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Conditions under which a surface in E* is tame *
by
R. H. Bing (Wisconsin)

1. Introduction. A surface (closed set that is a 2-manifold) M in E®
is tame if there is a homeomorphism of F? onto itself that takes M onto
a polyhedron (finite or infinite). If there is no such homeomorphism,
M is called wild. The main purpose of this paper is to give a condition
under which surfaces are tame. This paper deals with surfaces in E®,
so if a surface is mentioned, it is to be understood that this surface
lies in FB. '

If 4, B are two homeomorphic sets,

H,B)<e

is used to denote the fact that there is a homeomorphism of 4 onto B
that moves no point by more than e.

If § is a 2-sphere, we use IntS and ExtS§ to denote the bounded
and unbounded components respectively of E®— 8. Theorem 2.2 of the
next section states that a 2-sphere § is tame if for each positive number &
there are 2-spheres 8, §’7 in IntS, ExtS respectively such that

H(8,8)<es, H(S,8)<e.

This theorem (Theorem 2.2} is not proved directly but is reduced
by way of one theorem (Theorem 2.1)"to a simpler one (Theorem 3.1)
which in furn is proved on the basis of a still easier one (Theorem 3.2).
The proof given in Section 4 of this last theorem is based on an assort-
ment of results developed in Sections 5-9.

While this treatment is not the logical one where simpler results
are proved first and the big ones are proved in terms of those already
proved, it does reveal the chronological order of a logical approach in
trying to prove a big result where the big result is reduced to a simpler
result, the simpler result is reduced, ..., and finally a result is proved
on which the sequence of theorems leading to the main result depends.

* Work was supported by the National Science Foundation under N. 8. F.
Grant G-3248 at the Institute for Advanced Study, Princeton, New Jersey.
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Such an approach shows the purpose of the subsidiary results which
might seem unexciting in themselves.

The person preferring the logical approach may start by studying
Sections 5, 6, 7, 8, 9, 10 which are independent except for 6 which de-
pends on 5, then 4 which depends on 6-9, then 3 which depends on 4,
and then 2 which depends on 3 and 10.

Some of the results developed in Sections 5-10 are pursued for their
own interest rather than for their contributions alone to the study of
tame embedding.

Tn Section 11 we discuss the possibility of extending the result
(Theorern 2.2) about tame 2-spheres to apply o tame surfaces. We give
conditions under which a surface is locally tame at a point p. A surface
§ is locally tame at a point p if there is a neighborhood N of p in E®
and a homeomorphism of ¥ into %°® that takes ¥-§ onto a polyhedron.

Previous papers have given conditions under which surfaces are
tame. Bing [4] and Moise [18] showed that a surface is tame if it is
locally tame. Griffjths [11] and Harrold [14] have given other sefs of
conditions under which a surface is tame.

In another paper [7] we shall apply the results of the present paper
to show that E* does not contain uncountably many mutually exclusive
wild surfaces. This result will be used to give still another proof that
each 3-manifold can be triangulated. Moise gave a proof of the friangul-
ation theorem in [17] and Bing gave an alternate proof in [6].

Another future paper [8] will extend the results of the present pa-
per to show that a surface in E® is tame if its complement is uniformly
locally simply conmected. A set X is wuniformly locally simply connected
if for each positive number ¢ there is a positive number & such that each
closed curve in X of diameter less than & can be shrunk to a point on
a subset of X of diameter less than e.

The above results do not all extend to surfaces with boundaries.
Stallings hag given an example of an uncountable collection of mutually
exclusive wild disks in F5. In another paper [9] we shall show that
a disk in F? is tame if its complement is uniformly locally simply con-
nected.

In showing in [3] that each surface M in F* could be approximated
by a polyhedral surface, we used the 2-skeleton of a triangulation to
chop up E®, and hence M, into small pieces. We could use such an ap-
proach for the present paper but decided instead to try a slightly different
approach, — namely, adjust M so that it contains no vertical interval
and then use a fence to chop up the adjusted M. If a person .chose to
redo the work in [3], he might choose to use fences as defined below
rather than triangulations.
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A fence is defined to be the sum of all vertical lines intersecting
the 1-skeleton of a rectilinear triangulation of a horizontal plane. The
mesh of the triangulation is called the mesh of the fence. Each vertical
line intersecting a vertex of the triangulation is called a corner of the
fence and the sum of all vertical lines intersecting an edge of the trian-
gulation is called a section of the fence. The term “fence”™ was used to
define a somewhat similar set in [5] but there the fences were not in-
finite and extended in only one direction.

Closely related to a fence is a vertical triangular evlinder. A vertical
triangular cylinder C is the sum of a collection of vertical lineg such that
a horizontal ecross section of € is a triangle. The sum of the lines inter-
secting the interior of the triangle is denoted by Int¢ and Ext(
= E3—(C+1IntC). If L is a vertical line in Int(, we call ¢ a vertical
triangular cylinder about L. We use vertical triangular cylinders about
the corners of a fence to study a 2-sphere § near these corners.

If M is a manifold with boundary, we use BdM to denote this
boundary and IntM to demote M —BdM. There is an inconsistency
here in the way that we defined IntS§ for a 2-sphere S in E? and IntC
for a cylinder C, but it seems unlikely that this double meaning of the
symbol Int will lead to confusion.”

A finite graph is used to subdivide a 2-sphere. A finite graph is the
sum of a finite collection of arcs such that if two of these arcs have a point
in common, this point is an end point of each. A finite graph is called
planar if it can be embedded in a 2-sphere. A connected finite graph
is called stable if it is planar and if each homeomorphism between two
of its images in a 2-sphere S can be extended to a homeomorphism of §
onto ifisel.

The distance funection is denoted by o.

An isotopy H(0 <?t<1) on X is a one parameter (denoted by 1)
family of homeomorphisms of X onto itself. All of the isotopies we use
start at the identity map — that is H(x) = . Hence, it is to be under-
stood without the condition being imposed further that if we use an
isotopy Hy(0 <t < 1), then

H,=1 (the identity).

A map j defined on E?® is called piecewise linear if there is a recti-
linear triangunlation of E® such that f is linear on each tefrahedron of the
triangulation. An isotopy H; (0 <t < 1) is called piecewise linear if each
of the homeomorphisms H; in the one parameter family is piecewise linear.

We say that H; moves no point by more than & if Q(H,(:v), m) <e
for each point z and write

o(H, I <e.
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In general, if f and g are two maps defined on X

olf,9) <e off (@), g(@)) <e veX.

2. A condition under which 2-spheres in E® are tame.
In this section we give the main results of the paper — a condition under
which a 2-sphere in E® is tame. The possibility of extending this result
is discussed in Section 11. The intervening sections are used to verify
some of the facts used in the present section.

TaroreM 2.1. Suppose S is a 2-sphere in E° such that for each po-
sitive number ¢ there is @ 2-sphere 8 on IntS such that H (S, 8') <.
Then S+Int 8 is a topological 3-cell.

Proof. We suppose that § contains no vertical interval. That there
ig no loss of generality in supposing this follows from Theorem 10.1.

Let 8, 8, ... be a sequence of 2-spheres on Int§ such that H(S, §;)
< 1Ji. Since each 2-sphere can be approximated by a polyhedral
2-sphere [3], we suppose with no loss of generality that each §; is poly-
hedral. We also suppose that §; C IntS8ys.

Let 7'(z) (0 < o < 1) be the 2-gphere in E? with center at the origin
and radins z. We shall prove Theorem 2.1 by showing that there is
a homeomorphism b taking §-+1IntS§ onto T(1)4IntT'(1).

Let X (4, j) denote S;+IntS;—IntS; and ¥ (3,4) denote T'(j/(j +1))+
+ IntT'(§/(f +1)) —Inb T (if(s4-1)}. See Figure 1.

We prove Theorem 2.1 by sewing together homeomorphisms be-
tween certain of the X(¢,j)’s and the corresponding Y (i, 4)’s so as to

means for each

get a homeomorphism of §-+TInt8 onto 7(1)-+IntZT(1). We must be -

able to control the homeomorphisms of the X(¢,7)’s onto the ¥ (i,4)’s
50 that the homeomorphisms on the individual parts combine to give
& homeomorphism on the sum.

Let % be a homeomorphism of § onto T(1) and g; & homeomorphism
of 8; onto S such that g; moves no point by more than 1/i. Let &; be
the homeomorphism of §; onto 7T (72/('5-;—1)) defined so that the interval
from the origin to hg;(«) goes through hy(w). See Tigure 1. The ks give
an approximation of the homeomorphism h of S--Int§ onto Z'(1)+
+IntT(1) but rather than agreeing with & on each §;, they only agree
on a sequence of §;’s converging to 8.

It follows from Theorem 3.1 that for each positive number & there
is an integer k so large that if k < ¢ < §, then there is a homeomorphism
f(é,4;2) of X(4,]) onto ¥ (i,4) such that

fliy§)=h; on 8;, and h; on §; while diameter (4, qj; 4) < e for

each straight line interval 4 in ¥(4,4) on a ray through
the origin. '
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Let k., ks, ... be a monotone increasing sequence of positive integers
such that if %, < { < j, then there is such a homeomorphism (i, j) for
&< 1/n. Hence we suppose that f(k,, k1) is a homeomorphism of
X(kyy kpt1) onto Y (%,, knta) such that

flkny Bnes) = by, on S, and by, on 8., while diameter

FFony knya; A) < 1/n for each straight line interval A
in Y(%n, kn1y) on a line through the origin.
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Fig. 1

It follows from a theorem by Alexander {1] that the homeomor-
phism k;, on 8y can be extended to take Sy, +IntS; homeomorphie-
ally onto T +IntTy. Then the homeomorphism % of S+ IntS on
T(1)+Int7T(1) is defined as follows:

ho= hiq on Skl—i—IDtSk“
h = f(kﬂj k‘n-l-l) on X(kny kn+1) ]

h=nh on §.

By applying Theorem 2.1 to both the interior and exterior of
a 2-sphere in E°, one can obtain the following result.

THEOREM 2.2. A 2-sphere S in B3 is tame if for each positive number ¢
there are 2-spheres S’y 8" in Int S, ExtS respectively such that H(S8, §) <&,
H(8,8") <e.
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3. A set bounded by two polyhedral 2-spheres. As in the
proof of Theorem 2.1 we keep the following notation which will be used
throughout Sections 2-9.

8 is a 2-sphere in E?® that contains no vertical interval.

8, 8, ... is a sequence of polyhedral 2-spheres in Int§ such that
S CInt 8y,

g; is a homeontorphism of §; onto § that moves no point by more
than 1/i.

T(r) (0 <»<1) is the 2-sphere with center at the origin and ra-
dius 7.

" his a homeomorphism of § onto T'(1).

h; is a4 homeomorphism of §; onto T('i/(@'—;—l)) such that h(x) is
between hg;(x) and the origin.

X(i,7) = 8;+Int8;—IntS;.

Yy ) = T(/(+1) + It T{/(§ + 1)) —Int T(i/(4 1)) .

We use fences to chop up images of certain X (¢, 7)’s so as to get
a homeomorphism f(¢, ) of such an X (7, 7) onto the corresponding Y (¢, §)
satisfying the conditions of Theorem 3.1. .

THEOREM 3.1. For each positive number ¢ there is an integer & such
that if k << i <, there is & homeomorphism f(i, j; o) of X (¢, §) onto Y (i,])
such that

1. f(i,7; @) agrees with hy(z) on S; and hiz) on §; and

2. diameter 17, §; A) < & for each straight line interval A in Y (i, )
on & line through the origin.

We now state Theorem 3.2 on which the proof of Theorem 3.1 is
based. The proof of Theorem 3.2 is outlined in Section 4. Much tedious
pushing and pulling, discussed in Section 7, is a basis for the proof of
Theorem 3.2. It is in the proof of Theorem 3.2 that we start the use of
fences to chop up the images of certain X (i, )’s.

THEOREM 3.2. For each positive number ¢ there are an integer k and
a positive number & such that if F is a fence of mesh less than 6 and k << 1 < §,
then there is a homeomorphism H, of E® onto itself, a stable finite graph G
ot 8, and a homeomorphism g of GX [0, 1] into F such that
. o(Hyy I) <e,

. Hy(8;+8;) is a polyhedron ,

. each component of 8—@ is of diameler less than e,
. g(Gx 0)C Hy(8;) with ¢;:Hy 'g(ax 0)=a,

c g(O X L) CHy(Sy) with ¢;Hi'glax 1) =a,

. each g(ax[0,1]) is of diameter less than &,

- Hy(8:+87)-g(Gx[0,1]) = g(GX 0)+g(Gx 1).

-1 @ WU D
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See Figure 2. We note that H, removes certain feelers from §; and 8
so that these feelers will not run in and out of the fence F and prevent
Condition 7 from being satisfied.

g]?_‘;a):\ HS(S_,‘) bl H “Lp, " B ."Zl):‘higlﬂ(li)

Hi'gax ]

fgta KO)=hyg7Ha)

/[ HySp L
’ e ' ]
Feelers Hilglasop=! N (RiJi=FH}): Xii,j)-Yd,j) L

. Byt ST i~ 1)) §
Fig. 2

Proof of Theorem 3.1. Let ¢ < le and %k, P, @, H,y, and g be
as promised in Theorem 3.2 for the positive number &. We suppose
1/k < & < (diameter S)/11.

We describe the homeomorphism f(¢,7) in terms of a homeomor-
phism f of Hg(X(i,])} onto ¥(4,j) where

f(iy fl) = st .

Sinee the conclusion of Theorem 3.1 requires that
fiy§) =h; on 8; and R; on 8y,

it follows from Conditions 4 and 5 of the statement of Theorem 3.2 that
for each point a of @

fg(ax 0) = hygi (a) = FH,97 "(a)
and

fglax 1) = hg;'(a) = fHyg7 (a) .
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See Figure 2. The homeomorphism f is extended to the rest of ¢(& x [0, 1)
so that

fglax ) is the point of T{(1—t)i/(i+1)+7jt/(j+1)) between the
origin and h(a).

Tet Dy, Dy, oy Dy be the disks which are the closures of the com-
ponents of §—@ and

W, = Hygi (D)) +Hags (Dr) +¢(BAD,x[0,1]) .

The 2-sphere W, is shown in Figure 2.

Then W, is a polyhedral 2-sphere of diameter less than B5e, since
Hyg7 (D) +Hsg;-'1(Dm) lies in a 2¢ mneighborhood of D, and W, les in
the convex hull of this neighborhood.

Tt follows from the fact that G—BdD, is a connected set of dia-
meter more than 9, that

diameter Hyg7 (G —BdD,) > Be, .

Then W, does not intersect IntW,, since IntW,, is too small to. contain
H,g7'(G—BdD,). Hence no two of the W’s have interiors that mterse,ct
and Hy(X(i,§)) is the sum of polyhedral cubes bounded by the Ws.

We suppose that f is extended to the interiors of the W’s so that

HWe4IntW,) = f(W,) + Int (W) .

Then f takes H,(X(i,j)) homeomorphically onto ¥ (7,j). Since i, 1)
= fH, and Hy Y(W,) is of diameter less than Be,, for each arc 4 in Y(i,4)
on & line through the origin

diameter (1, §; A) < Bg, < e.

4. An isotopy that simplifies 2-spheres near fences. In this
section we give the proof of Theorem 3.2. The proof depends on some
somewhat unrelated theorems developed in Sections 5-9. As the proof
of Theorem 3.2 is somewhat long, we break it into 8 steps.

Step 1. Building cylinders about fence cormers. Consider any fence F.
Let Ly, Ly, ..., L be the corners of the fence that intersect S. It folloys
from the fact that S contains no vertical interval that for each positive
number ¢, we can find about each I, a vertical triangular eylinder C,
with small horizontal cross section and such that

1. no corner of C, lies on 7,

2. each O, is in general position with respect to each §j,

3. for 4 sufficiently large, §;— > C, has a component U; such that
each component of 8;—TU; is of diameter less than .
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Let K(r, j) denote the collection of components of Bd U; on C, that
separate C, into two unbounded pieces. It follows from Theorem 6.3
that we can find such C’s and an integer k so that for ¢, larger than k,
there is a 1-1 correspondence between the elements of K (r, ¢} and K(r, )
such that

1. the distance between corresponding elements is less than &1

2. no element of K(r,i)+HK(r,j) separates two corresponding ele-
ments from each other on C,.

We suppose that % is so large that S;+S; misses each corner of F
that § misses and that 1/k < ¢. If we take £ to be very small, k& must
be Jarge. As a substitute for saying “for & sufficiently large” we can say
“for g sufficiently small”.

This & we have introduced is the first of a sequence e, ¢, ..., ¢
that we shall use. In general we suppose that each &, is very small but
this can only be aeccomplished by making the preceding ones very very
small. We are interested in knowing that such &’s exist rather than in
knowing how big they are. If one wants a workout in epsilonties, he can
start with &, and work back to e but this is not recommended.

Step 2. An isofopy that simplifies near fence corners. Since a solid
cylinder can be chopped up into topological cubes, it follows from Theo-
rems 8.3 and 7.5 that there is a piecewise linear isotopy H; (0 <t < 1)
of E® onto itself such that

1. H, is fixed on U;+U;,

2. o(Hy, I) < 9ey,

3. Hy(8;+8;) is in general position with respect to 7,

4. each component of H,(8;+8;)—(U;+U;) is a disk B of diameter

less than & such that IntEC ) IntC,, B-L, contains only one point
if Bd B separates (. into two unbounded pieces and ¥ misses I, otherwise.

Figure 3 shows that H, removes bulges (shown in 8;—U;) having
extraneous intersections with €, and also removes feelers (shown in
8;—U;) winding through C,.

The correspondence between the elements of K(r,4) and the ele-
ments of K (r, j) sets up a 1-1 correspondence between points of L,-H,(8;)
and L, -Hy(S;). If = takes a point of L, -H,(S;) onto the corresponding
point of L,-H,(S;), then

oy, I) < 3, on L, -HyS;).
There is no point of H,(S;+S;) between a point and its image under .
It follows from Theorem 8.4 that if k is sufficiently large and the

disks ¥ are properly chosen, then for each section V of F and arc pq in
Fundamenta Mathematicae, T. XLVIIL 8
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V. Hy(8;) joining two corner points of F, there is an arc in V- H,(§;) joining
the points corresponding to p and g. See Figure 4.

‘Hence for each section V of F, we have a 1-1 correspondence between
the components of V. H,(8;) that are arcs and the components of V. H,(8;)

that are arcs.

e K, HiSp s NS-ANo feeler
Feeler L__\i /

4 ' pelHiSH
Xje Kird) Hls iry No bulge

-
PN
\ﬁ

g, 3

Let G4 be the sum of all such ares in F-H,(S;) and G; be the sum
of all such ares in F-H,(8;). The aforementioned map = can be extended
to a homeomorphism = of @; onto G; such that an are in V. H,(8;) goes
into the corresponding arc in V-H(8;). Then F.H,(8;) is the sum of &
and various simple closed curves in the sections of F. Also, F'-H,(S;)
is the sum of @; = n(@;) and various simple closed curves in the sec-
tions of F.

Step 3. The finite graph G. The aforementioned @ is a finite graph
on H,(8;) and g;H:Y(Gy) is a finite graph on 8. We use these to get G.

Let & be the mesh of F.

Let &; be a positive number such that each component of H,(S; “1—31)’"‘
—(Gy+Gy) is of diameter less than . Since S contains no vertical in-
terval we can make g small by making & and & sufficiently small

For each section V of ¥ and each component 4 of V- (&;+G)

diameter 4 < e,.
Hence
o(m, I) < 3g;+2¢, on G;.
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Sinee o(g:, I) <& and g(H,,I) < 9¢, each component of §— —g:Hy MGy
is of diameter less than g --20e,. It follows from Theorems 9.2 and 9.8
that for each positive number ¢, and e+ 20s sufficiently small one can
cause ¢;H7 (@) to contain a stable graph G such that

3. each component of §—@ is of diameter less than e.

AdeGeS
A

CH g A =g heGre H(S)
7

2 Higi' A= glAX 01 Hig7 M Ay HytS))

N

V=Seciion of F

Pig. 4

For &, &, &, &4, sufficiently small, this finite graph @ is the one
mentioned in the statement of Theorem 3.2. We have just shown that
Condition 3 in the statement of Theorem 3.2 can be realized.

Step 4. The homeomorphism g. We recall that G is the sum of arcs
in the sections of F and that Gy is the sum of corresponding arcs under .
Also H,g; (@) is the sum of a subcollection of the ares in G;.

For each point a of G we define

9(ax0)=Hygi'(a) and g(ax1)=nH g '(a).

Since H, will be defined to be H, on ¢;7Y(), we find that Condition 4
of the statement of Theorem 3.2 can be realized.

If V is a section of F, A is an arc in @ such that H,g7'(4) is a com-
ponent of V. H, g, @), then g takes 4 x [0, 1] onto the disk in ¥ bounded
by the ares H,g; '(4), =H, g7 (4), and two vertical intervals. See Figure 4.
Since the diameter of this disk is less than 3e; + 2¢,, it follows that

diameterg(a x [0, 1]) << 3¢, + 2¢, .

This suggests that Condition 6 of the statement of Theorem 3.2 can be
realized.

8%
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Step 5
inequalities:

. Diameters of g(Gx 0) and g(Gx1). We have the following

diameter @ > diameter 8§ —2e,,
dinmeter (Hy g7 (G) = (G x 0)) > diameter § —2e,— 20, ,
diameter (aH, g7 (&) = g(G X 1)} > diameter § —2e,— 46— 264, .

Hence we suppose that the diameters of g(G¢x 0) and g(Gx 1) approxi-
mate the diameter of 8.

Step 6. Pulling closed curves off sections. There is no assurance that
Hy(8;+8;)-9(Gx[0,1])=g(Gx 0) 4 g(G x 1) because of the simple closed
curves (such as J shown in Figure 4) that lie in the intersections of the
sections of F' with H,(8;+8;). We extend the isotopy H; (0 <t <1) to
a piecewise linear isotopy H; (0 <t < 2) so that F-Hy(8;+8;)C&+6;.

Let &, be a positive number such that if J is a simple closed curve
in F-H,(S;) or F-H,(S;) that misses the corners of ¥, then J bounds
a disk in Hy(S;) or Hy(8;) of diameter less than s;. Since § contains no
vertical interval, we can make e, small by restricting & and e,. In fact
we can seb g = g, +20¢ .

By putting 2-spheres about these simple closed curves in F-H,(8,)
and F-H,(8;) that miss corners of ¥, we find from Theorem 7. 5 that
we can extend H; (0 <t < 1) to a plecewise linear isotopy H, (0 <t <2)
g0 that

1. o(Hy, Hy) < 9,

2, F-Hy(8)CGi, F-Hy8;)C 6y, and

3. H(1<1<2)=H, on components of HyY(G;) and HTY(G;) con-
taining .

Hi'g(Gx 0)+g(6x1)).
We note that
o(Hgy I) < 9e+9¢;.

One reason we did not suppose that Hy(1 <¢<2) equals H; on
THGy) (or HTY@;)) is that G; (or G4) may not be connected and one
of the small simple closed eurves (such as J shown in Figure 4) in a sec-
tion of F may separate two points of it from each other in H,(8;) (or
H,(8;))-
‘We now have
Hy(8;+87) - g(GX[0,1]) = g(G < 0) +g(GFx1).
Since we shall define H; so that Hy(S;4+8;) = Hy(S;+8;), we find that
Conditions 2 and 7 of the statement of Theorem 3.2 can be realized.
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Step 7. The homeomorphism H,. The reason for not using H,
for the H; promised by Theorem 3.2 is that we are not sure that
g;Hz'g(ax 1) = a for each point a of G. Other important requirements
other than Condition 5 can be met. The difficulty is that even though

aH,g;" is close to Hagi!
they are not necessarily equal.

We shall extend H; (0 <t <<

1. H(2<t<3)=H, on §;,

2. H{S;) (2 <t<3) is the same point set as H,(S;), and

3. wHyg;i' = Hygy* on Q.

This last condition will insure that Condition 5 of the statement of Theo-
rem 3.2 can be attained.

Consider an arbitrary positive number ¢. We show in the next
step that for e, s, &, &4, &, suitably chosen, there is an isotopy F,
(0 <t<1) on § such that

1. F; moves no point more than e, and

2. -Fl gjﬂz ﬂHzg.; ! on G.

Then H,g7 'Fig,Hz " is an isotopy on H,(8;) such that

on @,

2) to an isotopy H; (0 <1< 3) so that

o (Ho g7 ' Fugi; Ha ', I) << £+ 1825+ 20¢, .

Since H,(S;) is a polyhedral 2-sphere, for each open set U in E3
containing it, the isotopy Hgg,‘lF,g,HZ_ 1= ¥} can be extended to an
isotopy on FE® so that ’

1. o(Fi, I) < g5+ 18e;+20g and

2. Fy=1 outside U.

In particular, we suppose Fi= 1 on H,(S;).
We define
H, +2 = F ;H 2
and note that
o(Hg, I) < g+ 2785+ 29¢, .

Hence, we see that Condition 1 of the statement of Theorem 3.2 can
be attained.

Fuarthermore
Hagi_l = Hzg;'_IthfHZ_IHZQi_l
= Hyg; g Hy nHygi"
= nH,0;' = aH,g;" on G.
This shows that for each point ¢ of G
glax 1) = nH,g; (a) = nHyg7 (a) = Hagy (a) .
Hence Condition 5 of the statement of Theorem -3.2 can be attained.
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Step 8. An isofopy on 8. A 2-sphere S.has the property that for
each positive number £, there is a positive number &, such that if % is
a homeomorphism of § onto itself that moves no point by more than £,
there is an isotopy F: (0 <t < 1) on § such that ¥y= I, F,=h, and
o(Ft, I) < g5. See [10].

We have that @ is a stable graph on 8, each component of §—@
is of diameter less than s,, and for each point a of &,

olgy B nH, g7 (@), a) < o1+ (9e,4985) -+ (3ey -+ 26q) + (Yer + 9es) + &,
== 18e; 1+ 265+ 23¢; .

It follows from Theorem 9.5 that for g and 18e;+ 254 236, sufficiently
small, g;H; fH,g7" on @ may be extended to a homeomorphism % of §
onto itself such that g(h, I) <e,. Then

F,—g;H;'nH,g7" on &.

5. The intersection of 2-spheres with cylinders. Let L he
a vertical line. It may be that S-L contains infinitely many points. In
this case, the number of components of 8;-L may increase with 4. In
this and the next section we seek to control these intersections.

Question. There is no known method for slightly adjusting an
arbitrary 2-sphere with an isotopy of ¥® onto itself so as to make the
intersection of the adjusted surface with a fixed line finite. The lack
of such & method led to complications in 3] and [13]. It would be con-
venient to know if each 2-sphere is pierced by a tame arc.

Let I be a vertical line and A be a triangle in a horizontal plane P
such that P-.L is the center of 4. Let 4 (z) denote the triangle with center
at P-I, diameter z, edges parallel to the edges of 4, and vertices on the
rays from P-L through the vertices of 4. We use C(z) to denote the
vertical triangular eylinder such that P.C(x) = 4(x).

We suppose that ¢ is so small that only one component of 8—C(e)
has a large diameter and this component U(c) lies in ExtO(¢). For each
0 <z <<e we use U(r) to denote the component of §—C(x) containing
U(e} and K (#) to denote the collection of components X of T(x) C(»)
such that C(x)—X has two unbounded components.

TuporEM 5.1. If 0 <z <o, each element of K(z) separates U(z)
from a point of §-L in 8.

Proof. Assume X is an element of K(x) that separates no point
of §-L from U(x) in 8. We show in six steps that the assumption that
such an X exists leads to a contradiction.

1. If X does not separate any point of §-L from U(x) in S, there
is a continuum Y in §—X that contains §-L. Let X+ be the component
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of §~U(w) containing X. Then X* is a component of (S —U()+¥
and there is a simple closed curve J in § separating X * from Y in
S_[(,S'_U(m)) + Y]. This simple closed curve J bounds a disk D in

2. Let o be a positive number less than one half the distance from L
to C(x) and 2, be a positive number so small that if p,, p, are two points
of D such that o{p,, ps) < @,, then p, + p, lies on an are in D of diameter
less than ;. The existence of such a number x, follows from the wuniform
local connectedness of disk D.

3. Since each unbounded component of C(x)—X is topologically
equivalent to the interior of a circle minus its center, there is a simple
closed curve J in C(x) such that C(2)—J has two unbounded components
and J CV(X, }a,) where V(A,e) denotes the set of all points whose
distances from 4 are less than ¢. We call V (4, ¢) the ¢ neighborhood of 4.

4. The simple closed curve J eannot be shrunk to a point withous
hitting L — that is, there is no map of a disk ¥ inte E*—L that takes
BdF homeomorphically onto J. If there were such a map, one could
find by using a projection from I that there is & map f, of E into C(z)
that takes BAE homeomorphically onto J; there is a retraction f, of C'{z)
onto J; then f7'f.f, is & map of B onto BdF that leaves each point of
B4 E fixed. Rather than using the set of imapossible maps to arrive ab
a contradiction to the assumption that J ean be shrunk to a point without
hitting I, certain linking arguments could have been used instead.

5. Since J CV (X, {x,), there is a map g of J into D such that
o(p, 9(p)) < &+, < (L, C(x)). To get such a g one could consider
DOINtS Py Py, vy Pu=py 0N J such thabt o(py, Pi+a) <iwe; points g(p),
9(Ps)s .y §(Pn) = g(p,) on X such that ¢(ps, g(ps)) < {2,; and extend ¢
to an are pyp;y; of J onto an are in D of diameter less than =;.

6. Finally we show that the false assumption that X separates no
point of §8-L from U{z) in § leads to the contradiction that J can be
shrunk to a point without hitting Z (violating Step 4). Let E be the disk
22+ y* < 4 in the 2, y plane and § be 2 homeomorphism of BdE onto J.
Then f can be extended to 1 << a2+ 4% < 4 so that for each point (z,y)
of BAE, f takes the interval from (=, y) to (3#, 3y) linearly onto the
interval from f{z,y) to gf(z,y). Since g(J)C.D, the map f can be ex-
tended to map 2*+y? < 1 into D. The map f we have described shrinks
J to a point in E*—L and contradicts Step 4.

THEOREM 5.2. If O <a<c¢, X e K(x), and >0, there are simple
closed curves Ji,J, on 8 in an & neighborhood of X such that X separates
Jy from Jy on 8 and neither J, nor J, can be shrunk o a point in E*—L.
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Proof. We suppose & < o(L, O'(m)). Let D be an open subset of §
containing X such that DCV(X,e) and D—D is the sum of a finite
collection of simple closed curves Jy,d,, ..,J, in different components
of §—X. We show that the assumption that each J; with the possible
exception of J; can be shrunk to a point on & set B; in E°—L leads to
a contradiction.

It follows from Steps 3 and 4 of the proof of Theorem 5.1 that there
is a simple closed curve J on C(z) such that J cannot be shrunk to a point
in E*—IL but J can be shrunk in F3—L to a closed set Y in D. But the
set Y in turn can be shrunk to a point in D4R, ... +R,. This shrinking
violates the condition that J cannot be shrunk to a point in ES—T.

THEOREM 5.3. For each fixed positive number x <c¢, K(z) has only
a findte number of elements.

Proof. Cover §-L with a finite collection Vi, V,, ..., ¥, of connected
open subsets of § such that each V is of diameter less than o(L, O(z)).
Then each element of K (z) separates a V; from U{z) in 8 but no two
elements of K (x) separates the same V; from U(x) in 8. Hence, there
are not more than n elements in K ().

TEEOREM 5.4, For each element X of K(c¢) and each 0 < < ¢, X se-
parates some element of K (@) from U (o).

Proof. Assyme otherwise. Then there is a continuum ¥ in §—X
containing all elements of K () and a disk D in §—Y such that X CD,
.BADC U(e). Let D’ be the component of D— (x) containing BdD.
Tt may be that D.C(») containg a component that separates ((z) into
$wo unbounded sets but since D contains no element of K(x), D' C(x)
containg no component that separates C(z) into two unbounded sets.

Following the proof of Theorem 5.3, we find that there is a simple
closed curve J in ((¢) that cannot be ghrunk to a point in E*—L but J
can be shrunk in E*—C(x) to a closed set on D’. Then there is a map ¢
of the disk 22+42<C4 into E* such that g takes the circle »*+y*=4
homeomorphieally onto J,

g1 <@+ <4CExt0(w), gle+12=1)CD, gla+3*<1)CD.

Let Z be the set of all poinfs p of the disk a*4 42 < 4 such that
there is an are 4 in 4?4+ 42 < 4 from p to Bd (22 +y? < 4) such that g(4)
misses O(z). Let f=g on Z. The map f of Z into B*—IntC(x) can be
extended to take 22492 < 4 into E*—Int((x) since O(wx)-f(Z) contains
no component that separates C(z) into two unbounded sets. Then f
shrinks J to a point in E*—L and this contradicts the definition of J.

COROLLARY 5.5. If 0 < w <y < ¢, the number of elements in K(y) is
less than or equal to the number of elemenis in K (x).
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TEEOREM 5.6. Suppose that f is a homeomorphism of the plane set
(1 <2+y2<4) into B*—L such that f{a®+y? = 4) cannol be shrunk to
a point in E*—~L. If a component of C(x)-f(1<Ca2-Ly?<4) separaies
flat+y2r=1) from f(a®+32=4) in fA<2+y<4), this component
also separates C(z) into two unbounded sets.

Proof. The proof is a modification of the last paragraph of the
proof of Theorem 5.4. Let D’ be the component of (1< 2+ 32 4)— C(x)
containing f(#®--y*=4). If no component of D’.-C(x) separates C{x)
into two unbounded sets, there is a map 7' of (2*+ 9 < 4) into D'+ (x)
such. that f' agrees with f on (#2+4? = 4). This contradicts the con-
dition that f(#*+ ¥*= 4) cannot be shrunk to a point in E*-TL.

The preceding argument also gives the following result.

TaEOREM 5.7. If 0<a<ec andJ is a simple closed curve in U(x)—TU(e)
that cannot be shrunk to a point in EP—L, then J separates an element of
K(z) from TUl{e¢).

THEOREM b.8. Bach subinterval [a, b] of [0, ¢] contains a subinterval
[a,, b,] such that if x,vy are elements of [ay, b;], then K(x), K(y) have the
same number of elements.

Proof. Suppose K(a), K(b) have m, n elements respectively. If we
consider m—mn+1 mutually exclusive subintervals of [a, b], it follows
from Corollary 5.5 that one of them, [a,, by] satisfies the conclusions of
Theorem 5.8.

THEOREM 5.9. The interval [ay, b,] of Theorem B.8 contains a sub-
interval [a., by| such that if x,y are elements of {6, by], the elemenis of K (x)
and K (y) may be ordered X (z),, X (2)q, ..., X (@), and X (¥)1, X{(¥h,; ., X(¥)r
so that X ();, X (y); separate the same subset of 8-L from Ule).

Proof. I a, <o <y < b, it follows from Theorems 5.4 and 5.8
that if X (z) is an element of K (), then there is one and only one ele-
ment X(y) of K(y) that separates X (z) from U(e) in §. These are cor-
responding elements and are given the same subscripts. ’

Let Vi, Va, ..., ¥, be connected subsets of §-IntC(a,) covering §-L.
If an element of K (x) separates V; from U(¢) in 8§, so does the correspond-
ing element of K(y) if a, <2 <y < b,. Hence some subinterval [a’, b]
of [ay, b,] has the property that if 2, y are elements of [a’, b}, an element
of K (z) separates V, from U(e) in § if, and only if, the corresponding
elements of K (y) does. A subinterval of [a’,5'] has this property with
respect to ¥,. By taking subintervals for as many times as there are
elements in V,, V,, ..., V,, we arrive at a subinterval [a,, b,] of [ay, ]
such that if =,y are elements of [a,, b,], an element of K (z) separates
a V; from Ufe) in S if, and only if, the corresponding element of
K () does.
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TamorEM 5.10. If X', X' are cofrespondi%g elements of K(ay), K (b,)
respectively of Theorem 5.9 and J is @ simple closed curve in 8 thal sep-
arates X' from X' in S, then J cannot be shrunk to a point in E*—L.

Proof. Since X', X' separates the same subset of §-L from U(e)
in 8, the component U’ of §—(X'+4-X") between X’ and X' contains
no point of L.

Tet X' be the element of K((a2+b2)/2) corresponding to X', X"
It follows from Steps 3 and 4 of the proof of Theorem 5.1 that there is
a simple closed curve J’ on € ((a2+b2)/2) sueh that J' cannot be shrunk
to a point in B*—L but it can be shrunk in E*—L to a closed set ¥ in I
very near X'. Since U’ is topologically equivalent to the plane set
(1 < 22+9* < 4), ¥ can be shrunk into J in U'. But J cannot be shrunk
to a point in E3—L or else J’ could be shrunk to a point by way of ¥
and J.

TarorEM 5.11. For each positive number ¢ there is a subinterval [as, b,]
0f [, by] of Theorem 5.9 such that if e [ag, by] and X(z), X (as), X (by)
are corresponding elements of K (%), K(a); K (by), then the component of
8— (X (a;) +X (ba)) between X (a,) and X (bs) 48 im an ¢ meighborhood of
X (x) and is between C(ay) and O(b,).

Proof. Pick an element X(a,) of K(a) for preliminary considera-
tion. For each element z of [ay, b,] we let X (v) denote the element of K ()
corresponding to X (a,). The X (#)’s are linearly ordered on § in the sense
that if @ < y < #, X (y) separates X (z) from X (2) on 8. Using this linear
ordering and the fact that there are uncountably many 2’s between
a, and b, we find a subinterval [af; bi] of [a,, by] so that if C is a con-
tinuum in § separating X (ag) from X (b}), € lies between C(a,) and C(b,)
while the component of §— (X (az)+X (b;)) between X (a,) and X(b,) is
in an £ neighborhood of C.

If [ay, by] is suecessively shortened by an iteration of the above
process in considering the various other elements of K(a,), we arrive
at an interval [a,, by] satisfying the conclusion of the theorem.

6. The intersections of ecylinders and approximating
2-spheres. In the preceding section we considered the intersection of §

with certain vertical triangular cylinders C(z). The C{x)'s we use in this.

section are the same as those used in Section 5. In the present section
we find that if § is a close approximation to §, its intersection with
certain C(z)’s has some properties in common with the intersection of §
with these C(x)’s.

Suppose 0<s<< ¢ and & is a homeomorphism of § onto a 2-sphere §'
such that h moves no point as far as o(U(e), O(x)). We use U'() to

denote the component of §'—((z) containing h(U(c)) and K(wz,S) to
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denote the collection of all components of U'(z)- C(z) that separate C{x)
into two unbounded pieces.

TaeorEM 6.1. Suppose [ag, by] is the subinterval promised by Theo-
rem 3.11, ay< a,<by<<bg, and h is a homeomorphism of § onto a 2-sphere
S’ such that

o(h, I) < min (p(C(as), Clag))s ¢(C(By), O(ba))).-
Then if o elay, b,), Kz, 8') has the same number of elemenis as K(r)
and there is a correspondence between the elements of K(z) and K(x,S’)
such that an element of I (x) separaies a point p of 8-L from Ule) if and
only if the corresponding element of K (x,8‘) separates h{p) from h(U(a)} .
Proof. Since k is so near I,

R (T (b)) C T'(52) C (U (ag)) -

Let X, X" be corresponding elements of K (), K{ay). Applying Theo-
rems 5.2 and 5.7 to an annulus on §° between A(X) and k({X"), we find
that for each element % of [a,, b, an element X' of K (x, 8') separates
R(X) from h(X") in 8. Then X separates a point p of §-L from Ule)
on S if and only if X’ separates kh(p) from A(U(c)) on S.

We finish the proof of Theorem 6.1 by showing that all elements
of K (z, §') are of the sort described above. Suppose there is an element
X’ of K(z, 8') such that A (X’) does not separate from U(c) any ele-
ment of K (a,). It follows from Theorem 5.2 that there is a simple closed
curve J in § such that J cannot be shrunk to a point in E*—L, X sepa-
rates J from h(U(o)), and J is so rear X that kA~ NJ) C U(ay)—U(e) and J
can be shrunk to &~%J) in E*—L. But Theorem 5.7 gives the confra-
diction that h~Y(J) separates an element of K (a,) from U(c) in 8.

Tamorem 6.2. If X, X! are corresponding elements of K (w), K(z, 8")
of Theorem 6.1, then each lies in a 2¢ neighborhood of the other where & 18
as given in Theorem 5.11. If ¢ is taken to be sufficienily small, no element
of K(z)+K(x, 8') separates X from X’ on O(x).

Proof. Let X(as), X(b;) be elements of K(as), K (bs) corresponding
to X of E(z). Since h~(X’) separates X (a;) from X (b,) as shown in proof
of Theorem 6.1, each of X, i~ (X") lies in an ¢ neighborhood of the other
as shown in Theorem 5.11, and o(h, I) < }e, each of X, X' les in a e
neighborhood of the other.

It X,, X, are two elements of K (by), the subsets of 8 separated from
U(c) by X,, X, are a finite distance apart and for z e[a,,d.], the cor-
responding elements of K (z) are at least this far apart. Decreasing the
size of & of Theorem 5.11 does not make noncorresponding elements
close together. Hence, for & sufficiently small, the last sentence in the
statement of Theorem 6.2 is satisfied.
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Applications of the theorems of Sections 5 and 6 to vertical trian-
gular cylinders about the corners of a fence give the following result,

THEOREM 6.3. Suppose 8 is a 2-sphere in E? that contains no vertical
interval; 8y, Sy, ... 8 o sequence of polyhedral 2-spheres in Int S such that
8; CInt Sppy and H(S, 8;) < 1jiy F is a fence; and & is a positive number,
Then there are mutually exclusive vertical triangular cylinders Cy, O, ..., C,
about the corners of F that intersect S such that

1. no corner of any C, lies in T,

2. each O, is in general position with respect to each S,

3. for © sufficiently large, S;— D, C, has a component U, such that
each component of 8;—U,; is of diameter less than e,

Furthermore, if K (r, §) denotes the collection of components of C.-BdU;
that separate C, into two umbounded pieces, there is an integer k such that
for i,9 greater than k, there is a 1-1 correspondence between the elements
of K(r,1i) and K(r,q) such that

1. the distance between corresponding elements is less than e,
2. and no element of K(r,4)+K(r,qJ) separates itwo corresponding
elements from each other on C,.. .

7. Isotopies near 2-spheres. A polyhedral 2-sphere 8 may have
feelers that wander in and out of other 2-spheres M,, M,, .., M,. In
this section we learn how to pull these feelers back without moving
points too far.

TeroREM 7.1. Suppose 8, M are polyhedral 2-spheres in EP in re-
lative general position; D is a disk in M such that D-S=Bd.D; E is a disk
in 8 bounded by BdD; Vp, Vg are interiors of polyhedral 3-cells such that
these interiors contain IntD, IntE respectively; C is the polyhedral cube
bounded by D+F; and & > 0. Then there is o piecewise linear isotopy H,
(0 L1 <1) of E® onto itself such that

1. H\(E)= D,

2. Hy=1 (Identity) outside C+Vp+Vg,

3. H(C)CD+Vp,

4. H; moves no point which is outside Vg+C by as much as &

8. o(Hs(z), Hix)) < & if 5,1t are two values of [0, 1] and x is o poini
such that neither Hg(x), Hiw) belong to C+Vg.

Proof. Figure 5 shows how we use H, to pull back a feeler E of §.
It follows from the extension of Alexander’s theorem [1] due fo
Moise [16] and Graeub [12] that there is a piecewise linear homeomor-
phism % of E*® onto itself that takes D +XE onto the surface of a tetra-
hedron abep whose base abe is k(D). Let ¢ be the center of abe and 7,s
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be points such that rpgs is a straight line interval (with points r, p, q, s
in the order indicated) such that

aber Ch(C+Vg),

Intabes Ch(Vp), and s is very close to g¢.

Let z; be the point of pg whose distance from p is ¢ times the length
of pg. Let F; be the homeomorphism of E® onto itself fixed outside
aber - abes, that takes p to @ and is linear on the tetrahedra abpr, bepr,
acpr, abps, beps, acps. Then H,= 17 'Fh.

Conditions 1, 2, 3 of the hypothesis of the theorem are met without
restricting s to be very close to g but a sufficiently stringent enforcement
of this restriction causes Conditions 4 and 5 to be satisfied.

Fig. 5

THEOREM 7.2. Suppose K is o polyhedral oube in E* and D, B
are two polyhedral disks such that D-BAK = BdD = BdF = E-BdEK,
IntD C IntK, IntE CIntK. Then there is a piecewise linear isotopy H,
(0 <t < 1) of B onto dtself that is the identity except on K and such that
H,(E)= D.

Proof. With the exception of the piecewise linear part of the con-
clusion, this theorem was essentially proved by Alexander in [2]. It
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has been used as a lemma since but we include a short proof for
completeness.

Let B’ be & polyhedral disk such that BAE = BdD, Int# C IntK,
E'-(D+E)= BAE'. It follows from Theorem 7.1 that there is an isotopy
Hi0 <1< %) of E® onto itself so that H; is the identity except on
X and H,p(E)= F'. Another application of Theorem 7.1 shows that
Hy0 <1< %) can be extended to Hy(0 <t <1) 80 that H; is the identity
except on K and Hy(E)=D.

TEEOREM 7.3. Suppose M., M,, ..., M, are mutually evclusive poly-
hedral 2-spheres in BP each of diameter less than e.

Suppose S s a polyhedral 2-sphere in general position with respect
to each of the M;'s and U is a component of 8 — > M; of diameter more than
2¢ such that each component of S—U 1is of diameter less thamn e.

Then for each continuum X in EP— () M+ (S—U)) that intersects U
there is am isotopy Hy(0 <t < 1) of E® onto itself such that
. H, moves no point of U+X,
for each component B; of 8§ —U, H(IntE;) lies in some Intl;,
H, moves no point of 8 by as much as 3¢,

. H; moves no point of 8 by as much as 6s,
. H, moves no poimt of E* by as much as 9e,
. Hy moves no point of B by as much as 12e.

Proof. Some of the coefficients ¢ given in Conditions 3, 4, 5, 6
may be a bit extravagant but they are good enough for our purposes
when we apply Theorem 7.3 in Theorem 3.2. We divide the proof into
seven steps.

N N Y

Step 1. Preliminary simplifications. Let J,,J,, ..., J, be the simple
closed curves in BAT and E; be the disk in §—U bounded by J;.

With no loss of generality we suppose that each M; conbains one
of the J;’s since we can discard from consideration any that does not.

We supposé that no M; containg two J,’s because if M, contains
Jy +dJ5, we can split it and get two mutually exclusive polyhedral 2-sphe-
res M', M such that J,C M', J,C M, M,-SC M +M" C M, +IntM,.
Hence we suppose that J;C M.

If IntE;C IntM;, we consider E; as joined to U and ignore both
E; and M;. There is no need for the isotopy to move E;.

Step 2. Description of H;. The isotopy promised by Theorem 7.3 is
given by iterated applications of Theorem 7.1 used to reduce the number
of components of 8-> M;. Suppose there are x+% such components.

I IntE; ¢ IntM,, consider a disk D in M; such that D-8 = BdD
C8—U. Let E be the disk in §—T bounded by Bd.D and C be the poly-
-hedral cube bounded by D+E.
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We take Vp and Vg to be open sets containing D and F respectively
such that each point of Vp is very near D and each point of Vj is very
pear E. We shall discuss how close this should be later when we nse this
restrietion to show that an isotopy we describe does not move points too far.

We apply Theorem 7.1 to get an isotopy H; (0 <t < 1/2k) pulling D
to F and fixed at each point of § —F and at each point outside C-+Vp+V5g.
The V’s we described in the preceding paragraph are slightly larger than
those mentioned in Theorem 7.1 but we use these larger ones since we

" shall need them in the next paragraph when we shove points across D.

We suppose the isotopy H; (0 <1< 1/2k) satisfies Conditions 1, 2, 8, 4, 5
of Theorem 7.1 (with 1/2k substituted for 1 in determining range of i)
where the size of the ¢ mentioned in Conditions 4 and 5 is to be given
later. It is not the same as the ¢ mentioned in the statement of Theo-
rem 7.3.

Moving nothing except in Vp, we extend H; (0 <¢<1/2k) to H,
(0 <t << 1/k) by shoving D to one side of M; so that nothing moves far
(far is explained later) and H,x(8) is a polyhedral 2-sphere in general
position with respect to the M;’s, Hy(8) C(8—H)+Vp, and Hy(8)-3 M,
is a proper subset of §-3 M.

Using Hyx(S) instead of 8, the process is continued to reduce the
pumber of components of the intersection of > M; and the resulting
image of §. Taking a disk D in some M; such that D -Hyy8)=3BdD
C(Hl,k(S)—ﬁ) and the disk E in Hy(8)—U bounded by BdD, we
consider neighborhoods Vp, Vy about D and H,(F) and extend H;
(0<t<Yk) to Hy (0<t<2/k) so as to shove B across D as before.
In general we suppose that H; is extended so that Hju(S)- > M; is the
sum of at most n+%k—j components of §-3 M;.

It is clear that if the ¥'s are chosen so as not to intersect U +X,
then H; (0 < ¢ << 1) satisfies Condition 1 of the conchugion of the theorem
and H,(8) satisfies Condition 2. We need to place restrictions on the ¥’s
in order to show that Conditions 3, 4, 5, 6 are satisfied.

Step 3. Distance H; moves points of S. Let us consider the points
of the E;’s and see how far they move under H;. Let E{ be the sum of
E; and all the M’s intersecting it. If we suppose that each point of Vp
is within 6 of D, then each point of Hy(B;) is within § of Bf. Since
diameter E; is less than 3¢, we may restrict the Vp's and suppose that
each Hy;(H;) is of diameter less than 3e and g(p, H,-/k(p)) < 3e if pef.
Hence Condition 3 is satisfied.

The cube € used at any stage is near the appropriate B so we may
suppose that for each point « of E3,

(Hiple), Hiz)) <3 i <t <(G+Dfk.
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The preceding two paragraphs show that by restricting the Vp
and Vz's, we can keep H, from moving any point of 8 by more than e,
Hence Condition 4 is satisfied.

Step 4. Traps to be avoided. Now leb us turn our attention to Con.
ditions 5 and 6 as applied to points of E*—8. We must control our iso-
topies so as not to move a point too far. A trap to be avoided is illu-
strated by Figure 6. The point p, is near the leftmost sticker and is pulled
into the left cube when the sticker ig pulled in. If it goes into p, near
another sticker, this point may in turn be pulled to p, when this sticker
is removed. Care must be taken so that the point p, does not move to p,,
then to p,, then to p,, then to pg, ete. and hence move more than 12
This is accomplished by restricting the sizes of the Vp's and Vg's used.

Fig. 6

Points of the Vy's offer special difficulties as suggested in the pre-
ceding paragraph so we first consider a point p of E*—§ such that for
je=1r,741, .., or, k—1, the point H;u(p) is not a point of the Vg about
the disk F in H;(8) used in extending H, past H;;. We let s=r/k
and show that with suitable restrictions on the V’s, o(Hy(p), Hy(p)) < be
(s <t L)

Step 5. Diameter of Hp)*. Let Hy(p)+ denote the sum of Hp)
and all M’s such that each arc from Hyp) to U in E*—H, 1) Ei] inter-
sects M;. As a help in showing that o{H(p), Hy(p)) < 6s, we show in
the next four paragraphs that diameter Hy(p)+ < 3.

It no M; separates Hy(p) from U in E—H,D E;), then H,p)+ is
the point H(p) and its diameter is less than 3e. Hence we suppose that
some M, separates H(p) from U in E*—H,(3 E,).

We use H (B, to denote the sum of H,(E;) and all M,’s that inter-
sech it. We suppose Hy(E;)*+ is so close to B that it is of diameter less
than 3e.

If Hy(p) e M;, let #¢ be an arc on M; irreducible from r = Hp)
to Hy(> By). Suppose g ¢ H,(B;). Then Hyp)* C Hy(E;)* and is therefore
of diameter less than 3s. A similar argument shows that H(p)t is of
diameter less than 3s if H(p) C IntM;.
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If H(p) lies in the exterior of each J[;, it follows from the uni-
coberence of E°— ) M; that there is an H,(E;) accessible from Hyp) in
E3—(§JL;+HS(ZE{)) such that Hy(E;)+ Y M, separates H(p) from U
in B% It follows from the unicoherence of E3—H(E;) that H,E,)* se-
parates Hy(p) from U in E°. SBince Hyp)* C Hp)+H(E;)", diameter
Hyp)* < diameter Hy(p) - H(E)+ = diameter H(E*) < 3e. This com-
pletes the proof that for each point p of E*—8, diameter Hyp)*t < 3e.

Step 6. Distance moved by a point p whose image is never in Vg again.
Again we suppose that if §j =7, Hjn(p) does not lie in the ¥z used in ex-
tending Hyz. We show that if s=1/k, then o{Hy(p), H{p)) < 6e if
s <t <1. We ean accomplish this by showing that o(H(p), H;u(p)) < 32
it s=7rfk<j/k since it has already been demonstrated that o(Hjy, H;) < 3e
(i <t <(J+1)R).

Since Hy(p) does not belong to the Vg used in extending H,, as ¢
moves from s=r/k to (r+1)/k, Hsp) does not move far unless it
is in the € used at this stage. If it is in the C, Hp) is moved
close to D which lies in Hy(p)*. In any case, by a proper choice of
the ¢ of Theorem 7.1, we can cause each H iyr(p) to be very close to
its Hyp)t+.

It M; belongs to A, ym{p)t, it belongs to Hep(p)". Hence, as ¢
takes on the values #/k, (P +1/k, (r+2)/k, ..., 1, H{p) remains close
to Hy(p)t. We may suppose thab Q(Hg(p),H,-,k(p)) <3¢ (s=rlk<j[k)
and g(Hs(p), Ht(p)) < 6 (s<t<1) if Hja{p) is never in the Ve used
in extending Hy, (j=7r,7+1,..,k—1)

The preceding argument shows that H; does not move p by as
much as 6¢ it for no j does Hyu(p) belong to the Vp used in extend-
ing Hjp.

Step 7. Distances moved by o poiut one of whose imnages isin a Vg.
At any stage we have disk E and can select a Vg each of whose points
is very close to E. No point of ¥ has been moved by as much as 6¢ and
H;; moves no point of £ by as much a8 3z Hence we may select Vg
so that for each point p of Vi, e(p, Hux(p)) < 3e and o(p, Hip)) < 6z
if 0 <t < jjk. We now show that this restriction on ¥z insures that Con-
ditions 5 and 6 are satisfied.

Suppose H,(p) les in the ¥z used in extending H,y but if r <,
H;x(p) does not belong to the Vg used in extending Hjp. It follows
from the restriction placed on Vg in the preceding paragraph thfjtt
o(p, Hyp(p)) < 8e and olp, Hip)) < 6e for 0 <t <ok We found in
Step 3 that o(Hyy, Hy) < 3s if 7/k<t<(r+1)/k and in Step 6 that
o (Hosnulp), Hy(p)) < 3¢ and o(Hsn(@); Hi(p)) < 6e i (r+ 1)k <t<1.
These relations imply Conditions 5 and 6.

Fundamenta Mathematicae, T. XLVIL 9
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TaEoREM 7.4. If By, Bs, ..., B, are the disks of S—U of Theorem 7.
and Dy, Dy, ..., D, are wmutually ewclusive polyhedral disks such tha
BA E; = BAD; and IntD; C IntM;, then the isotopy H; (0 <t 1) may be
chosen satisfying the conclusion of Theorem 7.3 and such that Hy(B;)= D,

Proof. The proof of this theorem follows the pattern of the proot
of Theorem 7.3 except that we use n + k rather than % steps in descrip-
ing H;, the extra steps being used to apply Theorem 7.2 and pull the
Bs onto the D,

Theorem 7.4 may be extended by replacing § by a finite collection
of mutually exclusive 2-spheres. We need the following result where
there are two 8%,

TeEOREM T7.5. Suppose My, My, ..., M, are mutually exclusive poly-
hedral 2-spheres in E* such that each is of diameter less than e.

Suppose 8, 8" are mutually exclusive polyhedral 2-spheres each in
general position with respect to the MJs and U’', U are components of
&= M, 87— M; respectively each of diameter more than 2e and such
that each component of §'—U'+8"—U" is of diameter less than &

Suppose Dy, Dy, ..., Dy, are mautually exclusive disks such that U’ +U"" +
+ 3 D; ds the sum of lwo polyhedral 2-spheres and each IntD; lies in
S Int M.

Then for each continuwm X in B3 —(D Mi—{—S'—U'—l-S”—U”) that
intersects U’ +U" there s an isotopy Hy; (0 <t<1) of E® onlo iiself
such that

1. H; moves no point of U 4T +X,

B8 +8") = U'+U"+ 2 Dy,

. H, moves no point of S'+8" by as much as 3e,
. H; moves no point of & +8" by as much as Be,
- H, moves no point of E® by as much as 9e,

6. H; moves no point of E3 by as much as 12e.

St OHs o b2

Proof. The proof of Theorem 7.5 follows the pattern of the proof
of Theorem 7.3 so we only give a broad outline of it.

As in the proof of Theorem 7.3 we subdivide the A/s so that each
of those that needs to be considered contains one and only one simple
closed curve in BAU’' 4+ Bd 17”, and the interior of this 1M, contains the
appropriate IntD;.

In a finite sequence of applications of Theorem 7.1 each followed
by pushing a disk F to one side of a disk D, we obtain an isotopy of B
onto itself that reduces the nwmber of components of (8 +87)-> M; to
the number of components of RBAT'+BAT". Then Theorem 7.2 i
applied to push § 48" ounto U’ +U"”+3 D,.
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For each component F of §'—U"+8"—0U"", the image of F at each
stage is near the sum of # and the M;s that F intersects. This insures
that Condition 3 is satisfied.

At no stage is any point moved more than 3e. This insures that
Condition 4 is satisfied.

If at a certain stage the image of a point p fails to belong to an
open set Vg about the disk F used at this certain stage, the image is
not moved much unless it moves near an M; that separates p from
U 4+U" in B3—(8—~U'-+8"—TU"). This insures that H; does not move
too far those points whose images fail to belong to Vg’s.

By choosing the Vgz's so that points in them have not been moved
too far already, we insure that the isotopy we describe satisfies Condi-
tions 5 and 6.

TEEOREM 7.6. Suppose 8; 8y, Sey ..o; Fy Cy,y Cay vy Cnj and the E (v, j)'s
are taken as in Theorem 6.3, and e is taken so small and k so large that if
k< i <j, noncorresponding elements of K(r,d), K(r,j) are farther apart
than 2. If J, is an element of K (r, 5) that separates on C, two corresponding
elements J;, J; of E(r,i), K(r,j) and 1,7,5 >k, then i<s<j and Ji,Js, J;
are corresponding elements.

Proof. We let U;, Us, U; be the large components of 8;— 2 Cr,
8,— > C,, 8;—> C, and find from the techniques of Theorems 7.3 and 7.5
(we are not interested here in preventing points from moving far) that
there is an isotopy on E?® that is fixed on U;+ U, + U; that takes 8i, Ss, 85
onto polyhedral 2-spheres §%, S;, 8; such that each of 8i—Us, 8i—Us,
8j—U; misses -G,

Sinee J, separates J; from J; on Oy, then J¢, Js, J; are corresponding
elements beeause noncorresponding elements are not within 2¢ of each other.

Since neither J; nor J; separates the other from Js on C,, neither
S} nor 8; separates the other from S in E® Therefore 8. separates Sf
from 8; and ¢ <s§<j.

The preceding argument also gives the following result.

TreorEM 7.7. If in Theorem 7.6, Jy is an element of K(r,t) cor-
responding to Jy, J; and & < 1 <t < j, then J; is between J; and J; on Oy.

8. Special disks with respect to cylinders. Each polygonal
simple closed curve J on € bounds a polygonal disk D which lies except
for J = BdD in IntC. Suppose L is a vertical line in IntC. If J bounds
a disk in ¢, we may choose such a D which misses L; if 0 —dJ has two
unbounded components, we can pick D so that D intersects I in just
one point.

Suppose D', D’ are two such disks bounded by J and P i3 a plane
containing L such that P contains no vertex of some rectilinear trian-

9*
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gulation of D'+D”. Rach component of P.-D' with a point pondis
an arc with only its end points on J. The same goes for components
of P-D"”, However, the arc in P-D’ containing » may not have the same
other end point as the arc in P.D"” containing p. We wish to define
a special property such that if D’, D' have this special property, then
if an are which is a component of P-D’ shares an end with a component
of P.D", then their other ends are identical also.

Special property for a disk. If J is a polygonal simple closed
curve on a vertical triangular eylinder ¢ and L is a vertical line in Int(,
then a polygonal disk D is said to have the special property with respect
to J, C, L provided:

1. BdD =J,

2. Int D CIntC,

3. Diameter.D = diameterd,

43. D-L =0 it J bounds a disk in O,

4b. D.L contains only one point if ¢-—J has two unbounded com-
ponents,

5. if P is a plane containing I but no vertex of a rectilinear trian-
gulation of .D and ab is an arc in P-( with end points on J and interior
in the component of ¢ —J that does not reach below some horizontal
plane, then some component of D.P is an arc with end points at a, b.

TeworeM 8.1. Suppose J is a polygonal simple closed curve on a ver-
tical triangular cylinder C, L is a vertical line in IntC, and D', D" are
two polyhedral disks each with the special property with respect to J, ¢, L.
If P is a plane containing L but no vertex of some triangulation of D'+ D"
and ab is & component of P-D' intersecting J, then there is a component
of P-D" which is an arc with the same end points as ab.

Proof. Since P contains no vertex of some triangulation of D’ +D",
each component of P.D' (of P-D" also) that intersects J is an are with
only its end points on J.

For the case where J bounds a disk in ¢, Condition 5 of the
definition of the special property of a disk causes two points of
J-P to belong to an arc in P-D if and only if they belong to an are
in P-D". .

If ¢—J has two unbounded components, J-P has two points p, ¢
such that each pair of points of (J- P)—(pg) belong to an arc in P-I’
if and only if they belong to an arc in P-D" according as they do or do
not belong to an arc in P-C whose interior belongs to the upper com-
ponent of '—dJ. Since p, ¢ are the only two points of J- P left to con-

sider, there is an arc from p to ¢ in P. D’ and also an are from p to ¢
in P.D".

icm

Conditions under which a surface in BE* is tame 133

TaEorEM 8.2. If J is a polygonal simple closed curve on a vertical
triangular cylinder C, and L is a vertical line in Int C, then there is & poly-
gonal disk D that has the special disk property with respect to J, C, L.

If Piy Py, ..., Pn is a finite collection of planes each containing L bul
no point af which J is broken, such a disk D may be selected with a recti-
Linear triangulation with no verter on P,+P,+..+P, and no edge inger-
seating L.

Proof. The proof of the case where J bounds a disk E in C is easy.
Here we obtain D by pushing IntE in slightly toward L.

Suppose C¢—J has two unbounded components U+ and U~ where
[+ is above some horizontal plane. The selection of D is immediate if J
lies in 2 plane so we suppose that the convex hull of J iz a polyhedral
3-cell K.

Let E be the disk on Bd X bounded by J and missing U~. Although ¥
satisfies conditions 1, 3, 4, 5 of the definition of the special property,
IntF may not lie in Int €. Also L-E may be on an edge of every trian-
gulation of B. This latter difficulty may be taken care of by adjusting B
slightly near L-E. The former exception may be removed by shoving
certain points of Int® near ¢ slightly toward L. Care is taken to see
that no “corner” of the resulting disk D lies on any P;.

THROREM 8.3. Suppose Jyi,da, ...,dm are m matually exclusive, poly-
gonal simple closed ourves on a vertical triongular cylinder C, L is a ver-
tical line in Int 0, and Py, P,, ..., P, are n planes each containing L bul
none containing @ point where any J is broken. Then there are m mutually
exclusive polyhedral disks Dy, Dy, ..., Dy such that each D; has the special
property with respect to J;, ¢, L and D; has a triangulation with no vertew
on Py+Py+...+P, and no edge intersecting L.

Proof. Suppose Jy, Jyy .oy Jm are ordered so that if ¢—J; has two
unbounded components U+, U~ with U~ the lower one, then i< if Jy
either bounds & disk in U~ or fails to intersect U~ The disks Dy, Dy, -, Dy,
may be obtained by an iteration of the process deseribed in the proof
of Theorem 8.2 where we define D,, then D, ..., and finally Dy.

TrrorEM 8.4. Suppose 85 8y, Say oy F3 C1y Osy ooy Onj and the K (r,j)’s
are as in Theorem 6.3 and 7.6 and ¢ k are as in Theorem 7.6. )

Suppose Uy (i=1,2,...) is the large component of § -3 0, and Si
is @ 2-sphere in general position with respecdt to F formed by replacing ea?h
component D of S;—U; by a disk E which lies except for its boundary in
some Int C, and has the special property with respect lo BdD, G, L, where
L, is the center of Oy,

For each point p of Si-Ly, let m(ps) be the corresponding point of 85-Ly
as determined by the correspondence between K (r, i) and K(r, j).
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There is an integer &' such that if 4,7 >k, V is a section of F, and
psg; 8 on are of V- 8% between two corner poinis of F, then there is an are
in V-8 between wip:) and mi(g:).

Proof. Suppose p e 8;-L, such that m=(p)= p;. Since for each in-
teger § there is an arc in V. 8; from z(p) to a cornexr point of 7, there
is a point ¢ of §i-L, such that for infinitely many j’s, there is an are in
V. 8} from my(p) to myg). The truth of Theorem 8.4 will follow if we show
that if k<4< s < { and avcs in V- 8f and V.87 from z(p) to m(g) and
7(p) to m;(g) imply that there is an arc in V- 8; from my(p) to m(q).

We find from Theorem 8.1 that whether or not there is an arc in
V. 8. from mg(p) to m(g) is not determined by what E’s we use to re-
place the D’s as long as they have the special property. Hence we sup-
pose that the B’s do not intersect. Theorem 8.3 shows that we can pick
these E’s so they do not intersect and the techniques used in Theorems 7.3
and 7.5 show that there is an isotopy on E3 pulling- §;-+8,+8; onto
8;+8:+8;. Here we do not need the full strength of Theorems 7.3 and
7.5 since, although we do not want to move points of U;4-Us+U;, we
are not interested in preventing other points from moving far. It fol-
lows from Theorem 7.7 that m(p) is between n{p) and s;(p) while myq)
is between m;(q) and myq).

The arc in V- 8} from m,(p) is trapped on V between the arcs in V- 8;
from m(p) to m;(g) and the arc in V- 8; from m;(p) to m;(q) so it can lead
only to z(q).

9. Finite graphs on a 2-sphere. Recall that 7'(1) is the 2-sphere
with center at the origin and radius 1. We prove some theorems aboub
stable graphs on T(1) and extend these to theorems about graphs on
arbitrary 2-spheres. .

TEEoREM 9.1. Suppose G is a finite graph on T(1) such that each
component of T(1)—@& is of diameter less than ¢ < L. Then G’ contains
a fimite graph G such that each component of T(1)—@G is an open 2-cell
of diameter less than 3& and no two of the closures of these open 2-oells meei
in a disconnected set.

Proof. An advantage of working on T(1) rather than on an ar-
bitrary 2-sphere is that the diameter of a small set is equal to the dia-
meter of its boundary.

For each component U of S—&, let J{U) denote the simple closed
curve in U bounding the large component of §—T and D(U) denote
the disk in § containing U and bounded by J(U). The diameter of D(U)
is the same as the diameter of T.

‘We note that if two D(U)’s have an interior point in common, one
containg the other. Hence there is a collection of D(U)’s covering S such
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that the interiors of these D(U)’s are mutually exclusive. If no two of
these D(U)’s intersected in a disconnected set, we could use the sum
of their boundaries for .

We wish to adjust the above mentioned D(UYs so that the inter-
section of two of the adjusted disks that have a point in common meet
in a connected set. We are willing for the diameters of the adjusted disks
to be more than e.

The finite graph shown in Figure 7 is not stable because a homeo-
morphism of the graph onto itself interchanging ares acb and ayb or
ezd and cwd could not be extended to the plane. However, if D; and D;
ave combined (by removing Intard) and if D, is added to Dy (by re-
moving Inteed) the resulting graph isx stable. We prove the theorem by
considering a scheme to combine such disks.

o

Fig. 7

We finish the proof of the theorem by combining certain of the
D(TYys. Suppose that this combining has proceeded until we have disks
Dy, Dy, ..., Du, Br, By oy By covering 7'(1) such that the interiors of
these disks are mutually exclusive, each is the sum of D(U)s described
earlier, diameter D; < ¢, diameter F; < 3z, and no one of the F’s meets
ome of the other disks in a disconnected set. If we can eliminate the D’s
and make all the disks E’s, the sum of the boundaries of the B’s will
be the required finite graph G.

Tt J is a simple closed curve on 7'(1) of diameter less than 1,
we use D(J) to denote the smaller disk in T'(1) bounded by J. Let
Epmys be the sum of all disks B of Dy, Dy; ey Dny Bipooes B such that
there is a simple closed curve J in 7(1) such that ECD(J) and
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J-(BdD, + BdD, + ... - BdE,)C BdD,. In general, J need not lic in
BdD, +~BdD,+...+BAE,. For example, if D,= D, of Figure 4, the
simple closed curve J that shows that Dy (which has been renamed an E)
is to be combined with D, lies in D,+IndDy. Then B, is a disk of
diameter less than 3e, and it has swallowed up some of the D’s and per-
haps some of the E’s, but it does not intersect any of the remaining disks
in a disconnected set.

A continuation of this process changes all the D’s into E’s.

The following extension of Theorem 9.1 follows from use of the
fact that each 2-sphere is the image of T'(1) unter a uniformly contin-
uous homeomorphism.

TEEOREM 9.2. If § 15 a 2-sphere and & > 0, there is a positive num-
ber & such that if G is a finite graph on 8 such that each component of §— @
is of diameter less tham 8, then G' has o finite subgraph G such that each com-
ponent of 8—@ is an open 2-cell of diameter less than ¢ and no two of the
closures of these open 2-cells meet in a disconnected set.

TaeoREM 9.3. Suppose Dy, D,, ..., D, are disks whose sum is a
2-sphere § and the intersection of two of these disks with a point in com-
mon is either & point or an arc. Then 3 BAD; is connected and no BdD;
separates .

Proof. I D BdD; were not connected, a simple closed curve in
§—Y'BAD; would separate ) BdD; in 8. But this simple closed curve
would not lie in any Dy.

It Bd.D; separates ) BdD;, there is a simple closed curve J in
§—(Y BAD;—BdD;) such that (Y BdD)—BdD; contains points p,q
lying in different components of §—J. It follows from the unicoherence
of §—IntD; that there is an arc 4 in J irreducible with respect to se-
parating p from g in 8—Int.D;. But 4 would intersect D; in only two
points and would lie in a D; such that D; - D; is not connected.

THEOREM 9.4. Suppose @ is o finite graph on T(1l) such that each
component of T(1)—@ is an open 2-cell of diameter less than &<} and
no two of the closures of these open 2-cells meet in a disconnected set. If b
is @& homeomorphism of G omto a finite graph in T(1) such that h moves
no point by more than & h can be extended to a homeomorphism of T(1)
onto itself that does not move any point by as much as 3e.

Proof. Let Dy, Dy, ..., D, be the disks which are the closures of
the components of 7(1)— & Then for each i, h can be extended from
BdD; to map D; onto the smaller disk in 7(1) bounded by A (BdD;)
This extension moves no point by as much as 3e. We now show that

the combined map of k on all the Dys is a homeomorphism of T'(1)
onto itself.
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If h{IntD;) intersects Rh(IntD;), i+ j, then one of h{D;), h(Dj
contains the other. Assume h(D;) C k(D). Since h{G—DBd D;) is connected,
R(D;) contains h(G). This contradicts the facts that diameter A(D;) < 3e,
diameter G > 5z, diameter h(G) > 3e.

The preceding paragraph showes that h sends no two points info
the same point. Since T'(1) is compaet and k is continuous, % is a homeo-
morphism. Since no proper subset of T(1) is homeomorphic with T(1),
. takes T(1) onto itself.

TEROREM 9.5. For each 2-sphere 8 and each positive number &, there
is a positive number & such that if G is a finite graph on 8 such thai each
component of S—G is an open 2-cell of diameter less than 6 but the clo-
sures of no two of the open 2-cells meet in a disconnected set and h is o homeo-
morphism of G into S that moves no point by more than &, then h can be
extended to a homeomorphism of 8 onto itself that does not move any poini
by as much as 3e.

Theorem 9.5 follows from Theorem 9.4 and the fact that § is the
image of T'(1) under a uniformly continuous homeomorphism.

The following theorem shows that we have been considering stable
graphs in Theorem 9.1 to 9.5.

TEEOREM 9.6. A finite graph G on a 2-sphere 8 is stable if there is
a finite collection of disks Dy, Dy, ..., Dy covering 8 such that Int D;-Dy; =0
if i # 7§, > BdD; = G, and if two of the D's have a point wn common, their
intersection is connected.

Proof. We denote that BdD; does not separate G or else some D;
intersects D; in a disconnected set. A homeomorphism k of @ imto
a 2-gphere §’ may be extended to a homeomorphism of § onto 8" by
taking D; onte the disk on 8’ bounded by L{B4dD;) and containing no
point of A(G—BdDy).

10. Freeing surtaces of intervals. In the proof of Theorem 2.1
we supposed that there is no loss of generality in supposing that a 2-sphere
S contains no vertical interval. We justify this supposition with Theo-
rem 10.1.

A different proof of Theorem 10.1 was originally employed which
made use of tame Cantor sets. It was decided to include this different
proof in another paper devoted to properties of tame Cantor sets and
substitute here a shorter proof snggested by M. K. Fort, Jr. and mo-
deled after the proof of Theorem 4 in [10].

TororEM 10.1. If X is a closed 2-dimensional set in E3 and ¢ i
a positive number, there s a homeomorphism h of E® onto itself such
that k moves no point by more thon & and h{X) contains no straight line
interval,
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Proof. Let H be the set of all homeomorphisms h, of E°® onto itselt
and such that each of g(hg, I), o(hz*, I) is finite. Tf H is metrized with
the metrie

Dk, o) = 0 (hy,y hy) + Q(hfl; h‘;l) )

the resulting space is a complete metric space.

Let H, be the set of all elements h, such that k,(X) contains a straight
line interval of length no less than 1/n and at a distance from the origin
of no more than n. Then H, is closed and H,~+H,+... is an F, set.

‘We now show that no H; contains an open subset of H by showing
that for each element h; of H;, there is an element h, of H—H; very
close to h;. Let T be a triangulation of E? of very small mesh and such
that the 2-skeleton of T contains no straight line interval of length more
than 1/2¢ and no center of a 3-simplex of 7T intersects hi{X). Then h, can
be taken as fh; where f is a homeomorphism fixed on the 2-skeleton of T
which moves parts of the 3-simplexes of T in a straight line directly
away from the centers of these 3-simplexes. In fact, / can be taken so
that fh(X) is so close to the 2-skeleton of T as to contain no straight
line interval of length 1/i.

Since no H; contains an open subset of H, it follows from the Baire
category theorem that H contains an element A near I that does nob
belong to any H;.

11. Extension of preceding results to surfaces other than
2-spheres. Theorem 2.2 gave a condition under which a 2-gphere in E3
is tame. This result may be extended by the methods we have used to
show the following results.

THEOREM 11.1. A surface § in EP is tame if for each positive number e
there are surfaces S’y 8" on different sides of S such that

H(S:Sl)<é7 H(S,;S’”)ga.

TaEoREM 11.2. A surface S in E® is locally tame at a point p of 8
if there s a disk D with p « IntD C 8 such that for each positive number e
there are disks D', D' on opposite sides of 8 such thal

HD,D)<e H(D,D")<xce.

The original intention was to prove Theorems 11.1 and 11.2 in the
present paper but the paper seems long enough already and their proofs
will follow briefly from extensions of Theorem 2.2 to be given in another
paper. This will be accomplished as follows.

Tt will be shown in [8] that a 2-sphere in E° is tame if its comple-
ment is uniformly locally simply connected. Theorem 11.2 will he

icm
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established by showing that if p is & point of a surface 8 satisfying the
hypothesis of Theorem 11.2, then there is a disk # and a 2-sphere K
such that p e IntECK, ECS, and E*—K is uniformly locally simply
connected, Theorem 11.1 will follow from Theorem 11.2 and the fact
that locally tame surfaces are tame.

The above theorems are true in 3-manifolds as well as in B2
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