Conditions under which a surface in \(E^3 \) is tame

by

R. H. Bing (Wisconsin)

1. Introduction. A surface (closed set that is a 2-manifold) \(M \) in \(E^3 \) is tame if there is a homeomorphism of \(E^3 \) onto itself that takes \(M \) onto a polyhedron (finite or infinite). If there is no such homeomorphism, \(M \) is called wild. The main purpose of this paper is to give a condition under which surfaces are tame. This paper deals with surfaces in \(E^3 \), so if a surface is mentioned, it is to be understood that this surface lies in \(E^3 \).

If \(A, B \) are two homeomorphic sets,

\[
H(A, B) \leq \varepsilon
\]

is used to denote the fact that there is a homeomorphism of \(A \) onto \(B \) that moves no point by more than \(\varepsilon \).

If \(S \) is a 2-sphere, we use Int\(S \) and Ext\(S \) to denote the bounded and unbounded components respectively of \(E^3 - \overline{S} \). Theorem 2.2 of the next section states that a 2-sphere \(S \) is tame if for each positive number \(\varepsilon \) there are 2-spheres \(S', S'' \) in Int\(S \), Ext\(S \) respectively such that

\[
H(S, S') \leq \varepsilon, \quad H(S, S'') \leq \varepsilon.
\]

This theorem (Theorem 2.2) is not proved directly but is reduced by way of one theorem (Theorem 2.1) to a simpler one (Theorem 3.1) which in turn is proved on the basis of a still easier one (Theorem 3.2). The proof given in Section 4 of this last theorem is based on an assortment of results developed in Sections 5-9.

While this treatment is not the logical one where simpler results are proved first and the big ones are proved in terms of those already proved, it does reveal the chronological order of a logical approach in trying to prove a big result where the big result is reduced to a simpler result, the simpler result is reduced, ..., and finally a result is proved on which the sequence of theorems leading to the main result depends.

* Work was supported by the National Science Foundation under N. S. F. Grant G-35449 at the Institute for Advanced Study, Princeton, New Jersey.
Such an approach shows the purpose of the subsidiary results which might seem unexciting in themselves.

The person preferring the logical approach may start by studying Sections 5, 6, 7, 8, 9, 10 which are independent except for 6 which depends on 5, then 4 which depends on 6-9, then 3 which depends on 4, and then 2 which depends on 3 and 10.

Some of the results developed in Sections 5-10 are pursued for their own interest rather than for their contributions alone to the study of tame embedding.

In Section 11 we discuss the possibility of extending the result (Theorem 2.2) about tame 2-spheres to apply to tame surfaces. We give conditions under which a surface is locally tame at a point p. A surface S is locally tame at a point p if there is a neighborhood N of p in \mathbb{E}^3 and a homeomorphism of N into \mathbb{E}^3 that takes N- S onto a polyhedron.

Previous papers have given conditions under which surfaces are tame. Bing [4] and Moise [18] showed that a surface is tame if it is locally tame. Griffiths [11] and Harrold [14] have given other sets of conditions under which a surface is tame.

In another paper [17] we shall apply the results of the present paper to show that \mathbb{E}^3 does not contain uncountably many mutually exclusive wild surfaces. This result will be used to give still another proof that each 3-manifold can be triangulated. Moise gave a proof of the triangulation theorem in [17] and Bing gave an alternate proof in [6].

Another future paper [8] will extend the results of the present paper to show that a surface in \mathbb{E}^3 is tame if its complement is uniformly locally simply connected. A set X is uniformly locally simply connected if for each positive number ε there is a positive number δ such that each closed curve in X of diameter less than δ can be shrunk to a point in a subset of X of diameter less than ε.

The above results do not all extend to surfaces with boundaries. Stallings has given an example of an uncountable collection of mutually exclusive wild disks in \mathbb{E}^3. In another paper [9] we shall show that a disk in \mathbb{E}^3 is tame if its complement is uniformly locally simply connected.

In showing in [3] that each surface M in \mathbb{E}^3 could be approximated by a polyhedral surface, we used the 2-skeleton of a triangulation to chop up \mathbb{E}^3, and hence M, into small pieces. We could use such an approach for the present paper but decided instead to try a slightly different approach, namely, adjust \mathbb{E}^3 so that it contains no vertical interval and then use a fence to chop up the adjusted M. If a person chose to redo the work in [3], he might choose to use fences as defined below rather than triangulations.

A fence is defined to be the sum of all vertical lines intersecting the 1-skeleton of a rectilinear triangulation of a horizontal plane. The mesh of the triangulation is called the mesh of the fence. Each vertical line intersecting a vertex of the triangulation is called a corner of the fence and the sum of all vertical lines intersecting an edge of the triangulation is called a section of the fence. The term "fence" was used to define a somewhat similar set in [5] but there the fences were not infinite and extended in only one direction.

Closely related to a fence is a vertical triangular cylinder. A vertical triangular cylinder C is the sum of a collection of vertical lines such that a horizontal cross section of C is a triangle. The sum of the lines intersecting the interior of the triangle is denoted by $\text{Int} \mathcal{C}$ and $\text{Ext} \mathcal{C} = \mathbb{E}^3 - (\mathcal{C} + \text{Int} \mathcal{C})$. If L is a vertical line in $\text{Int} \mathcal{C}$, we call C a vertical triangular cylinder about L. We use vertical triangular cylinders about the corners of a fence to study a 2-sphere S near these corners.

If M is a manifold with boundary, we use $\text{Bd}M$ to denote this boundary and $\text{Int}M$ to denote $M - \text{Bd}M$. There is an inconsistency here in the way that we defined $\text{Int} S$ for a 2-sphere S in \mathbb{E}^3 and $\text{Int} C$ for a cylinder C, but it seems unlikely that this double meaning of the symbol Int will lead to confusion.*

A finite graph is used to subdivide a 2-sphere. A finite graph is the sum of a finite collection of arcs such that if two of these arcs have a point in common, this point is an end point of each. A finite graph is called planar if it can be embedded in a 2-sphere. A connected finite graph is called stable if it is planar and if each homeomorphism between two of its images in a 2-sphere S can be extended to a homeomorphism of S onto itself.

The distance function is denoted by ϱ.

An isotopy $H_t(0 \leq t \leq 1)$ on X is a one parameter (denoted by t) family of homeomorphisms of X onto itself. All of the isotopies we use start at the identity map — that is $H_0(x) = x$. Hence, it is to be understood without the condition being imposed further that if we use an isotopy $H_t(0 \leq t \leq 1)$, then

$H_t = I$ (the identity).

A map f defined on \mathbb{E}^3 is called piecewise linear if there is a rectilinear triangulation of \mathbb{E}^3 such that f is linear on each tetrahedron of the triangulation. An isotopy $H_t(0 \leq t \leq 1)$ is called piecewise linear if each of the homeomorphisms H_t in the one parameter family is piecewise linear.

We say that H_t moves no point by more than ε if $\varrho(H_t(x), x) \leq \varepsilon$ for each point x and write $\varrho(H_t, I) \leq \varepsilon$.
In general, if \(f \) and \(g \) are two maps defined on \(X \)

\[e(f, g) \leq \varepsilon \] means \(e(f(x), g(x)) \leq \varepsilon \) for each \(x \in X \).

2. A condition under which 2-spheres in \(\mathbb{E}^3 \) are tame.

In this section we give the main results of the paper — a condition under which a 2-sphere in \(\mathbb{E}^3 \) is tame. The possibility of extending this result is discussed in Section 11. The intervening sections are used to verify some of the facts used in the present section.

Theorem 2.1. Suppose \(S \) is a 2-sphere in \(\mathbb{E}^3 \) such that for each positive number \(\varepsilon \) there is a 2-sphere \(S' \) on \(\text{Int} S \) such that \(H(S, S') \leq \varepsilon \). Then \(S + \text{Int} S \) is a topological 3-cell.

Proof. We suppose that \(S \) contains no vertical interval. That there is no loss of generality in supposing this follows from Theorem 10.1.

Let \(S_1, S_2, \ldots \) be a sequence of 2-spheres on \(\text{Int} S \) such that \(H(S, S_i) \leq 1/i \). Since each 2-sphere can be approximated by a polyhedral 2-sphere \([3] \), we suppose with no loss of generality that each \(S_i \) is polyhedral. We also suppose that \(S \subseteq \text{Int} S_{i+1} \).

Let \(T(x) = (0 < x < 1) \) be the 2-sphere in \(\mathbb{E}^3 \) with center at the origin and radius \(x \). We shall prove Theorem 2.1 by showing that there is a homeomorphism \(h \) taking \(S + \text{Int} S \) onto \(T(1) + \text{Int} T(1) \).

Let \(X(i, j) \) denote \(S_j + \text{Int} S_j - \text{Int} S_i \) and \(Y(i, j) \) denote \(T(j+1) - T(i+1) \). See Figure 1.

We prove Theorem 2.1 by sewing together homeomorphisms between certain of the \(X(i, j) \)'s and the corresponding \(Y(i, j) \)'s so as to get a homeomorphism of \(S + \text{Int} S \) onto \(T(1) + \text{Int} T(1) \). We must be able to control the homeomorphisms of the \(X(i, j) \)'s onto the \(Y(i, j) \)'s so that the homeomorphisms on the individual parts combine to give a homeomorphism on the sum.

Let \(h \) be a homeomorphism of \(S \) onto \(T(1) \) and \(g_i \) a homeomorphism of \(S_i \) onto \(S \) such that \(g_i \) moves no point by more than \(1/i \). Let \(h_i \) be the homeomorphism of \(S_i \) onto \(T(i+1) \) defined so that the interval from the origin to \(h_i g_i(x) \) goes through \(h_i(x) \). See Figure 1. The \(h_i \)'s give an approximation of the homeomorphism \(h \) of \(S + \text{Int} S \) onto \(T(1) + \text{Int} T(1) \) but rather than agreeing with \(h \) on each \(S_i \), they only agree on a sequence of \(S_i \)'s converging to \(S \).

It follows from Theorem 3.1 that for each positive number \(\varepsilon \) there is an integer \(k \) so large that if \(k < i < j \), then there is a homeomorphism \(f(i, j; \varepsilon) \) of \(X(i, j) \) onto \(Y(i, j) \) such that

\[f(i, j) = h_i \] on \(S_i \) and \(h_j \) on \(S_j \), while diameter \(f^{-1}(i, j) < \varepsilon \) for each straight line interval \(A \) in \(Y(i, j) \) on a ray through the origin.

It follows from a theorem by Alexander [1] that the homeomorphism \(h \) on \(S \) can be extended to take \(S + \text{Int} S \) homeomorphically onto \(T(1) + \text{Int} T(1) \). Then the homeomorphism \(h \) of \(S + \text{Int} S \) on \(T(1) + \text{Int} T(1) \) is defined as follows:

\[h = h_i \] on \(S_i + \text{Int} S_i \),
\[h = f(i, j; \varepsilon) \] on \(X(i, j; \varepsilon) \),
\[h = h \] on \(S \).

By applying Theorem 2.1 to both the interior and exterior of a 2-sphere in \(\mathbb{E}^3 \), one can obtain the following result.

Theorem 2.2. A 2-sphere \(S \) in \(\mathbb{E}^3 \) is tame if for each positive number \(\varepsilon \) there are 2-spheres \(S', S'' \) in \(\text{Int} S, \text{Ext} S \) respectively such that \(H(S, S') \leq \varepsilon \), \(H(S, S'') \leq \varepsilon \).
3. A set bounded by two polyhedral 2-spheres. As in the proof of Theorem 2.1 we keep the following notation which will be used throughout Sections 2-9.

S is a 2-sphere in E^3 that contains no vertical interval.

S_1, S_2, \ldots is a sequence of polyhedral 2-spheres in $\text{Int} S$ such that $S_i \subset \text{Int} S_{i+1}$.

g_i is a homeomorphism of S_i onto S that moves no point by more than $1/k$.

$T(r)$ $(0 < r < 1)$ is the 2-sphere with center at the origin and radius r.

k is a homeomorphism of S onto $T(1)$.

h_i is a homeomorphism of S_i onto $T[i(i+1)]$ such that $h_i(a)$ is between $h_{i+1}(a)$ and the origin.

$X(i, j) = S_i + \text{Int} S_j - \text{Int} S_i$.

$Y(i, j) = T[i(i+1)] + \text{Int} T[j(j+1)] - \text{Int} T[i(i+1)]$.

We use fences to chop up images of certain $X(i, j)$'s so as to get a homeomorphism $f(i, j)$ of such an $X(i, j)$ onto the corresponding $Y(i, j)$ satisfying the conditions of Theorem 3.1.

Theorem 3.1. For each positive number ε there is an integer k such that $f(i, j) \subset \varepsilon$ for each straight line interval A in $Y(i, j)$ on a line through the origin.

We now state Theorem 3.3 on which the proof of Theorem 3.1 is based. The proof of Theorem 3.2 is outlined in Section 4. Much tedious pushing and pulling, discussed in Section 7, is a basis for the proof of Theorem 3.2. It is in the proof of Theorem 3.2 that we start the use of fences to chop up the images of certain $X(i, j)$'s.

Theorem 3.2. For each positive number ε there are an integer k and a positive number δ such that if F is a mesh of less than δ and $k < i < j$, then there is a homeomorphism H_2 of E^3 onto itself, a stable finite graph G on S_i, and a homeomorphism g of $G \times [0, 1]$ into F such that

1. $g(0, 0) = i$,
2. $H_2(S_i + S_j)$ is a polyhedron G,
3. each component of $S - G$ is of diameter less than ε,
4. $g(0, 0) \subset H_2(S_j)$ with $g(a) = a$ for $a \subset [0, 1]$,
5. $g(G \times [0, 1]) \subset H_2(S_i)$ with $g(a \times [0, 1]) = a$ for $a \subset [0, 1]$,
6. each $g(a \times [0, 1])$ is of diameter less than ε,
7. $H_2(S_i + S_j) \subset G \times [0, 1] \subset g(G \times [0, 1])$.

See Figure 2. We note that H_2 removes certain feelers from S_i and S_j so that these feelers will not run in and out of the fence F and prevent Condition 7 from being satisfied.

![Figure 2](image_url)

Proof of Theorem 3.1. Let $\varepsilon_1 < \varepsilon$ and k, F, G, H_2, and g be as promised in Theorem 3.2 for the positive number ε. We suppose $1/k < \varepsilon_1 < \text{(diameter S_i)}$.

We describe the homeomorphism $f(i, j)$ in terms of a homeomorphism f of $H_2(X(i, j))$ onto $Y(i, j)$ where

$$f(i, j) = fH_2.$$

Since the conclusion of Theorem 3.1 requires that

$$f(i, j) \subset h_i,$$

it follows from Conditions 4 and 5 of the statement of Theorem 3.2 that for each point a of G

$$g(a \times 0) = h_i g_i^{-1}(a) = H_2 g_i^{-1}(a)$$

and

$$g(a \times 1) = h_i g_i^{-1}(a) = H_2 g_i^{-1}(a).$$
Let $K(r, j)$ denote the collection of components of $\partial S U$ on G_r that separate C_r into two unbounded pieces. It follows from Theorem 6.3 that we can find such C_r's and an integer k so that for i, j larger than k, there is a 1-1 correspondence between the elements of $K(r, i)$ and $K(r, j)$ such that

1. the distance between corresponding elements is less than e_i,
2. no element of $K(r, i)$ or $K(r, j)$ separates two corresponding elements from each other on G_r.

We suppose that k is so large that $S_i + S_j$ misses each corner of F that S misses and that $1/k < e_i$. If we take e_i to be very small, k must be large. As a substitute for saying "for k sufficiently large" we can say "for e_i sufficiently small".

This e_i we have introduced is the first of a sequence e_1, e_2, \ldots, e_i that we shall use. In general we suppose that each e_i is very small but this can only be accomplished by making the preceding ones very small. We are interested in knowing that such e_i's exist rather than in knowing how big they are. If one wants a work in epialiptics, he can start with e_1 and work back to e_i but this is not recommended.

Step 2. An isotopy that simplifies near fences. Since a solid cylinder can be chopped up into topological cubes, it follows from Theorems 8.3 and 7.5 that there is a piecewise linear isotopy $H_t (0 \leq t \leq 1)$ of F onto itself such that

1. H_1 is fixed on $U_i + U_j$,
2. $\rho (H_t, F) < e_{t_1}$,
3. $H_t (S_i + S_j)$ is in general position with respect to F,
4. each component of $H_t (S_i + S_j) - (U_i + U_j)$ is a disk E of diameter less than e_i such that $\operatorname{Int} E \subset \sum C_r$, $E \cup L_r$ contains only one point if $Bd E$ separates C_r into two unbounded pieces and E misses L_r otherwise.

Figure 3 shows that H_t removes bulges (shown in $S_i - U_i$) having extraneous intersections with C_r and also removes feelers (shown in $S_i - U_i$) winding through C_r.

The correspondence between the elements of $K(r, i)$ and the elements of $K(r, j)$ sets up a 1-1 correspondence between points of $L_r \cap H_t (S_i)$ and $L_r \cap H_t (S_j)$. If π takes a point of $L_r \cap H_t (S_i)$ onto the corresponding point of $L_r \cap H_t (S_j)$, then

$$\rho (\pi, I) < e_i \quad \text{on} \quad L_r \cap H_t (S_i).$$

There is no point of $H_t (S_i + S_j)$ between a point and its image under π.

It follows from Theorem 8.4 that if k is sufficiently large and the disks E are properly chosen, then for each section V of F and any p in
Since \(g(y_i, I) < \varepsilon_i \) and \(g(\bar{H}_i, I) < \varepsilon \), each component of \(S - g H_i^{-1}(G_i) \) is of diameter less than \(\varepsilon + \varepsilon_i < 2\varepsilon_i \). It follows from Theorems 9.2 and 9.6 that for each positive number \(\varepsilon \) and \(\varepsilon \), sufficiently small one can cause \(g H_i^{-1}(G_i) \) to contain a stable graph \(G \) such that

3. each component of \(S - G \) is of diameter less than \(\varepsilon \).

For \(\varepsilon, \varepsilon, \varepsilon, \varepsilon \), sufficiently small, this finite graph \(G \) is the one mentioned in the statement of Theorem 3.2. We have just shown that Condition 3 in the statement of Theorem 3.2 can be realized.

Step 4. The homeomorphism \(g \). We recall that \(G_i \) is the sum of arcs in the sections of \(F \) and that \(G_i \) is the sum of corresponding arcs under \(\pi \). Also \(H_i g_i^{-1}(\bar{G}) \) is the sum of a subcollection of the arcs in \(G_i \).

For each point \(a \) of \(G \) we define

\[
g(a \times 0) = H_i g_i^{-1}(a) \quad \text{and} \quad g(a \times 1) = \pi H_i g_i^{-1}(a) .
\]

Since \(H_i \) will be defined to be \(H_i \) on \(g_i^{-1}(\bar{G}) \), we find that Condition 4 of the statement of Theorem 3.2 can be realized.

If \(V \) is a section of \(F \), \(A \) is an arc in \(G \) such that \(H_i g_i^{-1}(A) \) is a component of \(V \cdot H_1 g_i^{-1}(G_i) \), then \(g \) takes \(A \times [0, 1] \) onto the disk in \(V \) bounded by the arcs \(H_i g_i^{-1}(A), \pi H_i g_i^{-1}(A) \) and two vertical intervals. See Figure 4. Since the diameter of this disk is less than \(3\varepsilon_i + 2\varepsilon \), it follows that

\[
diameter g(a \times [0, 1]) < 3\varepsilon_i + 2\varepsilon .
\]

This suggests that Condition 6 of the statement of Theorem 3.2 can be realized.
Step 5. **Diameters of** $g(G \times 0)$ and $g(G \times 1)$. We have the following inequalities:

- Diameter $G >$ diameter $S - 2t_a$,
- Diameter $[H_1 g^{-1}(G) = g(G \times 0)] >$ diameter $S - 2t_a - 20s_t$,
- Diameter $[H_1 g^{-1}(G) = g(G \times 1)] >$ diameter $S - 2t_a - 4s_t - 26s_a$.

Hence, we suppose that the diameters of $g(G \times 0)$ and $g(G \times 1)$ approximate the diameter of S.

Step 6. Pulling closed curves off sections. There is no assurance that $H_1(S_t + S_t) \cdot g(G \times [0, 1]) = g(G \times 0) + g(G \times 1)$ because of the simple closed curves (such as J shown in Figure 4) that lie in the interiors of the sections of F with $H_1(S_t + S_t)$. We extend the isotopy $H_1(0 < t < 1)$ to a piecewise linear isotopy $H_t(0 < t < 2)$ so that $F \cdot H_1(S_t + S_t) \subset G_t + G_t$.

Let s_t be a positive number such that if J is a simple closed curve in $F \cdot H_1(S_t)$ or $F \cdot H_1(S_t)$ that misses the corners of F, then J bounds a disk in $H_1(S_t)$ or $H_1(S_t)$ of diameter less than s_t. Since S contains no vertical interval, we can make s_t small by restricting s_t and s_t. In fact, we can set $s_t = s_t - 20s_t$.

By putting 2-spheres about these simple closed curves in $F \cdot H_1(S_t)$ and $F \cdot H_1(S_t)$ that miss corners of F, we find from Theorem 7.5 that we can extend $H_1(0 < t < 1)$ to a piecewise linear isotopy $H_i(0 < t < 2)$ so that

1. $g(H_1, I) < s_t + 9s_t$,
2. $F \cdot H_1(S_t + S_t) \subset G_t$, and
3. $H_1(1 < t < 2) = H_1$ on components of $H_1^{-1}(G_t)$ and $H_1^{-1}(G_t)$ containing $H_1^{-1}(g(G \times 0) + g(G \times 1))$.

We note that

$g(H_1, I) < s_t + 9s_t$.

Step 7. The homeomorphism H_i. The reason for not using H_i for the H_i promised by Theorem 3.2 is that we are not sure that $g_1 H_1^{-1}(g(a \times 1)) = a$ for each point a of G. Other important requirements other than Condition 5 can be met. The difficulty is that even though $\alpha H_1 g^{-1}$ is close to $H_1 g^{-1}$ on G,

they are not necessarily equal.

We shall extend $H_1(0 < t < 2)$ to an isotopy $H_i(0 < t < 3)$ so that

1. $H_i(2 < t < 3) = H_i$ on S_t,
2. $H_i(S_t)$ is the same point set as $H_i(S_t)$, and
3. $\alpha H_i^{-1} = H_i g_1^{-1}$ on G.

This last condition will insure that Condition 5 of the statement of Theorem 3.2 can be attained.

Consider an arbitrary positive number s_t. We show in the next step that for s_t, s_t, s_t, s_t, s_t, suitably chosen, there is an isotopy $F_i(0 < t < 1)$ on S such that

1. F_i moves no point more than s_t, and
2. $F_i = g_1 H_i - \alpha H_i g_1^{-1}$ on G.

Then $H_i g_1^{-1} F_i g_1 H_i^{-1}$ is an isotopy on $H_i(S_t)$ such that

$g(H_1 g_1^{-1} F_i g_1 H_i^{-1}, I) < s_t + 18s_t + 20s_t$.

Since $H_i(S_t)$ is a polyhedral 2-sphere, for each open set U in F_i containing it, the isotopy $H_i g_1^{-1} F_i g_1 H_i^{-1}$ can be extended to an isotopy on F_i so that

1. $g(F_i, I) < s_t + 18s_t + 20s_t$ and
2. $F_i = I$ outside U.

In particular, we suppose $F_i = I$ on $H_i(S_t)$.

We define

$H_{i+1} = F_i H_i$

and note that

$g(H_{i+1}, I) < s_t + 27s_t + 29s_t$.

Hence, we see that Condition 1 of the statement of Theorem 3.2 can be attained.

Furthermore

$H_i g_1^{-1} = H_i g_1^{-1} F_i g_1 H_i^{-1} H_i g_1^{-1}$

$= H_i g_1^{-1} g_1 H_i^{-1} \alpha H_i g_1^{-1}$

$= \alpha H_i g_1^{-1} = \alpha H_i g_1^{-1}$ on G.

This shows that for each point a of G

$g(a \times 1) = \alpha H_i g_1^{-1}(a) = \alpha H_i g_1^{-1}(a) = H_i g_1^{-1}(a)$.

Hence Condition 5 of the statement of Theorem 3.2 can be attained.
Step 8. As an isotopy on S. A 2-sphere S has the property that for each positive number a, there is a positive number b, such that if h is a homeomorphism of S onto itself that moves no point by more than b, there is an isotopy F_t ($0 \leq t \leq 1$) on S such that $F_0 = I$, $F_1 = h$, and $g(F_t, I) < a$. See [10].

We have that G is a stable graph on S. Each component of $S - G$ is of diameter less than e, and for each point of a, G,

$$g(\gamma_1, H_1^{-1} H_2 \gamma_2^{-1}(a), a) < e + (9e + \epsilon a_1 + 3(9e + 2e_1) + (9e + 9e_1) + e = 18e_1 + 2e_1 + 23e_1.$$

It follows from Theorem 9.5 that for e_1 and $18e_1 + 2e_1 + 23e_1$ sufficiently small, $g(\gamma_1, H_2^{-1} H_2 \gamma_2^{-1})$ on G may be extended to a homeomorphism h of S onto itself such that $g(h, I) < e$. Then

$$F_1 = g_1 H_1^{-1} X H_2 \gamma_2^{-1}$$

on G.

5. The Intersection of 2-spheres with Cylinders. Let L be a vertical line. It may be that $S - L$ contains infinitely many points. In this case, the number of components of $S - L$ may increase with i. In this and the next section we seek to control these intersections.

Question. There is no known method for slightly adjusting an arbitrary 2-sphere with an isotopy of E^n onto itself so as to make the intersection of the adjusted surface with a fixed line finite. The lack of such a method led to complications in [3] and [13]. It would be convenient to know if each 2-sphere is pierced by a tame arc.

Let L be a vertical line and A be a triangle in a horizontal plane P such that $A - L$ is the center of A. Let $D(a)$ denote the triangle with center at $P - L$, diameter a, edges parallel to the edges of A, and vertices on the rays from $P - L$ through the vertices of A. We use $C(a)$ to denote the vertical triangular cylinder such that $P - C(a) = D(a)$.

We suppose that c is so small that only one component of $S - C(a)$ has a large diameter and this component $U(a)$ lies in $E(x)$. For each $0 < x < a$, we use $U(x)$ to denote the component of $S - C(x)$ containing $H(a)$ and $K(x)$ to denote the collection of components X of $U(a) - C(x)$ such that $C(x) - X$ has two unbounded components.

Theorem 5.1. If $0 < a < c$, each element of $K(x)$ separates $U(x)$ from a point of $S - L$.

Proof. Assume X is an element of $K(x)$ that separates no point of $S - L$ from $U(x)$ in S. We show in six steps that the assumption that such an X exists leads to a contradiction.

1. If X does not separate any point of $S - L$ from $U(x)$ in S, there is a continuum Y in $S - X$ that contains $S - L$. Let X^+ be the component of $S - U(x)$ containing X. Then X^+ is a component of $S - U(x)$ that is not contained in $S - X$. If X^+ contains a point x of $S - Y$, then x is a point of $S - Y$.

2. Let x_i be a positive number less than one half the distance from L to $O(x)$ and x_2 be a positive number so small that if p_1, p_2 are two points of D such that $g(p_1, p_2) < x_1$, then $p_1 + p_2$ lies on an arc in D of diameter less than x. The existence of such a number x_2 follows from the uniform local connectedness of disk D.

3. Since each unbounded component of $C(x) - X$ is topologically equivalent to the interior of a circle minus its center, there is a simple closed curve J in $C(x)$ such that $C(x) - J$ has two unbounded components and $J \cap V(x) \cup x_2$ where $V(A, e)$ denotes the set of all points whose distances from A are less than e. We call $V(A, e)$ the e-neighborhood of A.

4. The simple closed curve J cannot be shrunk to a point without hitting L—that is, there is no map of a disk E onto $E^n - L$ that takes $Bd E$ homeomorphically onto J. If there were such a map, one could find by using a projection from L that there is a map f_1 of E onto $C(x)$ that takes $Bd E$ homeomorphically onto J_1; there is a retraction f_1 of $C(x)$ onto J_1; then $f_1^{-1} f_2 f_1$ is a map of E onto $Bd E$ that leaves each point of $Bd E$ fixed. Rather than using the set of impossible maps to arrive at a contradiction to the assumption that J can be shrunk to a point without hitting L, certain linking arguments could have been used instead.

5. Since $J \cap V(x) \cup x_2$, there is a map g of J into D such that $g(p_1, g(p_2)) < x_1 + x_2 < g(L, C(x))$. To get such a g one could consider points $p_1, p_2, ..., p_n = p_1$ on J such that $g(p_1, p_{i+1}) < x_1 + x_2$ points $g(p_1, g(p_2), ..., g(p_n)) = g(p_1, g(p_2))$ on X such that $g(p_1, g(p_2)) < x_1 + x_2$ and extend g to an arc $p_0 p_1$ of J onto an arc in D of diameter less than x_1.

6. Finally we show that the false assumption that X separates no point of $S - L$ from $U(x)$ in S leads to the contradiction that J can be shrunk to a point without hitting L (violating Step 4). Let E be the disk $x^2 + y^2 \leq 4$ in the x,y plane and f be a homeomorphism of $Bd E$ onto J. Then f can be extended to $1 \leq x^2 + y^2 \leq 4$ so that for each point (x, y) of $Bd E$, f takes the interval from (x, y) to $(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2})$ linearly onto the interval from (x, y) to $g(x, y)$. Since $g(J) \subset D$, the map f can be extended to map $x^2 + y^2 \leq 1$ into D. The map f we have described shrinks J to a point in $E^n - L$ and contradicts Step 4.

Theorem 5.2. If $0 < x < c$, $x \in X(x)$, and $e > 0$, there are simple closed curves J_3, J_4 on S in an e-neighborhood of X such that X separates J_3 from J_4 on S and neither J_3 nor J_4 can be shrunk to a point in $E^n - L$.

Proof. We suppose \(s < \alpha(L, C(x)) \). Let \(D \) be an open subset of \(S \) containing \(x \) such that \(D \cap C(x) \) and \(D \) is the sum of a finite collection of simple closed curves \(J_1, J_2, ..., J_n \) in different components of \(S - X \). We show that the assumption that each \(J_i \) with the possible exception of \(J_1 \) can be shrunk to a point on a set \(E_1 \) in \(D - L \) leads to a contradiction.

It follows from Steps 3 and 4 of the proof of Theorem 5.1 that there is a simple closed curve \(J \) in \(C(x) \) such that \(J \) cannot be shrunk to a point in \(D - L \) but \(J \) can be shrunk in \(D - L \) to a closed set \(Y \) in \(D \). But the set \(Y \) in turn can be shrunk to a point in \(D + R_0 + ... + R_0 \). This shrinking violates the condition that \(J \) cannot be shrunk to a point in \(D - L \).

Theorem 5.3. For each fixed positive number \(x < \alpha \), \(K(x) \) has only a finite number of elements.

Proof. Cover \(S \) with a finite collection \(V_1, V_2, ..., V_n \) of connected open subsets of \(S \) such that each \(V \) is of diameter less than \(\alpha(L, C(x)) \). Then each element of \(K(x) \) separates \(V \) from \(U(x) \) in \(S \) but no two elements of \(K(x) \) separates the same \(V \) from \(U(x) \) in \(S \). Hence, there are not more than \(n \) elements in \(K(x) \).

Theorem 5.4. For each element \(x \) of \(K(x) \) and each \(0 < x < \alpha \), \(x \) separates some element of \(K(x) \) from \(U(x) \).

Proof. Assume otherwise. Then there is a continuum \(Y \) in \(S - X \) containing all elements of \(K(x) \) and a disk \(D \) in \(S - Y \) such that \(X \subset D \), \(D \cap C(x) \subset U(x) \). Let \(D' \) be the component of \(D - C(x) \) containing \(D \). It may be that \(D - C(x) \) contains a component that separates \(C(x) \) into two unbounded sets but since \(D \) contains no component that separates \(C(x) \) into two unbounded sets.

Following the proof of Theorem 5.3, we find that there is a simple closed curve \(J \) in \(C(x) \) that cannot be shrunk to a point in \(D - L \) but \(J \) can be shrunk in \(D - L \) to a closed set on \(D \). Then there is a map \(g \) of the disk \(\mathbb{D}^2 \) into \(D \) such that \(g \) takes the circle \(\mathbb{S}^1 \) homeomorphically onto \(J \).

\[
g(1 < \mathbb{S}^1 + \mathbb{S}^1 = 1) \subset D, \quad g(\mathbb{S}^1 + \mathbb{S}^1 = 1) \subset D.
\]

Let \(Z \) be the set of all points \(p \) of the disk \(\mathbb{S}^2 \) such that there is an arc \(A \) in \(\mathbb{S}^2 + \mathbb{S}^2 \) from \(p \) to \(D \) such that \(g(A) \) misses \(C(x) \). Let \(f = g \) on \(Z \). The map \(f \) of \(Z \) into \(D - C(x) \) can be extended to take \(\mathbb{S}^2 + \mathbb{S}^2 \) into \(D \) such that \(f(\mathbb{S}^2 + \mathbb{S}^2) = 1 \). This contradicts the definition of \(J \).

Corollary 5.5. If \(0 < x < \alpha \), the number of elements in \(K(y) \) is less than or equal to the number of elements in \(K(x) \).

Theorem 5.6. Suppose that \(f \) is a homeomorphism of the plane set \(1 < x^2 + y^2 \leq 4 \) into \(D - L \) such that \(f(x^2 + y^2 = 4) \) cannot be shrunk to a point in \(D - L \). If a component of \(U(x) \) separates \(f(x^2 + y^2 = 1) \) from \(f(x^2 + y^2 = 4) \) in \(f(1 < x^2 + y^2 \leq 4) \), this component also separates \(C(x) \) into two unbounded sets.

Proof. The proof is a modification of the last paragraph of the proof of Theorem 5.4. Let \(D' \) be the component of \(f(1 < x^2 + y^2 \leq 4) \) containing \(f(x^2 + y^2 = 4) \). If no component of \(D' - C(x) \) separates \(C(x) \) into two unbounded sets, there is a map \(f' \) of \((x^2 + y^2 = 4) \) into \(D' - C(x) \) such that \(f' \) agrees with \(f \) on \((x^2 + y^2 = 4) \). This contradicts the condition that \(f(x^2 + y^2 = 4) \) cannot be shrunk to a point in \(D - L \).

The preceding argument also gives the following result.

Theorem 5.7. If \(0 < x < c \) and \(J \) is a simple closed curve in \(U(x) \) that cannot be shrunk to a point in \(D - L \), then \(J \) separates an element of \(K(x) \) from \(U(x) \).

Theorem 5.8. Each subinterval \([a, b]\) of \([0, c]\) contains a subinterval \([a, b] \) such that if \(x, y \) are elements of \([a, b] \), then \(K(x), K(y) \) have the same number of elements.

Proof. Suppose \(K(a), K(b) \) have \(n \) elements respectively. If we consider \(m - n + 1 \) mutually exclusive subintervals of \([a, b]\), it follows from Corollary 5.5 that one of them, \([a, b] \), satisfies the conclusions of Theorem 5.8.

Theorem 5.9. The interval \([a, b] \) of Theorem 5.8 contains a subinterval \([a, b] \) such that if \(x, y \) are points of \([a, b] \), the elements of \(K(x) \) and \(K(y) \) may be ordered \(X(x), X(y), ..., X(x), X(y), ... \), so that \(X(x), X(y), ... \) separate the same subset of \(S - L \) from \(U(x) \).

Proof. If \(a \leq x \leq y \leq b \), it follows from Theorems 5.4 and 5.8 that if \(X(x) \) is an element of \(K(x) \), then there is one and only one element \(X(x) \) of \(K(y) \) that separates \(X(x) \) from \(U(x) \) in \(S \). These are corresponding elements and are given the same subscripts.

Let \(V_1, V_2, ..., V_n \) be connected subsets of \(S - \text{Int} C(x) \) covering \(S - L \). If an element of \(K(x) \) separates \(V_i \) from \(U(x) \) in \(S \), then the corresponding element of \(Y(x) \) if \(a \leq x \leq y \leq b \). Hence some subinterval \([a', b'] \) of \([a, b] \) has the property that if \(x, y \) are elements of \([a', b'] \), an element of \(K(x) \) separates \(V_i \) from \(U(x) \) in \(S \) if and only if, the corresponding elements of \(K(y) \) do. A subinterval of \([a', b'] \) has this property with respect to \(V_i \). By taking subintervals for as many times as there are elements in \(V_1, V_2, ..., V_n \), we arrive at a subinterval \([a, b] \) of \([a, b] \) such that if \(x \) are elements of \([a, b] \), an element of \(K(x) \) separates a \(V_i \) from \(U(x) \) in \(S \) if and only if, the corresponding element of \(K(y) \) does.
THEOREM 5.10. If \(X', X'' \) are corresponding elements of \(K(a_1), K(b_1) \) respectively of Theorem 5.9 and \(J \) is a simple closed curve in \(S \) that separates \(X' \) from \(X'' \) in \(S \), then \(J \) cannot be shrunk to a point in \(E^2 \).

Proof. Since \(X', X'' \) separates the same subset of \(S-L \) from \(U(c) \) in \(S \), the component \(U' \) of \(S-(X'+X'') \) between \(X' \) and \(X'' \) contains no point of \(L \).

Let \(X' \) be the element of \(K(a_1+\delta, b_1) \) corresponding to \(X', X'' \). It follows from Steps 3 and 4 of the proof of Theorem 5.1 that there is a simple closed curve \(J' \) on \(C(a_1+\delta, b_1) \) such that \(J' \) cannot be shrunk to a point in \(E^2 \) but it can be shrunk in \(E^2-L \) to a closed set \(Y \) in \(E^2 \). Since \(U' \) is topologically equivalent to the plane set \(Y \), \(Y \) can be shrunk into \(J \) in \(U' \). But \(J \) cannot be shrunk to a point in \(E^2 \) or else \(J' \) could be shrunk to a point by way of \(Y \) and \(J \).

THEOREM 5.11. For each positive number \(\varepsilon \) there is a subinterval \([a_1, b_1]\) of \([a_1, b_1]\) of Theorem 5.9 such that if \(x \in [a_1, b_1] \) and \(X(x), X(a_1), X(b_1) \) are corresponding elements of \(K(x), K(a_1), K(b_1) \), then the component \(S-(X(a_1)+X(b_1)) \) between \(X(a_1) \) and \(X(b_1) \) is in an \(\varepsilon \) neighborhood of \(X(x) \) and is between \(O(b_1) \) and \(O(a_1) \).

Proof. Pick an element \(X(a_1) \) of \(K(a_1) \) for preliminary consideration. For each element \(x \) of \([a_1, b_1]\) we let \(X(x) \) denote the element of \(K(x) \) corresponding to \(X(a_1) \). The \(X(x)'s \) are linearly ordered on \(S \) in the sense that if \(x < y < z \), \(X(y) \) separates \(X(x) \) from \(X(z) \) on \(S \). Using this linear ordering and the fact that there are uncountably many \(x \)'s between \(a_1 \) and \(b_1 \) we find a subinterval \([a_2, b_2]\) of \([a_1, b_1]\) so that if \(C \) is a continuum in \(S \) separating \(X(a_1) \) from \(X(b_1) \), \(C \) lies between \(O(a_1) \) and \(O(b_1) \) while the component of \(S-(X(a_1)+X(b_1)) \) between \(X(a_1) \) and \(X(b_1) \) is in an \(\varepsilon \) neighborhood of \(C \).

If \([a_2, b_2]\) is successively shortened by an iteration of the above process in considering the various other elements of \(K(a_1) \), we arrive at an interval \([a, b]\) satisfying the conclusion of the theorem.

6. The intersections of cylinders and approximating 2-spheres. In the preceding section we considered the intersection of \(S \) with certain vertical triangular cylinders \(C(x) \). The \(C(x)'s \) we use in this section are the same as those used in Section 5. In the present section we find that if \(S' \) is a close approximation to \(S \), its intersection with certain \(C(x)'s \) has some properties in common with the intersection of \(S \) with these \(C(x)'s \).

Suppose \(0 < \varepsilon < \varepsilon \) and \(h \) is a homeomorphism of \(S \) onto a 2-sphere \(S' \) such that \(h \) moves no point as far as \(g(U(c), O(x)) \). We use \(U(x) \) to denote the component of \(S'-C(x) \) containing \(h(U(c)) \) and \(K(x, S') \) to denote the collection of all components of \(U(x) \) that separate \(C(x) \) into two unbounded pieces.

THEOREM 6.1. Suppose \([a_1, b_1]\) is the subinterval promised by Theorem 5.11, \(a_1 < a_2 < b_1 < b_2 \), and \(h \) is a homeomorphism of \(S \) onto a 2-sphere \(S' \) such that \(g(h, J) < \min \{ g(C(a_2), C(a_1)), g(C(b_2), C(b_1)) \} \).

Then if \(x \in [a_1, b_1] \), \(K(x, S') \) has the same number of elements as \(K(x) \) and there is a correspondence between the elements of \(K(x) \) and \(K(x, S') \) such that an element of \(K(x) \) separates a point of \(S-L \) from \(U(c) \) if and only if the corresponding element of \(K(x, S') \) separates \(h(p) \) from \(h(U(c)) \).

Proof. Since \(h \) is so near \(I \), \[h(U(b_1)) \subset U(b_1) \subset h(U(a_1)) \).

Let \(X, X'' \) be corresponding elements of \(K(b_1), K(a_1) \). Applying Theorems 5.2 and 5.7 to an annulus on \(S' \) between \(h(X) \) and \(h(X'') \), we find that for each element \(x \) of \([a_1, b_1] \), an element \(X' \) of \(K(x, S') \) separates \(h(X) \) from \(h(X'') \). Then \(X \) separates a point \(p \) of \(S-L \) from \(U(c) \) on \(S \) and only if \(X' \) separates \(h(p) \) from \(h(U(c)) \) on \(S' \).

We finish the proof of Theorem 6.1 by showing that all elements of \(K(x, S') \) are of the sort described above. Suppose there is an element \(X' \) of \(K(x, S') \) such that \(h^{-1}(X') \) does not separate from \(U(c) \) any element of \(K(a_1) \). It follows from Theorem 5.2 that there is a simple closed curve \(J \) in \(S' \) such that \(J \) cannot be shrunk to a point in \(E^2-L \). \(X \) separates \(h(U(c)) \) and \(J \) is so near \(X \) that \(h^{-1}(J) \subset U(a_1)-U(c) \) and \(J \) can be shrunk to \(h^{-1}(J) \) in \(E^2-L \). But Theorem 5.7 gives the contradiction that \(h^{-1}(J) \) separates an element of \(K(a_1) \) from \(U(c) \) in \(S' \).

THEOREM 6.2. If \(X, X' \) are corresponding elements of \(K(c), K(x, S') \) of Theorem 6.1, then each lies in a \(2 \varepsilon \) neighborhood of the other where \(\varepsilon \) is as given in Theorem 5.11. If \(x \) is taken to be sufficiently small, no element of \(K(x)+K(x, S') \) separates \(X \) from \(X' \) on \(C(c) \).

Proof. Let \(X(a_1), X(b_1) \) be elements of \(K(a_1), K(b_1) \) corresponding to \(X \) of \(K(x) \). Since \(h^{-1}(X') \) separates \(X(a_1) \) from \(X(b_1) \) as shown in Theorem 6.1, each of \(X, h^{-1}(X') \) lies in an \(\varepsilon \) neighborhood of the other as shown in Theorem 5.11, and \(g(h, J) < \varepsilon \), each of \(X, X' \) lies in a \(2 \varepsilon \) neighborhood of the other.

If \(X_1, X_2 \) are two elements of \(K(b_1) \), the subsets of \(S \) separated from \(U(c) \) by \(X_1, X_2 \) are a finite distance apart and for \(x \in [a_1, b_1] \), the corresponding elements of \(K(x) \) are at least this far apart. Decreasing the size of \(\varepsilon \) of Theorem 5.11 does not make noncorresponding elements close together. Hence, for \(\varepsilon \) sufficiently small, the last sentence in the statement of Theorem 6.2 is satisfied.
Applications of the theorems of Sections 5 and 6 to vertical triangular cylinders about the corners of a fence give the following result.

Theorem 6.3. Suppose \(S \) is a 2-sphere in \(E^n \) that contains no vertical interval; \(S_1, S_2, \ldots \) is a sequence of polyhedral 2-spheres in \(\text{Int} S \) such that \(S_i \cap \text{Int} S_{i+1} \) and \(H(S_i, S_{i+1}) < 1 \); \(F \) is a fence; and \(e \) is a positive number. Then there are mutually exclusive vertical triangular cylinders \(G_1, G_2, \ldots, G_n \) about the corners of \(F \) that intersect \(S \) such that

1. no corner of any \(G_i \) lies in \(F \),
2. each \(G_i \) is in general position with respect to each \(S_i \),
3. for \(i \) sufficiently large, \(S_i - \bigcup_i C_i \) has a component \(U_i \) such that each component of \(S_i - U_i \) is of diameter less than \(e \).

Furthermore, if \(K(r, i) \) denotes the collection of components of \(C_i \cap \text{Int} D \) that separate \(C_i \) into two unbounded pieces, there is an integer \(k \) such that for \(i \), \(j > k \), there is a 1-1 correspondence between the elements of \(K(r, i) \) and \(K(r, j) \) such that

1. the distance between corresponding elements is less than \(e \),
2. and no element of \(K(r, i) + K(r, j) \) separates two corresponding elements from each other on \(C_r \).

7. Isotopies near 2-spheres. A polyhedral 2-sphere \(S \) may have feelers that wander in and out of other 2-spheres \(M_1, M_2, \ldots, M_n \). In this section we learn how to pull these feelers back without moving points too far.

Theorem 7.1. Suppose \(S, M \) are polyhedral 2-spheres in \(E^n \) in relative general position; \(D \) is a disk in \(M \) such that \(D \cdot S = \text{Bd} D \); \(E \) is a disk in \(S \) bounded by \(\text{Bd} D \); \(V_D, V_K \) are interiors of polyhedral 3-cells such that their interiors contain \(\text{Int} D \), \(\text{Int} E \) respectively; \(G \) is the polyhedral cube bounded by \(D \cdot E \), and \(e > 0 \). Then there is a piecewise linear isotopy \(H_t \) (0 \(\leq t \leq 1 \)) of \(E^n \) onto itself such that

1. \(H_t(E) = D \),
2. \(H_t(I) = I \) (Identity) outside \(C + V_D + V_K \),
3. \(H_t(C) \subset D + V_D \),
4. \(H_t \) moves no point which is outside \(V_D + C \) by as much as \(e \),
5. \(q(H_t(x), H_t(y)) < e \) if \(s, t \) are two values of \([0, 1] \) and \(x \) is a point such that neither \(H_s(x), H_t(x) \) belong to \(C + V_K \).

Proof. Figure 5 shows how we use \(H_t \) to pull back a feeler \(E \) of \(S \).

It follows from the extension of Alexander's theorem [1] due to Moise [10] and Graben [12] that there is a piecewise linear homeomorphism \(h \) of \(E^n \) onto itself that takes \(D \cdot E \) onto the surface of a tetrahedron \(abcp \) whose base \(abc \) is \(h(D) \). Let \(g \) be the center of \(abc \) and \(r, s \) be points such that \(rpsg \) is a straight line interval (with points \(r, p, q, s \) in the order indicated) such that \(ab \subset h(C + V_E) \).

\(\text{Int} ab \subset h(V_D) \), and \(s \) is very close to \(g \).

Let \(a \) be the point of \(pg \) whose distance from \(p \) is \(t \) times the length of \(pg \). Let \(H_t \) be the homeomorphism of \(E^n \) onto itself fixed outside \(ab + abc \), that takes \(p \) to \(a \) and is linear on the tetrahedra \(abpr, bpx, abps, bps \). Then \(H_t = h^{-1}H_t h \).

Conditions 1, 2, 3 of the hypothesis of the theorem are met without restricting \(s \) to be very close to \(g \) but a sufficiently stringent enforcement of this restriction causes Conditions 4 and 5 to be satisfied.

Theorem 7.2. Suppose \(K \) is a polyhedral cube in \(E^n \) and \(D, E \) are two polyhedral disks such that \(D \cdot Bk = \text{Bd} D = Bk \cdot E = E \cdot \text{Bd} K \), \(\text{Int} D \subset \text{Int} K \), \(\text{Int} E \subset \text{Int} K \). Then there is a piecewise linear isotopy \(H_t \) (0 \(\leq t \leq 1 \)) of \(E^n \) onto itself that is the identity except on \(K \) and such that \(H_t(E) = D \).

Proof. With the exception of the piecewise linear part of the conclusion, this theorem was essentially proved by Alexander in [2]. It
has been used as a lemma since we include a short proof for completeness.

Let E' be a polyhedral disk such that $\text{Bd}E' = \text{Bd} D$, $\text{Int}E' \subseteq \text{Int} E$, $E' \cap (D + E) = \text{Bd} E'$. It follows from Theorem 7.1 that there is an isotopy $H_t(0 \leq t \leq 1)$ of E' onto itself so that H_t is the identity on E and $H_{t0}(E') = E'$. Another application of Theorem 7.1 shows that $H_t(0 \leq t \leq 1)$ can be extended to $H_t(0 \leq t \leq 1)$ so that H_t is the identity except on E and $H_t(E) = D$.

Theorem 7.3. Suppose M_1, M_2, \ldots, M_k are mutually exclusive polyhedral 2-spheres in E each of diameter less than ϵ.

Suppose S is a polyhedral 2-sphere in general position with respect to each of the M_i's and U is a component of $S - \sum M_i$ of diameter more than 2ϵ such that each component of $S - U$ is of diameter less than ϵ.

Then for each continuum X in E' minus $\{\sum M_i + (S - U)\}$ that intersects U there is an isotopy $H_t(0 \leq t \leq 1)$ of E' onto itself such that

1. H_t moves no point of $U - X$,
2. for each component E_i of $S - U$, $H_t(\text{Int} E_i)$ lies in some $\text{Int} M_i$,
3. H_t moves no point of S by as much as 3ϵ, H_t moves no point of S by as much as 6ϵ,
5. H_t moves no point of E by as much as 9ϵ.

Proof. Some of the coefficients ϵ given in Conditions 3, 4, 5, 6 may be a bit extravagant but they are good enough for our purposes when we apply Theorem 7.3 in Theorem 3.2. We divide the proof into seven steps.

Step 1. Preliminary simplifications. Let J_1, J_2, \ldots, J_n be the simple closed curves in D and E_i be the disk in $S - U$ bounded by J_i.

With no loss of generality we suppose that each M_i contains one of the J_i's since we can discard from consideration any that does not.

We suppose that no M_i contains two J_i's because if M_i contains $J_1 + J_2$, we can split it and get two mutually exclusive polyhedral 2-spheres M', M'' such that $J_1 \subseteq M'$, $J_2 \subseteq M''$, $M \subseteq M' + M'' \subseteq M_i + \text{Int} M_i$.

Hence we suppose that $J_1 \subseteq M_i$.

If $\text{Int} E_i \subseteq \text{Int} M_i$, we consider E_i as joined to U and ignore both E_i and M_i. There is no need for the isotopy to move E_i.

Step 2. Description of H_t. The isotopy promised by Theorem 7.3 is given by iterated applications of Theorem 7.1 used to reduce the number of components of $S - \sum M_i$. Suppose there are $n + k$ such components.

If $\text{Int} E_i \subseteq \text{Int} M_i$, consider a disk D_i in M_i such that $D_i \subseteq \text{Int} E_i \cap (S - U)$ and E_i be the disk in $S - U$ bounded by E_i. Let C be the polyhedral cube bounded by $D + E$.

We take V_0 and V_2 to be open sets containing D and E respectively such that each point of D is very near D and each point of E is very near E. We shall discuss how close this should be later when we use this restriction to show that an isotopy we describe does not move points too far.

We apply Theorem 7.1 to get an isotopy $H_t(0 \leq t \leq 1/2k)$ pulling D to E and fixed at each point of $S - E$ and at each point outside $C + V_0 + V_2$. The V_is we described in the preceding paragraph are slightly larger than those mentioned in Theorem 7.1 but we use these larger ones since we shall need them in the next paragraph when we show points across D.

We suppose the isotopy $H_t(0 \leq t \leq 1/2k)$ satisfies Conditions 1, 2, 3, 4, 5 of Theorem 7.1 (with $1/2k$ substituted for 1 in determining range of t) where the size of the ϵ mentioned in Conditions 4 and 5 is to be given later. It is not the same as the ϵ mentioned in the statement of Theorem 7.3.

Moving nothing except in V_0, we extend $H_t(0 \leq t \leq 1/2k)$ to $H_t(0 \leq t \leq 1/k)$ by showing D to one side of M_1 so that nothing moves far (far is explained later) and $H_{1k}(S)$ is a polyhedral 2-sphere in general position with respect to the M_i's, $H_{1k}(S) \subseteq (S - E) + V_0 + V_2$, and $H_{1k}(S) - \sum M_i$ is a proper subset of $S - \sum M_i$.

Using $H_{1k}(S)$ instead of S, the process is continued to reduce the number of components of the intersection of $\sum M_i$ and the resulting image of S. Taking a disk D in some M_i such that $D \subseteq (H_{1k}(S) - U)$, we consider neighborhoods V_D, V_E about D and $H_{1k}(E)$ and extend $H_t(0 \leq t \leq 1/k)$ to $H_t(0 \leq t \leq 2/k)$ so as to move E across D as before.

In general we suppose that H_t is extended so that $H_{1k}(S) - \sum M_i$ is the sum of at most $n + k - j$ components of $S - \sum M_i$.

It is clear that if the V_0's are chosen so as not to intersect $U + X$, then $H_t(0 \leq t \leq 1)$ satisfies Condition 1 of the conclusion of the theorem and $H_{1k}(S)$ satisfies Condition 2. We need to place restrictions on the V_0's in order to show that Conditions 3, 4, 5, 6 are satisfied.

Step 3. Distance H_t moves points of S. Let us consider the points of the E_i's and see how far they move under H_t. Let E_i^- be the sum of E_i and all the M_i's intersecting it. If we suppose that each point of D is within δ of D, then each point of $H_{1k}(E_i)$ is within δ of E_i^-. Since diameter E_i^- is less than 3ϵ, we may restrict the V_0's and suppose that each $H_{1k}(E_i)$ is of diameter less than 3ϵ and $PQ(E_i) > 3\epsilon$ if $P \notin S$. Hence Condition 3 is satisfied.

The cube C used at any stage is near the appropriate E_i^+ so we may suppose that for each point x of E_i^+,

$$H_{1k}(x) \leq 3\epsilon \quad \text{if} \quad j/k \leq t \leq (j+1)/k$$.
The preceding two paragraphs show that by restricting the V_1's and V_2's, we can keep H_i from moving any point of S by more than 6ε. Hence Condition 4 is satisfied.

Step 4. Traps to be avoided. Now let us turn our attention to Conditions 5 and 6 as applied to points of E^2-S. We must control our isotopies so as not to move a point too far. A trap to be avoided is illustrated by Figure 6. The point p_4 is near the lastmost sticker and is pulled into the left cube when the sticker is pulled in. If it goes into p_3, near another sticker, this point by turn is pulled to p_2 when this sticker is removed. Care must be taken so that the point p_3 does not move to p_2, then to p_1, then to p_4, then to p_5, etc., and hence move more than 12ε. This is accomplished by restricting the sizes of the V_1's and V_2's used.

![Fig. 6](image)

Points of the V_1's offer special difficulties as suggested in the preceding paragraph so we first consider a point p of E^2-S such that for $j=r, r+1, \ldots, k-1$, the point $H_j(p)$ is not a point of the V_1's about the disk E in $H_{3k}(S)$ used in extending H_i past H_{3k}. We let $s=r/k$ and show that with suitable restrictions on the V_1's, $q(H_{3k}(p), H_{3k}(p)) < 6\varepsilon$ ($s \leq t \leq 1$).

Step 5. Diameter of $H_{3k}(p)$. Let $H_{3k}(p)$ denote the sum of $H_j(p)$ and all M_j's such that each are from H_j to $E^2-H_j \bigcup E_j$ that intersects M_j. As a help in showing that $q(H_{3k}(p), H_{3k}(p)) < 6\varepsilon$, we show in the next four paragraphs that $H_{3k}(p)^+ < 3\varepsilon$.

If no M_j separates $H_{3k}(p)$ from $E^2-H_j \bigcup E_j$, then $H_{3k}(p)^+$ is the point $H_{3k}(p)$ and its diameter is less than 3ε. Hence we suppose that some M_j separates $H_{3k}(p)$ from $E^2-H_j \bigcup E_j$.

We use $H_j(E_j)$ to denote the sum of $H_j(E_j)$ and all M_j's that intersect it. We suppose $H_j(E_j)^+$ is so close to E_j^+ that it is of diameter less than 3ε.

If $H_j(p) \in M_j$, let E_j be an arc on M_j irreducible from $r-H_j(p)$ to $H_j(\bigcup E_j)$. Suppose $q \in H_j(E_j)$. Then $H_j(p)^+ \subset H_j(E_j)^+$ and is therefore of diameter less than 3ε. A similar argument shows that $H_{3k}(p)^+$ is of diameter less than 3ε if $H_{3k}(p) \subset \text{Int} M_j$.

If $H_j(p) \notin M_j$, it follows from the unicoherence of $E^2-\bigcup E_j$ that there is an $H_j(E_j)$ accessible from $H_j(p)$ in $E^2-\bigcup E_j$ such that $H_j(p)^+ \subset \sum M_j$ separates $H_j(p)$ from $E^2-H_j(p)$ and $H_j(p)^+ \subset H(j)(p)^+$, diameter $H_j(p)^+ \subset H(j)(p)^+ = \text{diameter } H_j(E_j) < 3\varepsilon$. This completes the proof that for each point p of E^2-S, diameter $H_{3k}(p)^+ < 3\varepsilon$.

Step 6. Distance moved by a point p whose image is never in V_E again. Again we suppose that if $j > r$, $H_{3k}(p)$ does not lie in the V_E used in extending H_i. We show that if $e = r/k$, then $q(H_E(p), H_E(p)) < 6\varepsilon$ if $s \leq t \leq 1$. We can accomplish this by showing that $q(H_E(p), H_{3k}(p)) < 3\varepsilon$ if $e = r/k \leq j/k$ since it has already been demonstrated that $q(H_{3k}(p), H_{3k}(p)) < 3\varepsilon$ if $e = r/k \leq j/k$.

Since $H_{3k}(p)$ does not belong to the V_E used in extending H_i, as s moves from $s = r/k$ to $s = (r+1)/k$, $H_{3k}(p)$ does not move far unless it is in the C used at this stage. If it is in the C, $H_{3k}(p)$ is moved close to D that lies in $H_{3k}(p)$.

In any case, by a proper choice of the e of Theorem 7.1, we can cause each $H_{3k}(p)^+$ to be very close to its $H_{3k}(p)^+$.

If M_j belongs to $M_{i-1, i-1}^+, \ldots, M_{i-1, i}^+$, it belongs to $H_{3k}(p)^+$. Hence, as s takes on the values $r/k, (r+1)/k, (r+2)/k, \ldots, (r+e)/k$, $H_{3k}(p)$ remains close to $H_{3k}(p)^+$. We may suppose that $q(H_{3k}(p), H_{3k}(p)) < 3\varepsilon$ ($s = r/k \leq j/k$) and $q(H_{3k}(p), H_{3k}(p)) < 6\varepsilon$ ($s \leq t \leq 1$) if $H_{3k}(p)$ is never in the V_E used in extending H_i.

The preceding argument shows that H_i does not move p by as much as 6ε if for no j does $H_{3k}(p)$ belong to the V_E used in extending H_i.

Step 7. Distances moved by a point one of whose images is in a V_E. At any stage we have disk E and can select a V_E each of whose points is very close to E. No point of E has been moved by as much as 6ε and H_{3k} moves no point of E by as much as 3ε. Hence we may select V_E so that for each point p of V_E, $q(p, H_{3k}(p)) < 3\varepsilon$ and $q(p, H_{3k}(p)) < 6\varepsilon$ if $0 \leq t \leq 1$. We now show that this restriction on V_E insures that Conditions 5 and 6 are satisfied.

Suppose $H_{3k}(p)$ lies in the V_E used in extending H_{3k} but if $r < j$, $H_{3k}(p)$ does not belong to the V_E used in extending H_{3k}. It follows from the restriction placed on V_E in the preceding paragraph that $q(p, H_{3k}(p)) < 3\varepsilon$ and $q(p, H_{3k}(p)) < 6\varepsilon$ if $0 \leq t \leq r/k$. We found in Step 3 that $q(H_{3k}(p), H_i(p)) < 3\varepsilon$ if $r/k \leq t \leq (r+1)/k$ and in Step 6 that $q(H_{3k}(p), H_i(p)) < 3\varepsilon$ and $q(H_{3k}(p), H_i(p)) < 6\varepsilon$ if $(r+1)/k \leq t \leq 1$. These relations imply Conditions 5 and 6.

Fundamenta Mathematicae, T. XLVII.
Theorem 7.4. If \(E_1, E_2, \ldots, E_n \) are the disks of \(S - U \) of Theorem 7, and \(D_1, D_2, \ldots, D_n \) are mutually exclusive polyhedral disks such that \(\text{Bd } E_i = \text{Bd } D_i \) and \(\text{Int } D_i \subset \text{Int } M_i \), then the isotopy \(H_t \) (\(0 \leq t \leq 1 \)) may be chosen satisfying the conclusion of Theorem 7.3 and such that \(H_t(E_i) = D_i \).

Proof. The proof of this theorem follows the pattern of the proof of Theorem 7.3 except that we use \(n + k \) rather than \(k \) steps in describing \(H_t \), the extra steps being used to apply Theorem 7.2 and pull the \(E_i \)'s onto the \(D_i \)'s.

Theorem 7.4 may be extended by replacing \(S \) by a finite collection of mutually exclusive \(2 \)-spheres. We need the following result where there are two \(S' \).

Theorem 7.5. Suppose \(M_1, M_2, \ldots, M_n \) are mutually exclusive polyhedral \(2 \)-spheres in \(E^2 \) such that each is of diameter less than \(\epsilon \).

Suppose \(S, S' \), or \(S'' \) are mutually exclusive polyhedral \(2 \)-spheres each in general position with respect to the \(M_i \)'s and \(U, U' \) are components of \(S - \sum M_i, S' - \sum M_i \), respectively, each of diameter more than \(2\epsilon \) and such that each component of \(S-U+S'-U'' \) is of diameter less than \(\epsilon \).

Suppose \(D_1, D_2, \ldots, D_m \) are mutually exclusive disks such that \(U + U' + \sum D_i \) is the sum of two polyhedral \(2 \)-spheres and each \(\text{Int } D_i \) lies in \(\sum M_i \).

Then for each continuum \(X \) in \(E^2 - (\sum M_i + S' - U' + S'' - U'') \) that intersects \(U + U' \) there is an isotopy \(H_t \) (\(0 \leq t \leq 1 \)) of \(E^2 \) onto itself such that

1. \(H_t \) moves no point of \(U + U' + X \),
2. \(H_t(S+S'')-U+U''+\sum D_i \),
3. \(H_t \) moves no point of \(S+S'' \) by as much as \(3\epsilon \),
4. \(H_t \) moves no point of \(S+S'' \) by as much as \(6\epsilon \),
5. \(H_t \) moves no point of \(E^2 \) by as much as \(6\epsilon \),
6. \(H_t \) moves no point of \(E^2 \) by as much as \(12\epsilon \).

Proof. The proof of Theorem 7.5 follows the pattern of the proof of Theorem 7.3 so we only give a brief outline of it.

As in the proof of Theorem 7.3 we subdivide the \(M_i \)'s so that each of those that needs to be considered contains one and only one simple closed curve in \(\text{Bd } U + \text{Bd } U' \), and the interior of this \(M_i \) contains the appropriate \(\text{Int } D_i \).

In a finite sequence of applications of Theorem 7.1 each followed by pushing a disk \(E \) to one side of a disk \(D \), we obtain an isotopy of \(E^2 \) onto itself that reduces the number of components of \((S+S'')-\sum M_i \), to the number of components of \(\text{Bd } U + \text{Bd } U' \). Then Theorem 7.2 is applied to push \(S+S'' \) onto \(U+U''+\sum D_i \).

For each component \(F \) of \(S-U+U''-U' \), the image of \(F \) at each stage is near the sum of \(F \) and the \(M_i \)'s that \(F \) intersects. This insures that Condition 3 is satisfied.

At no stage is any point moved more than \(3\epsilon \). This insures that Condition 4 is satisfied.

If at a certain stage the image of a point \(p \) falls to belong to an open set \(V_g \) about the disk \(E \) used at this certain stage, the image is not moved much unless it moves near an \(M_i \) that separates \(p \) from \(U+U'' \) in \(E^2 - (S-U'+S''-U'') \). This insures that \(H_t \) does not move too far those points whose images fail to belong to \(V_g \).

By choosing the \(V_g \)'s so that points in them have not been moved too far already, we insure that the isotopy we describe satisfies Conditions 5 and 6.

Theorem 7.6. Suppose \(S, S_1, S_2, \ldots, F; C_1, C_2, \ldots, C_n \); and the \(K(r,j)'s \) are taken as in Theorem 6.3, and \(\epsilon \) is taken so small and \(k \) so large that if \(k < i < j \), noncorresponding elements of \(K(r,i) \), \(K(r,j) \), are farther apart than \(2\epsilon \). If \(J_i \) is an element of \(K(r,s) \) that separates on \(C_r \) two corresponding elements \(J_i, J_i' \) of \(K(r,i), K(r,j) \) and \(i, j > k \), then \(i < s < j \) and \(J_i, J_i', J_i'' \) are corresponding elements.

Proof. We let \(U_i, U_j, U_i' \) be the large components of \(S_i - \sum C_i, S_i - \sum C_i, S_i - \sum C_i \) and find from the techniques of Theorems 7.3 and 7.5 (we are not interested here in preventing points from moving far) that there is an isotopy on \(E^2 \) that is fixed on \(U_i + U_j + U_i' \) that takes \(S_i, S_j \) onto polyhedral \(2 \)-spheres \(S_i, S_j, S_j \) such that each of \(S_i - U_i, S_i - U_i', S_i - U_j \) misses \(S_i \).

Since \(J_i \) separates \(J_i \) from \(J_i \) on \(C_r \) then \(J_i, J_i', J_i'' \) are corresponding elements because noncorresponding elements are not within \(2\epsilon \) of each other.

Since neither \(J_i \) nor \(J_i \) separates the other from \(J_j \) on \(C_r \), neither \(S_i \) nor \(S_j \) separates the other from \(J_j \) in \(E^2 \). Therefore \(S_i \) separates \(S_j \) from \(S_j \) and \(i < s < j \).

The preceding argument also gives the following result.

Theorem 7.7. If \(J_i \) in Theorem 7.6, \(J_i \) is an element of \(K(r,i) \) corresponding to \(J_i, J_j \) and \(k < i < j \), then \(J_i \) is between \(J_i \) and \(J_j \) on \(C_r \).

8. Special disks with respect to cylinders. Each polygonal simple closed curve \(J \) on \(C \) bounds a polygonal disk \(D \) which lies except for \(J = \text{Bd } D \) in \(\text{Int } C \). Suppose \(L \) is a vertical line in \(\text{Int } C \). If \(J \) bounds a disk in \(C \), we may choose such a \(D \) which misses \(L \); if \(C - J \) has two unbounded components, we can pick \(D \) so that \(D \) intersects \(L \) in just one point.

Suppose \(D_i, D_i' \) are two such disks bounded by \(J \) and \(D \) is a plane containing \(L \) such that \(D \) contains no vertex of some rectilinear trian-
gulation of $D' + D''$. Each component of $P \cdot D'$ with a point p on J is
an arc with only its end points on J. The same goes for components of $P \cdot D'$. However, the arc in $P \cdot D'$ containing p may not have the same
other end point as the arc in $P \cdot D''$ containing p. We wish to define a
special property such that if D', D'' have this special property, then
if an arc which is a component of $P \cdot D'$ shares an end with a component of
$P \cdot D''$, then their other ends are identical also.

Special property for a disk. If J is a polygonal simple closed
curve on a vertical triangular cylinder C and L is a vertical line in $\text{Int} \ C$,
then a polygonal disk D is said to have the special property with respect
to J, C, L provided:
1. $\text{Bd} \ D = J$,
2. $\text{Int} \ D \subset \text{Int} \ C$,
3. Diameter $D = \text{diameter} J$,
4a. $D \cdot L = \emptyset$ if J bounds a disk in C,
4b. $D \cdot L$ contains only one point if $C \cdot J$ has two unbounded com-
ponents,
5. if P is a plane containing L but no vertex of a rectilinear trian-
gulation of D and ab is an arc in $P \cdot C$ with end points on J and interior
in the component of $C \cdot J$ that does not reach below some horizontal
plane, then some component of $P \cdot D$ is an arc with end points at a,b.

Theorem 8.1. Suppose J is a polygonal simple closed curve on a verti-
cal triangular cylinder C, L is a vertical line in $\text{Int} \ C$, and D', D'' are
two polyhedral disks each with the special property with respect to J, C, L.$\hspace{1cm}$
If P is a plane containing L but no vertex of some triangulation of $D' + D''$
and ab is a component of $P \cdot D'$ intersecting J, then there is a component
of $P \cdot D''$ which is an arc with the same end points as ab.

Proof. Since P contains no vertex of some triangulation of $D' + D''$,
each component of $P \cdot D'$ (of $P \cdot D''$ also) that intersects J is an arc with
only its end points on J.

For the case where J bounds a disk in C, Condition 5 of the
definition of the special property of a disk causes two points of
$J \cdot P$ to belong to an arc in $P \cdot D'$ if and only if they belong to an arc in
$P \cdot D''$.

If $C \cdot J$ has two unbounded components, $J \cdot P$ has two points p, q
such that each pair of points of $(J \cdot P) - (p+q)$ belong to an arc in $P \cdot D'$
if and only if they belong to an arc in $P \cdot D''$ according as they do or do
not belong to an arc of $P \cdot C$ whose interior belongs to the upper
component of $C \cdot J$. Since p, q are the only two points of $J \cdot P$ left to con-
sider, there is an arc from p to q in $P \cdot D'$ and also an arc from p to q
in $P \cdot D''$.

Theorem 8.2. If J is a polygonal simple closed curve on a vertical
triangular cylinder C, and L is a vertical line in $\text{Int} \ C$, then there is a po-
gonal disk D that has the special disk property with respect to J, C, L.$\hspace{1cm}$
If P_1, P_2, \ldots, P_n is a finite collection of planes each containing L but
no point at which J is broken, each such a disk D may be selected with a recti-
linear triangulation with no vertex on $P_1 + P_2 + \ldots + P_n$ and no edge intersect-
ing L.

Proof. The proof of the case where J bounds a disk E in C is easy.
Here we obtain D by pushing $\text{Int} \ E$ in slightly toward L.$\hspace{1cm}$

Suppose $C \cdot J$ has two unbounded components U^+ and U^- where
U^+ is above some horizontal plane. The selection of D is immediate if J
lies in a plane so we suppose that the convex hull of J is a polyhedral 3-cell K.$\hspace{1cm}$

Let E be the disk on $\text{Bd} \ K$ bounded by J and missing U^-. Although E
satisfies conditions 1, 3, 4, 5 of the definition of the special property,$\hspace{1cm}$
$\text{Int} \ E$ may not lie in $\text{Int} \ C$. Also $L \cdot E$ may be on an edge of every trian-
gulation of E. This latter difficulty may be taken care of by adjusting E
slightly near $L \cdot E$. The former exception may be removed by shifting certain points of $\text{Int} \ E$ near C slightly toward L. Care is taken to see that no “corner” of the resulting disk D lies on any P_i.$\hspace{1cm}$

Theorem 8.3. Suppose J_1, J_2, \ldots, J_m are m mutually exclusive, po-
gonal simple closed curves on a vertical triangular cylinder C, L is a verti-
cal line in $\text{Int} \ C$, and P_1, P_2, \ldots, P_n are planes each containing L but
none containing a point where any J_i is broken. Then there are m mutually
exclusive polyhedral disks D_1, D_2, \ldots, D_m such that each D_i has the special
property with respect to J_i, C, L and D_i has a triangulation with no vertex
on $P_1 + P_2 + \ldots + P_n$ and no edge intersecting L.$\hspace{1cm}$

Proof. Suppose J_1, J_2, \ldots, J_m are ordered so that if $C \cdot J_i$ has two
unbounded components $U^+ \cdot U^-$ with U^- the lower one, then $i < j$ if J_i either
bounds a disk in U^- or fails to intersect U^-. The disks D_1, D_2, \ldots, D_m
may be obtained by an iteration of the process described in the proof
of Theorem 8.2 where we define D_1, then D_2, ..., and finally D_m.$\hspace{1cm}$

Theorem 8.4. Suppose $S_i, S_1, S_2, \ldots, F_1, G_1, G_2, \ldots, G_k$ and the $K(v, i)$'s
are as in Theorem 6.3 and α, κ are as in Theorem 7.6.$\hspace{1cm}$

Suppose U_i $(i = 1, 2, \ldots)$ is the large component of $S - \sum C_i$ and S_i is a 2-sphere in general position with respect to F formed by replacing each component D_i of $S_i - U_i$ by a disk E which lies except for its boundary in some $\text{Int} \ C_i$ and has the special property with respect to $\text{Bd} \ C_i, L_i$, where L_i is the center of S_i.$\hspace{1cm}$

For each point p of $S_i \cdot L_i$, let $\alpha(p)$ be the corresponding point of $S_i \cdot L_i$ as determined by the correspondence between $K(v, \alpha)$ and $K(v, I)$.

133
There is an integer k' such that if $i, j > k'$, Y is a section of F, and $p_i q_i$ is an arc of $V \cdot S^i_1$ between two corner points of F, then there is an arc in $V \cdot S^i_1$ between $p_i(p_i)$ and $q_i(q_i)$.

Proof. Suppose $p \in S^i_1 L_e$ such that $p_i(p) = p$. Since for each integer j there is an arc in $V \cdot S^j_1$ from $p_i(p)$ to a corner point of F, there is a point q of $S^j_1 L_e$ such that for infinitely many j, there is an arc in $V \cdot S^j_1$ from $p_i(p)$ to q. The truth of Theorem 8.4 will follow if we show that if $k < i < s < j$ and arcs in $V \cdot S^i_1$ and $V \cdot S^j_1$ from $p_i(p)$ to $q_i(q)$ and $p_i(p)$ to $q_i(q)$ imply that there is an arc in $V \cdot S^s_1$ from $p_i(p)$ to $q_i(q)$.

We find from Theorem 8.1 that whether or not there is an arc in $V \cdot S^i_1$ from $p_i(p)$ to $q_i(q)$ is independent of what F's we use to replace the D's as long as they have the special property. Hence we suppose that the E's do not intersect. Theorem 8.3 shows that we can pick these E's so they do not intersect and the techniques used in Theorems 7.3 and 7.5 show that there is an isotopy on F pulling $S^i_1 + S^i_1 + S^i_1$ onto $S^s_1 + S^s_1 + S^s_1$. Here we do not need the full strength of Theorems 7.3 and 7.5 since, although we do not want to move points of $U_i + U_i + U_i$, we are not interested in preventing points from moving far. It follows from Theorem 7.7 that $p_i(p)$ is between $p_i(p)$ and $q_i(p)$ while $q_i(q)$ is between $p_i(q)$ and $q_i(q)$.

The arc in $V \cdot S^i_1$ from $p_i(p)$ is trapped on V between the arcs in $V \cdot S^i_1$ from $p_i(p)$ to $q_i(q)$ and the arc in $V \cdot S^i_1$ from $p_i(p)$ to $q_i(q)$ so it can lead only to $q_i(q)$.

9. Finite graphs on a 2-sphere. Recall that $T(1)$ is the 2-sphere with center at the origin and radius 1. We prove some theorems about stable graphs on $T(1)$ and extend these to theorems about graphs on arbitrary 2-spheres.

Theorem 9.1. Suppose G' is a finite graph on $T(1)$ such that each component of $T(1) - G'$ is of diameter less than $\epsilon < \frac{1}{4}$. Then G' contains a finite graph G such that each component of $T(1) - G$ is an open 2-cell of diameter less than 3ϵ and no two of the closures of these open 2-cells meet in a disconnected set.

Proof. An advantage of working on $T(1)$ rather than on an arbitrary 2-sphere is that the diameter of a small set is equal to the diameter of its boundary.

For each component U of $T(1) - G'$, let $J(U)$ denote the simple closed curve in U bounding the large component of $S - U$ and $D(U)$ denote the disk in S containing U and bounded by $J(U)$. The diameter of $D(U)$ is the same as the diameter of U.

We note that if two $D(U)$'s have an interior point in common, one contains the other. Hence there is a collection of $D(U)$'s covering S such that the interiors of these $D(U)$'s are mutually exclusive. If no two of these $D(U)$'s intersected in a disconnected set, we could use the sum of their boundaries for G.

We wish to adjust the above mentioned $D(U)$'s so that the intersection of two of the adjusted disks that have a point in common meet in a connected set. We are willing for the diameters of the adjusted disks to be more than ϵ.

The finite graph shown in Figure 7 is not stable because a homeomorphism of the graph onto itself interchanging arcs ab and ah or ac and cd could not be extended to the plane. However, if D_1 and D_2 are combined (by removing Int ab) and if D_3 is added to D_6 (by removing Int ah) the resulting graph is stable. We prove the theorem by considering a scheme to combine such disks.

We finish the proof of the theorem by combining certain of the $D(U)$'s. Suppose that this combining has proceeded until we have disks $D_1, D_2, \ldots, D_n, E_1, E_2, \ldots, E_m$ covering $T(1)$ such that the diameters of these disks are mutually exclusive, each is the sum of $D(U)$'s described earlier, diameter $D_i < \epsilon$, diameter $E_i < 3\epsilon$, and no one of the E's meets one of the other disks in a disconnected set. If we can eliminate the D's and make all the disks E's, the sum of the boundaries of the E's will be the required finite graph G.

If J is a simple closed curve on $T(1)$ of diameter less than 1, we use $D(J)$ to denote the smaller disk in $T(1)$ bounded by J. Let E_{m+1} be the sum of all disks E of $D_1, D_2, \ldots, D_n, E_1, \ldots, E_m$ such that there is a simple closed curve J in $T(1)$ such that $J \subseteq D(J)$ and
J.(Bd.D_{i1} + Bd.D_{i2} + ... + Bd.E_{n}) \subseteq \text{Bd}D_{i1}. In general, J need not lie in \text{Bd}D_{i1} + Bd.D_{i2} + ... + Bd.E_{n}. For example, if D_{i4} = D_{i4} of Figure 4, the simple closed curve J that shows that D_{i4} (which has been renamed E) is to be combined with D_{i4} lies in D_{i4} + \text{Int}D_{i4}. Then E_{n+1} is a disk of diameter less than 3e, and it has swallowed up some of the D's and perhaps some of the E's, but it does not intersect any of the remaining disks in a disconnected set.

A continuation of this process changes all the D's into E's.

The following extension of Theorem 9.1 follows from use of the fact that each 2-sphere is the image of \text{Int}(T) under a uniformly continuous homeomorphism.

Theorem 9.2. If S is a 2-sphere and e > 0, there is a positive number \delta such that if G is a finite graph on S such that each component of S - G is of diameter less than \delta, then G has a finite subgraph G such that each component of S - G is open 2-cell of diameter less than \delta and no two of the closures of these open 2-cells meet in a disconnected set.

Theorem 9.3. Suppose D_{1}, D_{2}, ..., D_{n} are disks whose sum is a 2-sphere S and the intersection of two of these disks with a point in common is either a point or an arc. Then \sum \text{Bd}D_{i} is connected and no \text{Bd}D_{i} separates it.

Proof. If \sum \text{Bd}D_{i} were not connected, a simple closed curve in S - \sum \text{Bd}D_{i} would separate \sum \text{Bd}D_{i} in S. But this simple closed curve would not lie in any D_{i}.

If \text{Bd}D_{i} separates \sum \text{Bd}D_{i}, there is a simple closed curve J in S - (\sum \text{Bd}D_{i} - \text{Bd}D_{i}) such that (\sum \text{Bd}D_{i} - \text{Bd}D_{i}) contains points p, q lying in different components of S - J. It follows from the uniqueness of S - \text{Int}D_{i} that there is an arc A in J irreducible with respect to separating p from q in S - \text{Int}D_{i}. But A would intersect D_{i} in only two points and would lie in a D_{i} such that D_{i} is not connected.

Theorem 9.4. Suppose G is a finite graph on \text{Int}(T) such that each component of \text{Int}(T) - G is an open 2-cell of diameter less than \delta and no two of the closures of these open 2-cells meet in a disconnected set. If h is a homeomorphism of G onto a finite graph in \text{Int}(T) such that h moves no point by more than \delta, h can be extended to a homeomorphism of \text{Int}(T) onto itself that does not move any point by as much as 3e.

Proof. Let D_{1}, D_{2}, ..., D_{n} be the disks which are the closures of the components of \text{Int}(T) - G. Then for each i, h can be extended from \text{Bd}D_{i} to map D_{i} onto the smaller disk in \text{Int}(T) bounded by h(\text{Bd}D_{i}). This extension moves no point by as much as 3e. We now show that the combined map of h on all the D_{i}'s is a homeomorphism of \text{Int}(T) onto itself.

If h(\text{Int}D_{i}) intersects h(\text{Int}D_{j}), i \neq j, then one of h(D_{i}), h(D_{j}) contains the other. Assume h(D_{i}) \cap h(D_{j}). Since h(G - \text{Bd}D_{i}) is connected, h(D_{j}) contains h(G). This contradicts the fact that diameter h(D_{j}) < 3e, diameter G > 5e, diameter h(G) > 3e.

The preceding paragraph shows that h sends no two points into the same point. Since \text{Int}(T) is compact and h is continuous, h is a homeomorphism. Since no proper subset of \text{Int}(T) is homeomorphic with \text{Int}(T), h takes \text{Int}(T) onto itself.

Theorem 9.5. For each 2-sphere S and each positive number e, there is a positive number \delta such that if G is a finite graph on S such that each component of S - G is an open 2-cell of diameter less than \delta but the closures of no two of the open 2-cells meet in a disconnected set and h is a homeomorphism of G onto S that moves no point by more than \delta, then h can be extended to a homeomorphism of S onto itself that does not move any point by as much as 3e.

Theorem 9.6. A finite graph G on a 2-sphere S is stable if there is a finite collection of disks D_{1}, D_{2}, ..., D_{n} covering S such that Int(D_{i}) \cap Int(D_{j}) = \emptyset if i \neq j, if no point of D_{i} is in Int(D_{j}), and if two of the D_{i}'s have a point in common, their intersection is connected.

Proof. We denote that \text{Bd}D_{i} does not separate G or else some D_{i} intersects D_{j} in a disconnected set. A homeomorphism h of G into a 2-sphere S may be extended to a homeomorphism of S onto S' by taking D_{i} onto the disk on S' bounded by h(\text{Bd}D_{i}) and containing no point of h(G - \text{Bd}D_{i}).

10. **Freeing surfaces of intervals.** In the proof of Theorem 2.1 we supposed that there is no loss of generality in supposing that a 2-sphere S contains no vertical interval. We justify this supposition with Theorem 10.1.

A different proof of Theorem 10.1 was originally employed which made use of tame Cantor sets. It was decided to include this different proof in another paper devoted to properties of tame Cantor sets and substitute here a shorter proof suggested by M. K. Fort, Jr. and modeled after the proof of Theorem 4 in [10].

Theorem 10.1. If X is a closed 2-dimensional set in \mathbb{R}^{2} and e is a positive number, there is a homeomorphism h of X onto itself such that h moves no point by more than e and h(X) contains no straight line interval.
Proof. Let H be the set of all homeomorphisms h_α of E^3 onto itself and such that each of $g(h_\alpha, I)$, $g(h_\alpha^{-1}, I)$ is finite. If H is metrized with the metric

$$D(h_1, h_2) = g(h_1, h_2) + g(h_1^{-1}, h_2^{-1}),$$

the resulting space is a complete metric space.

Let H_s be the set of all elements h_α such that $h_\alpha(X)$ contains a straight line interval of length no less than $\frac{1}{s|n|$ and at a distance from the origin of no more than n. Then H_s is closed and $H_1 + H_1 + \ldots$ is an E_s set.

We now show that no H_s contains an open subset of H by showing that for each element h_α of H_s, there is an element h_α of $H_1 - H_1$ very close to h_α. Let T be a triangulation of E^3 of very small mesh and such that the 2-skeleton of T contains no straight line interval of length more than $\frac{1}{s/4}$ and no center of a 3-simplex of T intersects $h_\alpha(X)$. Then h_α can be taken as $f(h_\alpha)$ where f is a homeomorphism fixed on the 2-skeleton of T which moves parts of the 3-simplexes of T in a straight line directly away from the centers of these 3-simplexes. In fact, f can be taken so that $f(h_\alpha)(X)$ is close to the 2-skeleton of T as to contain no straight line interval of length $1/s$. Since no H_s contains an open subset of H, it follows from the Baire category theorem that H contains an element h_α near I that does not belong to any H_s.

11. Extension of preceding results to surfaces other than 2-spheres. Theorem 2.4 gave a condition under which a 2-sphere in E^3 is tame. This result may be extended by the methods we have used to show the following results.

Theorem 11.1. A surface S in E^3 is tame if for each positive number ε there are surfaces S', S'' on different sides of S such that

$$H(S, S') \leq \varepsilon, \quad H(S, S'') \leq \varepsilon.$$

Theorem 11.2. A surface S in E^3 is locally tame at a point p of S if there is a disk D with $p \in \partial D \subset S$ such that for each positive number ε, there are disks D', D'' on opposite sides of S such that

$$H(D, D') \leq \varepsilon, \quad H(D, D'') \leq \varepsilon.$$

The original intention was to prove Theorems 11.1 and 11.2 in the present paper but the paper seems long enough already and their proofs will follow briefly from extensions of Theorem 2.2 to be given in another paper. This will be accomplished as follows.

It will be shown in [8] that a 2-sphere in E^3 is tame if its complement is uniformly locally simply connected. Theorem 11.2 will be established by showing that if p is a point of a surface S satisfying the hypothesis of Theorem 11.2, then there is a disk E and a 2-sphere K such that $p \in \partial E \subset K$, $E \subset S$, and $E - K$ is uniformly locally simply connected. Theorem 11.1 will follow from Theorem 11.2 and the fact that locally tame surfaces are tame.

The above theorems are true in 3-manifolds as well as in E^3.

References

THE INSTITUTE FOR ADVANCED STUDY
THE UNIVERSITY OF WISCONSIN

Brought to you by R. L. Mead, 15.3.1958