (Y € ANR). (BT, = 0)] =
= 2 (&F—FD M, +My)- (FrC M) (MM, + M My =0)- (F Y)].

F.M,MCE
Proof. There exists a continuous mapping f of the space & into
a metric separable space &* (e. g. into a subset of Hilbert’s cube) trans-
forming the sets F, and F, into two different points of the space &*:

f(Fa) = {m} 5 {&} = [(F)),

where @, 2, € f(£— (Fy+F.)); the partial mapping f|(E—(F,+F,) is
homeomorphism (see [9], p. 139, theorem 2).

Since F—(Fi+F.) ¢ Y by (3.2.2), we have f(&'—(F1+F2))¢ Yy
by 3.1. Since F(&F) = f(F—(F;+F))+{zm} -+ {x}, applying twice 3.12
we receive f(F) g Y.

In view of 4.7, there is in f(&¥) a neighbourhood U, such that
2, € Uy, Fr Uy v Y and that Fr Uy, separates z; and 2, in j(&). We have
[ B U, = Frf {Us) C €—(F; +Fy) and, by (2.11), f(Fr U7 Y.
Sinee f(F,) = {#,} C U, we have F,C f(U.) and on the other hand
Fy, fYUs) =1 ({2} Us,) = 0. Hence the set [ '(FrU,,) separates the
sets F, and ¥, in the space &.

In the above theorem the hypothesis Y ¢ ANR ean be replaced
by that of the compactness of the space & (compare 3.12 and 3.14).

4.9. COROLLARY. 0£ Y c ANR ¢[$¢y¢»F I (F1F2=0:>G%((F1CG)-
1. c

FaCE

(GF, = 0)- (Fr &7 )]

Proof. The necessity of the condition follows from the proof of 4.8.
TIn order to prove the sufficiency let ¢ &, ¢ > 0 and let U, be an open
neighbourhood in & such that d U, < &. We put ¥, = {2} and Fy = F—T..
The sets F, and F, are closed and digjoint. Hence, by hypothesis, there
exists an open set GDF, = {#} as well as GF,=0 and Fr&z Y. The
set @ is an open neighbourhood of the point x in the space & and
G(X—TU,) =0 implies GC U, whence d@& <, which together with
FrGt Y proves that Ko, Y.

The hypothesis ¥ ¢ ANR can be replaced by the hypothesis of the
compactness of the space &.

The corollary corresponds, in some sense, t0 a theorem of Tumarkin
on the equivalence of the definition of inductive dimension, ind &, to
that of an inductive macro-dimension of Urysohn, Ind & (see 1], p. 46).
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The properties considered above give rise to the following possibility
of some generalization of the notion of #-dimensional Cantor manifold,

4.10. A compact space & is said to be a p-manifold relative to a space
Y it &9 Y and there is no set 4 C & such that 4 xJ v Y disconnects
the space &.

The spaces which are ¢-manifolds relative to & are (1 -+1)-dimen-
sional Cantor manifolds.

To the well-known property of =-dimensional Cantor manifolds,
namely that they are n-dimensional at every point, one can find an
analogous property, namely that if a space & is a ¢-manifold to a space
%Y, then o Y.

Let us note that a space which is a g-manifold relative to & non-
erpty space is connected, which is an analogue to the conmectivity of
an n-dimensional Cantor méanifold. )

4.11. Lemma. The following three conditions are egquivalent:

(4.11.1) >

A MM CE

[(My 5 0)- (F— A = My +M,)- (MM, + MM,
=0)-(AxIr Y],

(4.11.2) D0 +#6)-(G# ) Fr&xIr Y],
acE
113) > [{0£Fr &) (£ =T +Fo) (BFx T Y)].
FiL,FaC¥

The proof of the three implications: (4.11.1)=(4.11.2)=(4.11.3)=
=(4.11.1) is exactly as in [8], p. 47. It is based on (2.2.2).

4.12, THEOREM. 4 compact space F such that ¥ ¢ Y is a p-manifold
relative to the space Y if and only if the space E cannot be decomposed
into the union of the closed sets ¥, and I, such that & = F +F,, F; #0
# By F—F #04AF—F, and F,.F.x T Y.

The proof is contained in that of 4.11, namely in the equivalence
of the conditions (4.11.1) and (4.11.3). ’

4.13. TerorEM. If the space & is compact and F (T-7, @) Y then
the space & contains a @-manifold relative to the space Y. :

Proof. It follows from the hypothesis & 7 ¥ that there exist an
F,C & and an f, ¢ Y~ Y% F,. According to 2.4 there exists an F*C &
such that f, €@ Y| F,, whereas f, ¢ Y77\ F, for each F G F*.

The set F* is a p-manifold relative to the space ¥. For, in the con-
trary case, there exist by (4.11.3) two closed sets ¥, and ¥, such that
FX=F,+F,, 0£F,+#F* and (F,F)x Tt Y.
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It follows from the above formulated irreducibility of the set F*

that there exist two extensioni leand f» of the mapping f, on the unions

Fy+ Fy and Fo-+Fy: fo C froe Y775 Since the set [[[f,(x) + f,(w)] is open
x

in F,F,, we have F[f(#) # f(#)]xT 7Y, (by 2.2.6-1). Hence, by 2.7,

the mapping f; may be extended to the union F,-- F*, which contradicts
the definition of the set F*.

5. Remarks and problems

5.1. The properties of the relations v and ¢ which have been proved
above suggest some connexion between these and the set-families di-
mengionizing the space (“les familles dimensionnantes”, see [9], p. 187).
Since we do not know whether those relations are for any subset domain-
hereditary or not, we have to assume a weaker hypothesis than those
in [6] when transferring the results of the theory of these families.
Another paper will be devoted to these problems.

5.2. Next to the problem P 86 of [11] the problems

(5.2.1) ACHoY=AoY
and
(5.2.2) (ACH) (ExTrY]=AxIz Y

can be discussed. If Y = &, both implications are true.

5.3. The problem of the existence of some analogue to the theorem
on the dimension of a Cartesian product of two sets (see [9], p. 225)
among the properties of the relations under consideration suggests the
question. whether

(5.3.1) Kt YcANR=ExTo Y.

T Y = Sa, the implication is true, namely the Cartesian product
of a set abt most n-dimensional by I is at most (n-+1)-dimensional.
If an implication converse to 4.4 is true:

(532) ErYANR=[] [[ D UaT.<e) (FrU:xT7 Y,

e>0 zeX UzCH

then the evident implication

38 [TT] 2[(dUm<s)-(FrU,,xgryeANR)]»gxﬂqay

>0 2e& U CE

immediately implies (5.3.1).
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Moreover, exactly as 3.6 and 3.7, it can be proved that (5.3.2) is
equivalent to the implication

(3.34) FrYcAVR= Y [(E=A+B) (4xTv¥Y) (@mB<O),
4,B
which is true for Y = Sa.

5.4. It is not known whether if the space & is a ¢-manifold relative
to the space Y ¢ ANE, then X7 Y.

I Y = &, the answer is positive.

5.5. It has been proved in [11] that the relation 7 is domain invariant
relative to the e-transformations. It is not known whether the same is
true for the relation @. It is true if Y = Sa.

5.8. The considerations of chapter 4 suggest the idea of a classification
of spaces by means of the following congruence according to the relation z.

The set A is congruent to the set B according to the relation 7:

A =B,
(1)
if and only if for each space ¥ which is ANR the following equivalence
is true: 4t Y<=Br Y.
We shall notice that:
1. the relation = belongs to the equivalence, type;

(r)

2. A = B=A4 = B, but the converse implication is not true, which
top ()

is indicated by the example of spaces with different finite powers;

3. 4 f——_ B=dim4 = dimB, if the dimX = co we consider as defined

) .

(cf. [8], p. 24).°

The following problem arises in connection with the above rela-
tionships:

What are the characteristics of spaces which are z-related to some
defined space, for instance to the torus?

It is easy to sée (£.1 and [10], p. 256) that a sufficient condition is
for instance that the space be at most one-dimensional. A condition
both sufficient and necessary is not known.
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