Concerning dense metric subspaces of certain non-metric spaces

by

J. N. Younglove (Austin, Tex.)

In this paper it is shown that if Σ is a space satisfying R. L. Moore's Axioms 0 and 1, [1], then Σ contains a complete metric subspace Σ' such that the set of all points of Σ' forms a dense subset of the set of all points of Σ. A sufficient condition is given for a point set M in order that it be the set of all points of some such Σ'. The terminology used in the paper is largely that of R. L. Moore.

Axiom 0. Every region is a point set.

Axiom 1. There exists a sequence G_1, G_2, G_3, \ldots such that

1. for each positive integer n, G_n is a collection of regions covering the set of all points,

2. for each positive integer n, G_{n+1} is a subcollection of G_n,

3. if R is a region and \mathcal{A} is a point of R and \mathcal{B} is a point of R, there is a positive integer n such that if g is a region of G_n containing A, then g is a subset of R and, unless B is A, g does not contain B,

4. if M_1, M_2, M_3, \ldots is a sequence of closed point sets and for each positive integer n there is a region g_n of G_n such that g_n is a subset of ω and for each positive integer n, M_n is a subset of M_{n+1}, then there is a point common to all the sets of this sequence.

It has been shown that every space satisfying Axiom 0 and the following Axiom C is metric [2]:

Axiom C. There exists a sequence G_1, G_2, G_3, \ldots satisfying conditions (1), (2) and (4) of Axiom 1 together with the following condition

3. if A is a point of a region R and B is a point of R, there is a positive integer n such that if s is a region of G_n containing A, and y is a region of G_n intersecting s, then $s + y$ is a subset of R and, unless B is A, $s + y$ does not contain B.

Property Q. A point set M is said to have Property Q provided it is true that if G is a collection of domains covering S, the set of all
to the conclusion that if Σ is a paracompact space satisfying Axioms 0 and 1 then, since S must possess Property Q, Σ is metric.

Theorem 1. If space satisfies Axioms 0 and 1 and a is an Axiom 1 sequence, then M_ξ is an inner limiting set dense in S.

Proof. Let G_1, G_2, G_3, \ldots denote the elements of a. Suppose that there is a region R such that if P is a point of R and n is a positive integer, then there are two intersecting regions of G_n whose sum contains P but is not a subset of R. Suppose that P_1 is a point of R, x_1 is a positive integer such that every region of G_n that contains P_1 is a subset of R, and $x_1 + y_1$ is a pair of intersecting regions of G_n such that x_1 contains P_1 and $x_1 + y_1$ is not a subset of R. The common part of x_1 and y_1 is a subset of R and contains a point P_2. There is a positive integer n_2 greater than n_1 such that x_1 contains P_1 and $x_2 + y_2$ is a subset of R. This may be continued to produce a sequence x_1, x_2, x_3, \ldots of regions such that there is a point A of R common to the sets of the sequence x_1, x_2, x_3, \ldots. The point A is also a point of each region of a sequence y_1, y_2, y_3, \ldots such that for no positive integer n is y_n a subset of R. This is a contradiction.

Let R_1 denote a region. There is a point P_1 of R_1 and a positive integer n_1 such that if x and y are intersecting regions of G_n, whose sum contains P_1, then $x + y$ is a subset of R_1. Let R_2 denote a region of G_n containing P_1 such that if R_1 is a subset of R_2, then P_1 is a point of R_1. There are three sequences P_1, P_2, P_3, \ldots, R_1, R_2, R_3, \ldots, and x_1, x_2, x_3, \ldots such that P_1, P_2, P_3, \ldots, and x_1, x_2, x_3, \ldots are as described above and for each positive integer j greater than 1, P_j is a point of R_j and x_j is a positive integer greater than x_{j-1} such that if x and y are two intersecting regions of G_n, whose sum contains P_j, then $x + y$ is a subset of R_j. Further, the region R_{j+1} is a region of G_n containing P_j such that R_{j+1} is a subset of R_j. There is a point P common to all sets of the sequence R_1, R_2, R_3, \ldots. Let y denote a region containing P. There is a positive integer i such that R_i is a subset of y. If P is a point of R_i, there is an integer k greater than i such that every region of G_n containing P is a subset of R_{i+k}. Thus, if x and y are intersecting regions of G_n, whose sum contains P, both must intersect R_{i+k}. Consequently, $x + y$ is a subset of R_i. This completes the proof that M_ξ is dense in S.

If M_ξ is S, then M_ξ is an inner limiting set. Suppose that there is a point of S not in M_ξ. Let N_ξ denote the point set $S - M_\xi$. If P is a point of N_ξ, and there is a positive integer a such that if G_n contains P, and if j is a positive integer, there are two intersecting regions
of G_i whose sum contains P but is not a subset of G_i and there is a region r of G_{x-i} and a positive integer i such that if x and y are two intersecting regions of G_i whose sum contains P, then $x + y$ is a subset of r_i then let n_i denote the integer n_i. If there is no such integer, let n_i be 1.

For each integer i such that $i < n_i$ for some point P of X_i, let N_i denote the set of all points q of X_i such that $i < n_i$. Suppose that A is a limit point of some such N_i. Let B denote a region of G_i containing A. Let j denote a positive integer greater than i such that every region of G_j containing A is a subset of B. Let g denote one such region of G_i. The region g contains a point B of X_i distinct from A. There is a positive integer k greater than j such that every region of G_k which contains B is a subset of g. Since B is a point of X_i and B is a region of G_i, there are two intersecting regions of G_k such that their sum contains B but is not a subset of B. Thus, there are two intersecting regions of G_i whose sum contains B but is not a subset of B. This shows that N_i is closed and, consequently, X_i is the sum of a countable collection of closed point sets. Since X_i is a subset of M_i, M_i is an inner limiting set.

Theorem 3. If a_1, a_2, a_3, \ldots is a sequence of Axiom 1 sequences, then there is an Axiom 1 sequence a such that for each m, a_m contains a_m.

Proof. For each positive integer n, let $G_{n_1}, G_{n_2}, G_{n_3}, \ldots$ denote the elements of a_n.

For each positive integer j, let G_j denote the collection such that x is an element of this collection if and only if x is an element of G_j which is a subset of some region of G_j. Let α_j denote the sequence $G_j, G_{j+1}, G_{j+2}, \ldots$. The sequence α_j is an Axiom 1 sequence. Furthermore, G_j contains $G_{j+1} + M_j$. For each positive integer $i > j$ such that i and each positive integer j, let G_i be the collection such that x is an element of this collection if and only if x is a region of G_{i-1} which is a subset of a region of G_{i-1}. Let α_i denote the sequence $G_{i-1}, G_{i-2}, G_{i-3}, \ldots$. The sequence α_i is an Axiom 1 sequence and α_j contains $\alpha_j + M_j$. For each positive integer n, $G_{n+1} + n$ is a subcollection of G_n. Let a denote the sequence $G_{n+1}, G_{n+2}, G_{n+3}, \ldots$. If k is a positive integer and j is an integer greater than k, G_{j-1} is a subcollection of G_{j-1}. Thus M_k contains M_j.

Theorem 3. If a point set satisfying Axioms 0 and 1 and M is a point set having Property Q, then there is an Axiom 1 sequence a such that M_a contains M.

Proof. Suppose that M is a point set having Property Q and G_1, G_2, G_3, \ldots is an Axiom 1 sequence. The collection G_i covers S, so there is a collection W_i of domains having the Q property with respect to G_i, M. Let G_i denote the collection G_i, and G_i denote the collection such that x is an element of G_i if and only if x is a region of G_i, G_i is a subset of some domain of W_i. The collection G_i covers S_0, so there is a collection W_i of domains covering S_0 and having the Q property with respect to G_i and M. There are two infinite sequences G_1, G_2, G_3, \ldots, W_1, W_2, W_3, \ldots, such that G_i, G_2, W_1, W_2 and W_3 are as described above and

1. for each positive integer n greater than 1, x is an element of G_n if and only if x is a region of G_n such that x is a subset of some domain of W_{n-1}.

2. the collection W_n has the Q property with respect to G_n and M.

If W_n is a domain of W_n, then w is a subset of some domain of W_{n-1}. For each positive integer j, let H_j denote the collection $W_1 + W_{j+1} + W_{j+2} + \ldots$. For each n, H_n covers S and each domain of H_n is a subset of some region of G_n. Further, H_{n+1} is a subcollection of H_n. Therefore, H_1, H_2, H_3, \ldots is an Axiom 1 sequence.

Suppose that there is a point P of M and a region R containing P such that if n is a positive integer, there are two intersecting domains of H_n whose sum contains P but is not a subset of R. There is a sequence R_1, R_2, R_3, \ldots such that for each positive integer j,

1. R_j is a domain of H_j which is not a subset of R and
2. the point set $(R_1 + R_2 + R_3 + \ldots)$ contains P or has P as a limit point.

If there are only finitely many distinct domains represented in the sequence R_1, R_2, R_3, \ldots, then there is a domain d such that d contains P and d is an element of infinitely many collections of the sequence H_1, H_2, H_3, \ldots. This contradicts the third condition of Axiom 1. Therefore, there are infinitely many distinct domains in the sequence R_1, R_2, R_3, \ldots.

For each positive integer j greater than 1, let d_j denote a domain of W_j such that d_j contains R_j. There is a domain d_j of the sequence d_1, d_2, d_3, \ldots such that d_j contains P since W_j has the Q property with respect to G_j and M. There is a region g_j in G_j such that g_j contains d_j. Thus, g_j contains P and is not a subset of R. By using the sequence R_1, R_2, R_3, \ldots it can be shown that there is a region d_j of G_j such that d_j contains P but is not a subset of R. Further, for each n, there is a region g_n of G_n such that g_n contains P but is not a subset of R. This is a contradiction.

Therefore, if α denotes the sequence H_1, H_2, H_3, \ldots, then M_α contains M.

Theorem 4. Suppose that S is not compact, M is an inner limiting set dense in S and there is an Axiom 1 sequence α such that M_α contains M. There is an Axiom 1 sequence α' such that M_α' is M.
Proof. Let g_1, g_2, g_3, \ldots denote the elements of a. Suppose that M is a proper subset of M_a. Let β denote the set $S - M$. The proof is divided into three cases. The first, second, and third cases being those where β is degenerate, non-degenerate and closed, and not closed, respectively.

Case 1. Let P denote the point in β and let P_1, P_2, P_3, \ldots denote a sequence of distinct points such that the set $(P_1 + P_2 + P_3 + \cdots)$ has no limit point. Let R_1, R_2, R_3, \ldots denote a sequence of regions closing down on P such that, for each positive integer n, R_n is a region of G_n. Let g_1, g_2, g_3, \ldots denote a sequence of mutually exclusive regions such that the closure of their sum is the sum of their closures and, for each n, $g_n^* \subseteq P_n$. For each positive integer n let d_n denote the domain $(R_n + g_n^* - P)$. For each positive integer n, let G_n denote the collection consisting of all regions of G_n together with the domains $d_n, d_{n+1}, d_{n+2}, \ldots$.

Let α' denote the sequence G_1, G_2, G_3, \ldots. If P is a point distinct from P, there is a positive integer i such that only the domains of G_i that contain R_i are regions of G_i. Thus α' satisfies the first three conditions of Axiom 1. If α and β are two intersecting domains of G_n^*, α's common part is a subset of a region of G_n^*. Therefore, α' satisfies the fourth condition of Axiom 1. Hence, it is an Axiom 1 sequence. But P does not belong to M_n.

If β is a point of $S - \beta$, there is a region R containing β and a positive integer n such that every domain of G_n that intersects R is a region of G_n. Consequently, $S - \beta$ is a subset of M. It follows that $M_n = M$.

Case 2. There exists a sequence H_1, H_2, H_3, \ldots such that for each n, H_n is a collection of regions of G_n properly covering β such that if H, for each n, D_n denotes the sum of the regions of H_n then D_n is a proper subset of D_n. Suppose that a is a point of M. There is a region R containing β and a positive integer j such that R does not intersect D_j. The point set β is the boundary of M and it is the common part of the domains D_1, D_2, D_3, \ldots.

For each positive integer n, let d_n denote the domain $D_n - D_{n+1}$.

Suppose that P is a point of β and R is a region containing P. There is a point Z of M in R and a positive integer x such that Z belongs to D_n. There is a region X' containing Z and a positive integer j such that X' does not intersect D_j. Thus, there is a positive integer i such that Z belongs to D_{i-1} and not to D_i. There is a region X'' containing Z and lying in R but not intersecting D_1. Since Z is a point of D_{i-1}, X'' intersects D_{i-1}. The domain $X'' - D_{i-1}$ is a subset of R and of $(D_{i-1} - D_i)$. Therefore, R intersects d_{i-1}.

The sequence a_1, a_2, a_3, \ldots has the following properties:

1. If x and y are two positive integers, then a_x and a_y have no point in common,
Suppose that A is a point of M which is not a limit point of β. Since α satisfies Axiom C at A, there is a region R containing A and a positive integer n such that no region of G_α intersects β and R. Since each domain of G_α which is not a region of G_α is the common part of some $R_{k,\alpha}$ and β, where i is greater than n, this means that each point of this common part belongs to a region of G_α which intersects β and thus is a point of a region of G_α which intersects β. Therefore, R intersects no domain of H_α which is not a region of G_α.

Suppose that A is a point of M which is a limit point of β. Let R denote a region containing A. Since, for each τ, β_{τ} is closed, A is not a limit point of β_{τ}. Since A belongs to M_α, there is a region R_α containing A and a positive integer n, such that every region of G_α intersects R_α is a subset of R. There is a region R_β which is a subset of R_α and contains A, and a positive integer x such that if $i \leq n$ and $j > x$, then R_β does not intersect the domain β_{τ}, Every domain of $H_{\alpha+1}$ which intersects R_α is a subset of R.

Suppose that A is a point of β. Let R denote a region containing A. There is a positive integer n such that every region of G_α which contains A is a subset of R. There is a positive integer ι greater than n such that no region of G_α contains A and intersects $(\beta_{\iota} - \beta_{\iota-1} + \ldots + \beta_{\iota})$. Each domain of $H_{\alpha+1}$ is a region of $G_{\alpha+1}$ or is of the form $(R_{k,\alpha},R_{k,\alpha})$ where i is greater than $n+\iota$. Every region of $H_{\alpha+1}$ which contains A is a subset of R. If there is a domain $(R_{k,\alpha},R_{k,\alpha})$ which contains A but is not a subset of R then, since $R_{k,\alpha}$ is a region of G_α, x is less than n. Each point of $R_{k,\alpha}$ is a subset of a region of G_α which intersects $R_{k,\alpha}$ and since x is less than n, ι must be less than i. However, ι is greater than $n+\iota$. Consequently, every domain of $H_{\alpha+1}$ which contains A is a subset of R.

It follows now fairly readily that the sequence H_1,H_2,H_3,\ldots satisfies the first three conditions of Axiom 1 at each point of α and the first three conditions of Axiom C at each point of M.

Suppose that M_1,M_2,M_3,\ldots is a sequence of closed point sets such that for each positive integer n, M_n contains M_{n+1}, and there is a domain d_{n} in H_α such that M_n is a subset of d_{n}. For each positive integer ι, no two domains in the sequence $A_{\iota},A_{\iota+1},A_{\iota+2}$ have a point in common. Since each domain of H_α which is not a region of G_α is of the form $(R_{k,\alpha},R_{k,\alpha})$ where i is greater than n, there exists no positive integer m such that infinitely many domains of the sequence A_1,A_2,A_3,\ldots are of the form $(R_{k,\alpha},R_{k,\alpha})$ where $\alpha \leq m$. Therefore, there is an ascending sequence $\eta_1,\eta_2,\eta_3,\ldots$ of positive integers and a sequence R_1,R_2,R_3,\ldots of regions such that for each positive integer k, R_k is a region of G_α and contains d_n. Thus the sets of the sequence M_1,M_2,M_3,\ldots have a point in common. Therefore, the sequence H_1,H_2,H_3,\ldots satisfies the fourth condition in Axiom 1.

If α is a positive integer such that U_α exists and P is a point of β_{α} and R is a region containing P, then there is a positive integer ι such that A_{ι} intersects R. If A is a point of U_α, then $(R_{\alpha+1},\beta_{\alpha})$ is non-degenerate. From these facts it follows that the sequence H_1,H_2,H_3,\ldots does not satisfy the requirements of Axiom C at any point of U.

Suppose that P is a point of $M_\alpha - (M_\alpha + U)$, that is to say, a point of T. For each positive integer α such that T intersects β_{α}, let T_{α} denote $T \cap \beta_{\alpha}$. For no α does a region of G_α intersect two points of T_{α}.

Suppose that T is closed. Since M is dense in S, every point of T is a limit point of M. Consequently, there is an Axiom 1 sequence H_1,H_2,H_3,\ldots, satisfying the requirements of Axiom C at each point of M but at no point of T. This is exactly analogous to the situation in Case 3.

For each positive integer n, let G_n denote a collection such that d is an element of G_n if and only if d is a domain of H_n or of H_{n+1}. Let a' denote the sequence G_1,G_2,G_3,\ldots. It readily follows that M_α is M.

Suppose that T is not closed but contains a limit point of itself. For each positive integer n such that T_{α} contains a limit point of T, let V_α be the set of all limit points of T that belong to T_{α}. No region of $G_{\alpha+1}$ covers two points of V_α. There is a well-ordered sequence ω whose terms are the points of V_α. There is a subsequence ω_α of ω such that

1. the first term of ω is the first term of ω_α;
2. if α is an initial segment of ω_α and there is a point P of V_α such that no coherent collection of three regions of $G_{\alpha+1}$ covers P and some point in Z, then the first such point in ω is the first point in ω_α to follow all the points of Z in ω_α.

If α is a positive integer and there is a point in V_α which is not in ω_α, then let $\omega_{\alpha+1}$ be a subsequence of ω such that

1. the first term of ω which is not in ω_α for $1 \leq i \leq \alpha$ is the first term of $\omega_{\alpha+1}$;
2. if α is an initial segment of $\omega_{\alpha+1}$, and there is a point P of V_α not in ω_α where $1 \leq i \leq \alpha$, such that no coherent collection of three regions of $G_{\alpha+1}$ covers P and some point in Z, then the first such point in ω is the first point in $\omega_{\alpha+1}$ to follow all the points of Z in $\omega_{\alpha+1}$.

Suppose that there is a point P of V_α which is in no one of the sequences $\omega_1,\omega_2,\omega_3,\ldots$. For each positive integer n, there is a coherent collection of three regions of G_n that covers P and some other point of V_α. Since P belongs to M_α, it follows that P is a limit point of V_α. This is a contradiction.

Suppose that i is a positive integer and G is a collection of regions of $G_{\alpha+1}$ such that each region of G contains only one point of $\omega_{\alpha+1}$ and
each point in a_{n+1} belongs to only one region of G. Suppose that there exists a point of G' which is not a point or limit point of any one region of G. Then there is a coherent collection of three regions of G_{n+1} that covers two points in a_{n+1} which is impossible. Therefore, if P is a point of G', there is only one region g in G such that P is a point of g. For each positive integer j such that a_j exists, let G_j be a collection of regions of G_{n+1} such that each region of G_j contains only one point of a_j and each point in a_j belongs to only one region of G_j. Let C denote the collection such that R is in C if and only if there is a positive integer s such that R is in C_s. Suppose that there is a point P of M which is a point of G' and not a point or limit point of any region in G. Since P belongs to M_s, if R is a region containing P, there is a region R_j containing P such that every region of C that intersects R_j is a subset of R.

For each positive integer n such that V_n exists, there is a collection K_n in V_n with properties with respect to V_n as described in the preceding paragraph for the collection C with respect to V_n. Suppose that P is a point of V_n. Since P is a limit point of T, if R denotes the region of K_n that contains P, then R is non-degenerate. Each point of T is a limit point of M so there is a sequence of mutually exclusive domains $d_1, d_2, d_3, ...$ such that

(1) for each n, d_n is a subset of R,

(2) if, for each positive integer n, G_n denotes the collection consisting of all regions of G_n together with the domains $d_n, d_{n+1}, d_{n+2}, ...$, then the sequence $G_1, G_2, G_3, ...$ is an Axiom 1 sequence which fails to satisfy Axiom C at P.

In a manner similar to the construction of the sequence $B_1, B_2, B_3, ...$, it may be shown that there exists an Axiom 1 sequence $B_1', B_2', B_3', ...$ such that for each positive integer n, each domain of B_n is either a region of G_n or a subset of a region of some K_j. Further, this sequence does not have the properties as stated in Axiom C at any point of T which is a limit point of T and has these properties at M.

Suppose that there is a point of T which is not a limit point of T. Let W denote the set of all such points. The point set $T - W$ is closed. There is a sequence $E_1, E_2, E_3, ...$ of domains with $T - W$ as their common part such that

(1) for each n, E_n contains E_{n+1},

(2) if P is a point of W in E_1, there is a positive integer s such that P is in E_s, but not in E_{s+1}, and a region g of G_s which contains P and a point g of W distinct from P.

If there is a point of W not in E_1, the set of all such points is a closed point set. There is an Axiom 1 sequence $L_1, L_2, L_3, ...$ such that this sequence fails to satisfy Axiom C at each point of W not in E_1 and satisfies Axiom C at each point of M. The set of points of W that are in E_1 may be divided up into the sets of a sequence $W_1, W_2, W_3, ...$ which possesses the properties of the sequences $U_1, U_2, U_3, ...$ that made it possible to construct an Axiom 1 sequence that satisfied Axiom C at each point of M and did not satisfy Axiom C at any point of U. Therefore, there is an Axiom 1 sequence that satisfies Axiom C at each point of M but at no point of W.

If P is a point of T, then P is a point of U or of T. If P is a point of T, and T is closed, then P is a point of W or of $T - W$. Consequently, there is an Axiom 1 sequence a' such that $M_{a'}$ is M.

References

THE UNIVERSITY OF TEXAS
AUSTIN, TEX.

Reçu par la Rédaction le 15. 9. 1938.