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Natural models of set theories
by

R. Montague (Los Angeles) and R. L. Vaught (Berkeley)

For any set x, the power set P(x) and the sum-sel | & are, respeet-
ively, {y | yCa} and {y | for some 2,y €2 and 2 ¢ x}. Greek letters “a”, ...,
wg? “g, .. will be used to denote ordinals. The sets R(a) are defined
recursively, for arbitrary o, by the condition: '

Ria)=U{PR(B)| g < a} ().

If 4 is any set, we mean by e, fhe set of all ordered couples (=, y>
such that e d, yed, and zey. For each a0, the relational system
“R(a), €py» will be denoted by %,.

Models of axiomatic set theories which are of the form 2, may be
regarded as natural models (cf. Tarski [5]). In particular, it is common
in working with Zermelo-Skolem set theory (2), with or without the axiom
of infinity, to have in mind the models U, or A,,,, respectively; and
in connection with the Zermelo-Fraenkel-Skolem or von Neumann-Bernays
theories to consider the respective models Wy or Wy, where 6 is the first
strongly inaccessible ordinal greater than w (3).

Ags was observed in Tarski [5], o and w-+w are, respeclively, the
first ordinals « and B such that U, is a model of Zermelo-Skolem seb
theory without the axiom of infinity and s is a model of that theory
with this axiom. It is also known (cf. Shepherdson [1]) that #-+1 is the
first ordinal « such that U, is a model of the von Neumann-Bernays
axioms. Our prinecipal result in this paper is that, on the other hand,
there arve ordinals 9’ < 6 such that U, is 2 model of the Zermelo-Fraenkel-

(*) The sets E(u) are the “Stufe’” of von Neumann [1].

(¥) For an exposition of the various set-theories mentioned in this paragraph,
see Wang, Mc Naughton [1]. A precise description of various axioms mentioned, and
of the Zermelo-Fraenkel-Skolem and von Neumann-Bernays set theories will be given
in § 2 and § 6, below. By the Zermelo-Skolem set theory is meant the theory obtained
from the Zermelo-Fraenkel-Skolem theory by substituting Zermelo’s axiom schema of
aussonderung and the axiom of pairs for Fraenkel’s axiom schema of replacement.

{*) w is the first infinite ordinal. The notion of strongly inaccessible ordinal, which
was introduced in Tarski [2], will be defined in § 6.



Artur


230 R. Montague and R. L. Vaught

Skolem axioms. (Thus the assertion, which has been sometimes made,
that the Zermelo-Fraenkel-Skolem axioms insure the existence of a]
“gocessible ordinals” would seem to be unjustified.)

In establishing this fact we are led to various stronger or more
general conclusions and to some other results which may be of interest,
bat we shall forego now any further summary of what follows (4),

§ 1. Preliminaries. The discussions in this paper will be carried
out informally, but in such a way that they could easily be formalized
within the axiomadtic set theory of Zermelo-Fraenkel-Skolem. It is under-
stood that the axiom of choice i3 not an axiom of this theory, but that
the axiom of regularity (Zermelo’s Fundierungsamiom) is. Consequently,
we assume in our discussion the informal counterpart of the latter bus
not the former.

By an ordinal we understand a set # such that, for any x and y,
if #eyes, then x ez, while if «,y ez, then either z ey or @ ==y or y ez
Among ordinals we identify < with e; thus each ordinal is the set of
all smaller ordinals, and w, the first infinite ordinal, is the set of all
natural numbers (denoted by i, “, .., “¢”). The successor 8{z) of
a set # 18 v {z}. A limit ordinal is one not of the form §(f). It is known
(cf. Robinson. [1]) that the usual properties of ordinals follow from these
definitions.

To the notions defined in the introduction, we add that of the rank r(x)
of a set @; () is the first « such that @ e R(S(a)) (%).

The notions “’ and “R™ are easily seen to have the following
properties (cf., e. g, Bernays [1]).

LeMma 1.1.

(1) a<pif and only if R(a)C R(B).

(:2) r(a)=a.

(3) rl@)=U{8lr@w)]| yea).

(4) Ij weyeR(a) or #C yeR(a), then © € R(a).

(.5) meR(a) if and only if v(z) < a.

(6) R (S(a)) = P (R(a)).

() Bla)=\HR(B)| B<a}, if a is & limit ordinal.

(8) If A is any set of ordinals, then \J{R(a)| a € A} is R(B), for
some f.

{*) We wish to thank Professor Alfred Tarski for posing problems and stimulating
interest in this line of investigation. Many of our results were announced, yithout
proof, in Montague [2], Vaught [1], and Montague, Vaught [1].

(*) That every set belonga to some E(p), and hence to some R(S(8)), is a known

consequence of the axiom of regularity. (This result is due to von Neumann and Godel
{cf. Bernays [1], p. 67-68)).
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(-9) zC R(r(z).

(.10) xeR(S(r(a:))).

An ordinal « is said to be confinal with an ordinal B, if B has a sub-
set X such that (X, ex) is isomorphic to (a, &>, while, for any y < 8,
there is a 6 ¢ X with y < 8. We write 2~y to mean that the sets z and ¥
are set-theoretically equivalent (equinumerous).

‘We shall have occasion to speak of Z, the cardinal number or power
of z. The treatment of cardinal numbers in publications concerning set
theory (e. g., Godel [1], Tarski [2]) depends either on the axiom of choice
or on the introduction of a special symbol and axioms concerning i,
Scott, however, has recently remarked (cf. Scott [1]) that under the
assumption (which we make) of the axiom of regularity, 7 may be de-
fined as follows:

1) z={y| y~au and, for any 2, if 2~u, then r(y) <r(2)}.

{The set so defined ¢‘exists”, since, if a is the smallest ordinal such
that for some y, y~a and 7(y) = @, then it coincides with the set
{v 1y « B(8(w) and y~z}.) It follows that

(2) Z="mw if and only if x~w,

and hence that (1) (which we adopt) is an adequate definition.

In metamathematical considerations we shall employ the termino-
logy of Tarski, Mostowski, Robinson [1]. Thus, by =@ theory with standard
formalization, or simply a standard theory, we understand a theory for-
malized in the first order logic with identity. The logical constants are
the symbols v, ~, V, -, <, A, V, and =. The only variables are
individual variables, assumed arranged in a given non-repeating sequence
Vo3 ey Vo, ... We agsume a theory 7 has finitely many non-logical con-
stants, arranged in a given order &,,...,&,—;. (A non-logical constant is
either an individual constant, an n-place predieate, or an n-place oper-
ation symbol, for seme positive integer n.) Bach theory 7T then possesses
definite sets of symbols, terms, and formulas, as well as constant terms
and sentences (i. e., terms or formulas with no free variables). In addition,
a theory I' has given a set of its sentences, called the valid sentences
of T, and such that any sentence of the theory which is logically derivable
from valid sentences is itself valid. A set K of sentences of a theory T
is called a set of awioms for the theory if the valid sentences of T are
exactly the logical consequences of K. An arbitrary foxmula ¢ of 7' is
called valid in T, and we write

}*"T‘Py

Fundamenta Mathematicae, 'T. XLVII. 15
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provided the closwre of ¢ (i e, the sentence Avy ... Avi,_ ¢ (%), where
Bo<ky< .. < kpoq, and v, .., Vg, are the free variables of ¢) is
valid in 7.

If is a formula, we denote by \/ lvyy the formula Vv A Va(povy=v,),
where vy, is the first variable (in the sequence vy, vy, ...} distines from v,
and not free in .

If we are given a standard theory 1" and a formula y of 7' such that
v, is the only free variable of y and 5,V !vyy, then we may form the
corresponding ista-theory T® as follows: The symbols of 7% are those
of T together with the new symbol :. The sets of terms and formulas
of T are defined by the same recursive conditions as in the case of a
standard theory, with the added condition that evuep is a term of T®
whenever ¢ is a formula of T%. The valid sentences of T are the
logical consequences of the set consisting of the wvalid sentences of T
together with all closures of formulas of the form

(3) Vi = 1Vn@ > AVa(Q >V = Vi) V (N\/ !Vn(P/\ AVo(ve= ”k-—>’lp))

where p is o formula of 7% and vy is a variable distinet from v, and Vo
and not free in ¢.

It is wellknown (ef., e. g, Hilbert-Bernays [1]) that with each
formuls @ of T% may be correlated a formula ¢* of T having the same
free variables as @ and fulfilling the condition:

(4) o) ¢* = @

Given a formula or term ¢ and arbitrary terms z, ..., T,—1 we under-
stand by

®(Toy ey Tnmy)

the formula obtained from ¢ by the proper simultaneous substitution
of vy for vy, .oy Taey fOT vy (7).

By an inessential extension of a standard theory 7' we mean a stan-
dard theory T” whose non-logical constants comprise, in addition to the
non-logical constants &, ..., &,_, of T, some new individual constants
ms Emt1s oy Emin, and whose valid sentences are all the logical conse-
quences (in T") of the valid sentences of 7.

(°) Coneatenation of expressions is denoted by juxtaposition.

(*) That is, let ¢’ be the first formula or term (in a fixed enumeration of all ex-
pressions) such that no variable free in any of 7, .., T,y 18 bound in ¢ and ¢’ is an
al})habetic variant of ¢ (in the sense of Quine 1] — with suitable modifications when
¢ 1s present); and let ¢(z,, ..., 7,_,) be the result of replacing simultaneously in ¢’ all
free occurrences of v; by 7, for i< m
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By a realization of a standard theory ' with the list &,, ey ey OF
non-logical constants is meant any (algebraic ) system W=C4, Xy .oy Xy s>,
where 4 is a non-empty set, and each X; is a distinguished element,
8 g-ary relation among the elements of 4 or a g-ary operation on A4,
according as & is an individual constant, ¢-placed predicate, or g-placed
operation symbol. The set 4 is called the wndverse of 9. The notions of
satisfaction of a formula @ of T and wvalue of a term ypof T in U for an
infinite sequence {ag, ..., @s, ...) of elements of 4 are introdunced by the
usual recursive conditions (cf. Tarski [1]), with the understanding that
for each 7, a, is to be “assigned” to the variable v,. If the free variables
of ¢ or = are at most v, ..., v;_;, then we may, under the same condi-
tions, say that {ay, ..., a,_,> satisfies p in A, abbreviated

{5) Fa@lao, .y aroy]

or speak of the value of v in 9 at (a,, ..., az_,7, abbreviated
(6) ™ag,y os @]

By a realization of an iota-theory 7% is means any realization of T
in which V/!vyp is satisfied. The notions of satisfaction and value for
formulas and terms of T™ are defined by the usual recursive conditions
angmented by the condition

The value in W of evep (where g is any formula of T(")) at Ly, ..., p,y D>
18 the wnique b such that ¢ is satisfied in 9 by LBy veny Uy by Gy o),y
if there is such a b, and, if not, is the unique = such that = w[2).

Abbreviations (3) and (6) will also be applied when @ or ¢ is a formula
or term of T%.

A sentence (of a standard or iota-theory) is said to be true in a reali-
zation U of the theory, if it is satisfied in 9 by any sequence of elements
of % (8). A realization U of a theory 7 is called a model of a set Q of
sentences of 7' if all sentences belonging to @ ave true in %; U is a model
of T if it iy a model of the set of valid sentences of T. To each realiza-
tion A of & theory T corresponds a particular standard theory, called
Th{¥), whose valid sentences are all sentences of 7' true in 9L

An element a of a realization U of a standard theory 7T is ecalléd
definable in U if there is a formula ¢ of T, whose only free variable is v,,
such that |=yV/!vep and |=xg[a]. We denote by D(U) the set of all
definable elements of 9.

(®) Given a system 9 = <4,..), we shall speak of “elements of A’ to mean
“elements of 4. Similar remarks will apply to the phrases “9[ is denumerable” and
“9 is infinite’,

15*
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The following facts are easily established: .
TemMMa 1.2. Suppose that W is a model of @ standard theory T, v is
a formule of T whose only free variable is v, and -7\ vy, Then:
()
1) 9 4s also @ model of T, . .
((.2)) An element a is definable in U if and only if there is a constant
term © of T such that ¥ =,

§ 2. Elementary extensions. Throughout this section we suppose

that T is a fixed but arbitrary standard theory.

A realization B = (B, Xj, ..; Xm—> 0of T i fzalled a subsystem_of
a Tealization ¥ = (4, Xy vy Xma) 0f T (and A is called an eatension
of B) provided that (i) B C 4, and, for jeach & < my (11.) if X;is a Te-
lation, X} is obtained by restricting X; to B., (m.) if X, is an o'peraftlon,
B is closed under the operation X3, and (n:) it X;is a distinguished

3 ;= X;eB. .
elemil;sg?];] fa:lls a,nly realizations W and B of T elememm'ily. (or arith-
metically) equivalent if the same sentences (of T) are true in A that
e t;ﬂ:t;(l)lngz:r notion is that of elementary extensionality, .ﬁl‘st introduced
by Tarski (ef. Tarski-Vaught [1]). A realization pi ‘of T is ca]lefd an ele-
mentary extension of a realization B of T if (i) U is an extgnsmn of B,
and (ii) given any » e o, any formula  of T whose free variables are at
oSt Vo, ... Vaer, and any elements by, ..., bp—y 0f B,

@ Euglbo,y vy bun] If and only it |=g @[bo;s s bnal.
This notion was used by Tarski (cf. Tarski-Vaught [1]) in formmulating
and proving the following version of the Lidwenheim-Skolem theorem (°):

THzorEM 2.1. If U is a realization of T, and the universe of A is
infinite and can be well-ordered, then U has a denumerable subsysiem of
which it is an elementary extension.

A simple property of elementary extensions is formulated in

LeEvMa 2.9. If U is an elementary extension of B, them D(A), the
set of definable elements of U, coincides with D(B).

Proof. If # e D(N), then there is a formula ¢ of the theory T (of
which, we may suppose, ¥ and B are realizations), whose only free
variable is v,, such that |=x@lz] and EyV!vee. By (1) (with 2=0),
we have, also, |=g\/!v,p. Therefore, there iz an element y of B such
that |=g p{y]. Consequently, by (1), f=¢[y], and hence, clearly,
2 = 3y ¢ D(B). Thus, D) C D(B). The proof that D(B) C D(A) is similar,
though even simpler. i

(" In Tarski-Vaught [1], the axiom of choice is assumed, but the proof given
establishes 2.1 ag stated (cf. Mostowski [2], p. 163).

icm

Natural models of set theories 225

The following lemma, which we shall use in establishing our main
result, is due to Tarski (cf. Tarski-Vaught [1D):

LemMa 2.3. Let U= <{4,..> be a realization of T and BC A. In
order that U have a subsystem with wniverse B of which WU is an elementary
extension, it is necessary and sufficient that:

(1) for any m e w, any formula ¢ of T whose free variables are among
Voy oy Yoy and any elements by, ..., b,y of B, if there is an element z of AW

such that |=u @[boy ..., by—y, &1, then there is also an element Yy of B such
that |=x @by, ..., b1, ¥].

2.4. Remark. Suppose that a model % of T is an elementary ex-
tension of a model B, and that v is a formula of 7, whose only free
variable is vy, such that tg\/!vey(v,). Then, using 1.2.1, and (4) of § 1,
one easily shows that: Condition (1) of § 2 holds for arbitrary formulas
of T%; moreover, if © is any term of T, with at most the free variables

Voyoes Va1 GNE by, ..., by_y are any elements of B, then Dy, very bya]
= %Dy, ...y bpq].

§ 8. Zermelo-Fraenkel-Skolem set theory. To increase read-
ability, we agree henceforth that x,y, z, u, v, w are, in order, the partic-
ular variables v, ..., v,.

DErINiTION 3.1. By ZFS (Zermelo-Fraenkel-Skolem set theory ) we
understand the standard theory, whose only non-logical constant is the
binary predicate e, based on the axioms which are the closures of the
following formulas: '

Extensionality: Az(zex—zey)o>x=17y

Union: VyAzlzeysVu(zeu A nex)].

Power set: VyAzZlzey« Au(uez—uex)].

Infinity: Vy(Vzlzeya Ax~xez]a Az[zey—
Vu(meyaAviveue—rves vy =zl

Regularity: Vyvex—Vylyexa~Vz(zey pzex)].

Replacement: All formulas of the form:

AXVIyp=VvAylyevoVz(xeu A p)],

where ¢ is a formula of ZFS in which v is not
free.

Though we do not include it in the axioms of ZFS we shall frequently

refer to the awiom of choice, whose formal version is understood to be
the closure of the formula:

Ay ex—=Vu(u ey)) AATAZYEX A ZEX A~y =12>
~Vu(uey Auez))>VvAy[yex—>Viw(wev Awey)).


Artur


226 R. Montague and R. L. Vaught

DErEINITION 3.2. Z is the formula Ay~Yyex.

LeyvmA 3.3, b-zys \/‘XZ(X)

Yt is necessary to sketch the development of a small p;g)t of ‘the
theory ZFS, or rather of the more convenient iota-theory ZFS™, which,
by 3.3, can be formed. Because the following lemr.nas are xyell-known,
they will not be proved here. For brevity, we write ¢~ in place of
4 e in the remainder of this section.

DEFINITION 3.4. I is the formula Az(zex—zey).

DEFINITION 3.5. S is the term iy A z(aeyrzexX Vi= x).

LEMMA 3.6. Fze S(X)ezex V Z=X.

DEFINITION 3.7. U is the term 5 A zlzey—\Vu(zeun A nex))

Tewma 3.8. FzeU(@)«—Vu(zeu Aune x).

DeFINITION 3.9. Ord is the formula AYAZ(FezAZeX—>y €x)
ANTNE(YEX ABEX>YEZNY=ZY zey).

" DrrINTION 3.10. P is the term iy Az(z ey —I(z, X))

Tmma 3.11. —zeP(x)«I(z, X).

Definition 3.12. R is the first term (1%) whose only free vaviable
is x such that

- Ord(x) > R(x) = U(m/\z[z en—Vy [yex AZ= P(R(y))]]).

Lemma 3.13. Ord(s) > (veR(x)—V y[yexAve PR}

PrrNITION 3.14. r is the term iy [Ord(y) A I(x,R(3)}A ~x e R(y)]-

Leanea 3.15. 1y = r(x)«Ord(y) A I{x, R(¥))A ~x e R(y).

Deersiriox 3.16. The terms 4,, are defined recursively by the con-
ditions: 4,=— xZ(x), and 4,4, = S(dy).

Tt will be useful to note here the following easily provable general-
jzation of the axiom schema of replacement: :

Teyma 3.17. Let T be cither ZFS or an inesseniial extension of it.
Let g, ...y Tn—y be comstant terms of T® and 7 a term of T with at most
the free variables v, ..., Vo1. Then

(1) 2@V Tnrs AV (V0 € Vigs 0 Vo oo Vs
(Voe To Avee A Vi1 € Tyt A Vi == T{Vyy-uny Vn—l))) .

By a set theory we shall mean any (standard) theory whose only
non-logical constant i3 a binary predicate, say e. As Tarski has remarked

(%) The existence (and a specific method of construction) of such a term R is
well-kmown, in view of general results about the possibility of representing recursive
definitions explicitly in ZFS®; of,, e. g., Godel [1].
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(cf. Mostowski [1], p. 208), the theory of von Neumann-Bernays (as
presented in Godel [1], and, specifically, with the axioms of groups A,
B, €, and D, but not K, given there) is easily converted into such a theory,
which we shall call VXB (). ’

We shall study natural models of set theories, i. e., models of the
form U,. A related concept, that of supercomplete models, was introduced
in Shepherdson [1](*). A complete model of a set theory is a model of
the form {4, e€4;, where 4 has the property that any member of 4 is
a subset of 4. A complete model {4, e4> with the additional property
that any subset of a member of A is a member of 4 is called a super-
complete model. A natural model is of course supercomplete (by 1.1.4),
but the converse need not be true. However, Shepherdson [1] showed
that (in our terminology) the concepts ‘matural” and ,supercomplete’
coincide for models of VNB, and we will note later (at the end of § 4)
that the same equivalence holds for models of ZFS.

In three places later on (5.4, 5.5, and § 7) it will become essential that our con-
cept of the theory ZFS be given a more complete specification than that which is accom-
plished by 2.1 and the general discussion of theories in § 1. Let us agree, then, that

the symbols A, ~, v, =, <=, A, V.=, € V,, Vi, ... of the theory ZFS are, in that
order, the numbers 2t, 2, 28, 24, ... The expressions of ZFS are all natural numbers of

the form pfﬂ-pfl-...-pf,", where ko, ..., ka> 0 and p,, Py, ... are the primes, in order.
The concatenation of the expressions pfo-..-pf» and plo-..-pl is the expression

p{fﬂ‘...' p:‘;"- p}fﬂ- ...~pfzf+q +1+ The notions of atomic terms and formulas, terms, formulas,

ete., of ZFS are then understood in the ordinary way (using the so-called parenthesis
free notation).

§ 4. Absoluteness of some notions. Lemma 4.1, which follows,
presents some invariance properties of the special formulas and terms
defined in § 2, analogous to the notion of “absoluteness” of Gdodel [1].
For models of VNB, the results of 4.1 were established in Shepherd-
son [1] (18).

Lumna +.1. Suppose that W= {4, es) is o natural model of ZFS,
and x,yed. Then:

() To be gomewhat more precise, VNB is the set theory whose axioms are ob-
tained from those of groups A, B, ¢, and D of Gédel [1] as follows (roughly speaking):
First, reduce to only one kind of variable, in the usnal way — by replacing VXp(X)
by V(W (x)Ap(x)), ete. Then, replace any occurrence of Cls(x) by x=x and of
M(x) by Vy(xey)

(%) Shepherdson considered ounly models of VNB (possibly without axiom Dy;
for general set theories, the notion was introdueed in Tarski [5].

() Our 4.1 follows from the ideas in Shepherdson’s proofs. (However, 4.1.6 and
4.1.7 cannot be derived directly from his stated results. This is because, while any
natural (or supercomplete) model of VNB gives rise in a simple way to a natural model
of ZFS, the converse is not the case, as we shall see Iater). Therefore we shall only
sketch the proof.
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(1) f=uZ[2] if and only if 2= 0.
(.2) |—m1[w,y] if and only if zCy.
(.3) S%a] = S(z).
(4) UMa) = Us.
(.3) l=u Ord[x] if and only if x is an ordinal.
(.6) PP[a] = P(x).
(1) If = is an ordinal, then R[] = R(x).
(.8) r%z) = r(a).
(.9) For cach new, A3 = n.

Proof. To show (.1), suppose that |=qZ[z]. Then, by 3.2, for any
yed, y¢ézx But, by 1.1.4, for any y whatever, if 5 <, then ye 4, so
that, in fact, ¥ ¢ . Thus z = 0. In the other direction, (.1) is obvious.

Each of (.2)-(.6) is proved in a similar way, using 3.4, 3.6, 3.8, 3.9,
or 3.11, and, possibly, preceding parts of 4.1. (.7) is proved by trans-
finite induction on ®, as follows: Assume that y is an ordinal and (.7)
holds for each ordinal @ < y. Then, by 3.13 and (.b), for any zeA,
2 R™(y) if and only if there is an z e A such that z ey and 2 eP(m[R(m[m]].
By 1.1.4, (.6), and the inductive assumption, it follows that, for any s,
2 e R™[y] it and only if, for some z ey, z ¢ P(R(x)). Therefore, by the
definition of R(y), R®[y]= R(y), i. e., (.7) holds for 7.

(.8) may now be obtained, using (.2), (.8), (.7), and 3.15; and (.9)
can be derived by ordinary induction, using 3.16, (.1), and (.3).

Exactly the same arguments show that

(1) 4.1 also holds if “natural model of ZFS” is replaced by “superaom;
plete model of ZES" (14).

From (1), we easily derive the result, already mentioned, that any
supercomplete model U= (A, e4> of ZFS is a natural model. Indeed, by (1)
and 1.1.10, we see that, for any o e 4,a « R(s(r(m))) = Rm)[S(m[r(m[w]]] € A;
hence, ¥ being complete, A = U{R(S(r(m))) | % A}, and so, by 1.1.8,
A is of the form R(a).

‘We may alse mention here the fact that if a natural model A of
a set theory is an elementary extension of a complete model B, then B is
a natural model. This is shown by the argument just given, with Re-
mark 2.4 used as justification, in place of (1).

(*) By making some simple changes in the arguments, one sees that 4.1-4.9,
with the exception of 4.6 and 4.7, hold for all complete models of ZFS (cf. Shepherd-
son [11). (To obtain 4.8 in this case, one uses the fact that the formal counterpart of
1.1.3 is a theorem of ZFS.)

On the other hand, it is also easily seen that all of 4.1-4.9 hold in any system Wa,
where a is 2 limit ordinal (cf. Scott [2]). (To make this statement correct, one mush
assume that the explicit definition of R (cf. 3.12) is made in the usual way.)
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§ 5. Inner natural models. The following lemma, which plays
an essential role in our discussion, is an immediate consequernce of prop-
osition (IT) in Tarski [4].

Lemma 5.1. Let T be the theory ZFS or an inessential extension of it.
With each formula ¢ of T, having at most the free variables v, ..., Va1s Va,
ean be corvelated a term T af I® aith no free variables beyond v, ..
sueh that:

©y Va—1y

b~ 78V Vo @ (Voy ey Vo1 Va) "”an(?? (Voy e s Fam1s Vo) A T € T(Vgy oeny Vn—l)) .

Proof. For t may be taken the term

tVar1 A\ Va (Vn € Vg1 > @(Voy wovy V1 V) A

A /\ Voo (‘}”(Vo, weey Vo1 Vn+2)_"N'T(vn+2) € I‘('V,L)))‘.

We omit the details of the proof, which are suggested by (the formal
counterpart of) the discussion following (1) of § 1 on Scott’s definition
of cardinal number,

Note that 7, as just defined, has the additional property that
}- @ v, € T (cf. Tarski [4], Scott [1]). This will play no role in our
discussion — though its informal counterpa;rt is critical for the derivation
of (2) of §1.

In theorems 5.2, 5.3, 6.8, and 6.9, below, we will see that, under
certain circumstances, a natural model U of ZFS is an elementary ex-
tengion of a smaller natural model B. Speaking roughly, this may be
shown as follows: In proofs of the Lowenheim-Skolern Theorem 2.1
(such as that in Tarski-Vaught [1]), the universe B of the submodel.
of 9 is built np in an infinite succession of steps, in each of which one
chooses, and puts in B, an element having a certain property. Now
follow the same procedure, but, at each step, let  be the smallest ordinal
such that some z e R(y) has the property in question, and put all ele-
ments of R(y) in B.

Following this idea, proofs of 5.2, 5.3, 6.8, and 6.9 can be constructed
However, we shall present, instead, a somewhat different argument,
perhaps slightly shorter, and having the feature that the set B will be
defined at once, explicitly, rather than by an inductive procedure.

THEOREM 5.2. Suppose that A = {A, B> is a model of ZFS. Then:

(1) A 4s an elementary estension of s subsystem with universe

= {&| for some y,x By and y < D(A)}.
(.2) Moreover, if a 1is ony element of A, W =<4, E,ad, and
= {z | for some y, s By and yeD(UAY)}, then a <B* and U* is an
elementary extension of its subsystem with universe B*.
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Proof. To establish (.1), we shall demonstrate that the necessary
and sufficient condition 2.3.1 holds. Suppose, then, that ¢ is a formuly
of ZFS whose free variables are among v,,..,V,, that by, ., b,y e B
and that 2 is an element of U such that ’

(1) ]=mtp[b0, ey b,y @]

By the definition of B, there exist d,,...,d,—, in D(A) such that, for
all ¢ <n,

- LD A o o F X :
Bﬁ 1.2.2, there are constant terms 7, ..., Ta—y of ZFS® such that, for
all 4 <2 n,

(3) T =d;.

By 5.1, there is a term 7 of ZFS® containing no free variables beyond
Voy ooy Vn—p Such that
(1) Fues® V V@ (Yo, ooy Tnoay Vo)~

VVulg(Yos ooy Vaoas Vo) AV € T(Voy ..ny Vi—-1)] -
Let

T =1V A Va (vne Va1V Voo V Vit
[Vo€To A A Fam1 € Tyoa A Vi =T(¥g, e, Vus)]) -
By 3.17 and (3) of § 1, it follows that
- 2Fs@® Vo€ Ty A A Yoy € Ty~ 7(V,, ey Vpg) €T
Hence, by (4) and 3.8, letting ' be the term U(z),
(5) F‘ZFS(Z) Vo€To A AVn—1€Tng AV Vap(Vyy cory Vg, Vo) —
V Val@(Noy eey Yoty Vi) A The ']

By (2), (3), and (1), the antecedent of (5) is satistied in % by (b,,.
Theref.ore the consequent of (5) is also satisfied by & b
there is an element y of W such that v

ey 1.
1. LHOS

(6) iiﬂ[‘p[bw sery bn—ly Y]
and
(7) yBra
By 1.2.2
7'M e D(AY;

hence, by (7),

(8) yEB.
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From (6) and (8), we see that the condition 2.3.1 holds, demonstrat-
ing (.1) (*%).

Let T be an inessential extension of ZFS, with one new constant.
Then exactly the same arguments with , ZFS?, «ZFSPM, «9» and “B”
replaced by «T7, «T» U and «B*, establishes (.2).

THEOREM 5.3. Suppose that W, is a model of ZES. Then:

(.1) The union B of all definable elements of U, is K(B), for a certain
B < a, and f is the smallest ordinal such that U, is an elementary extension
of Us.

(:2) If a is any element of W,, then the union B* of all elements de--
finable in W*= (R(a), e, @> 8 R(y), for some y < a, and W, is an
elementary extension of W,, to which a belongs.

(.3) w is confinal with each of p and v, so that if w is not confinal
with a, then f <o and y < a.

Proof. Suppose x ¢ D(,). Then, by 1.2.2, there is a constant term =
of ZFS™ such that » is 1. By £.1and 1.2.2, R{r(a)) = (R[r(v)))" ¢ D).
Since, for each z, ng(r(:r-)), by 1.1.9, we see that B = {J{x | z ¢ D(Wa)}
= U{R(r(2) | »eD()}. Therefore, by 1.1.8, B is of the form E(f).
The same argument, but involving an inessential extension of ZFS,
shows that B* is of the form R(y).

By 5.2.1 and 5.2.2, ¥, is an elementary extension of U and of %,.

Tf 9, is an elementary extension of %z, then, by 2.2, D(W,)C R(B),
and so, by 1.1.4 and 1.1.1, R(p) C R(p) and B < B, so that § is the
smallest such f§.

Suppose § < f. Applying 1.1 and 1.2.2 we argue as follows: 6 ¢ B(f)= B,
so that, for some constant term = of ZFS®, &™), But then § = ()
<7(1") = (r(1))® ¢ D(,). Thus, if 6 is any ordinal <p, there is an
ordinal 6’ e D(W,) with 6 < & < 8. Since the set of terms of ZFS” and,
hence, the set of ordinals definable in A? are countable, it follows that
o is confinal with f. A similar argument applies to y, completing the
proof of 5.3.

Suppose now that o is any ordinal snch that ¥, is a model of ZFS.
We denote (henceforth) by « the least ordinal such that A, is an ele-
mentary extension of Uy, and by o the least ordinal such that €A, 18
elementarily equivalent to 2,«. From the definition of «* it follows that

@5 A deviee involving the notion of rank, anticipating that used in this proof,
was employed earlier, in eonnection with problems concerning finite axiomatizability
of set theories, in Montague [1] and {3]. (The results of the latter (unpublished) thesis
will largely be reproduced in the forthcoming monograph, The Method of Arithmetization
and Some of its Applications (North Holland), by 8. Feferman and R. Montague.)
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a*' = «*. Consequently, by 5.3, o is confinal with o* as well as with o’
Clearly, o*< o' << In 5.3, conditions have been given under which
the second of these inequalities may be replaced by a strict inequality,
The following theorem shows that whenever the second inequality can
be sharpened, the first can also be.

THEOREM 5.4. Suppose that A, is o model of ZFS and o < a. Then
a* << d.

Proof. ¥rom the work of Tarski [1], it is known that, the notion
of the truth of a sentence (of ZFS) in 4 relational system which is 2 member
of the domain of discourse can be formalized adequately within ZFS.
(cf. the remarks at the end of § 3). By performing this formalization
explicitly (and also continning Lemma 4.1 so as to formalize the notion
“q,"), one easily shows the following: There is a formula 6 of ZTF8, with
the free variables v, and vy, such that, if 9, is any model of ZFS and Y,
2z € R(y), then [zﬂyﬂ[Y, 7] if and only if 2 is an ordinal, ¥ is a set of
sentences of ZFS, and U, is a model of ¥.

5.4 may now be proved as follows: Let X be the set of all sentences
(of ZFS) true in %,. Then U, is a model of X and, hence, |=o 6[X, o'].
Therefore, |=¢ (\/ v;0)[X]. But since X eR(a'), and %, is an el%mentary
extension of A, it follows that =V vy )X Consequently, there is
an element z € B(a’) such that |=e6[X,2]. But then z is an ordinal less
than o and %, is a model of X; hence, o* < o'

Clearly, when o* < ¢, there is no theory 0f which A, is the smallest
natural model. It may be of interest that the same applies to A, pro-

vided that one considers only theories fulfilling certain very weak re-
strictions. In fact, we have:

THEOREM 5.5. Suppose that U, is a model of ZFS and o* < o ().
Let Q be any set of sentences true in W,, which is definable in A,. Then (.1)
Q has a model Wy, where B < a* and (.2) there is a semience o which is
true in W, and such that Q@ has a natwral model smaller than any notural
model of Q L {o}.

Proof. Suppose that (.1) were false. Then o* would be the smallest 8
such that % is a model of ¢. Consequently (by the definition of o*)

(9) and (10) below are equivalent, for any sentence ¢ of ZFS: 7
(9) Fu, o
(10) & is true in Ap, where B is the smallest ordinal such that Wy is a

model of ¢.

(**) This applies in

i particular, as we shall i i i
inaccessible ordinal o, shall observe, it a is the first strongly
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Now, as already remarked, it is known that, roughly speaking, the
notion of the truth of sentences in systems which are members of the
domain of discourse can be formalized within ZFS. Applying this fact
(together with 4.1 and the hypothesis that € is definable in the particular
model %, of ZFS), one easily sees that statement (10) can be formalized
within Th(%,). We omit the precise details of this argument, but we
formulate its conclusion precisely, as follows: There is a formula ¢ of ZES,
whose only free variable is v,, such that, for any sentence ¢ of ZFS,
(10) holds if and only if

(11) Fu,e(d) .

Thus (9) and (11) are equivalent, so that:
(12)

It is a theorem of Tarski [1] that condition (12) canmot hold in any
theory which is & consistent extension of ZFS (or even in eertain much
weaker theories). Since Th(,) is, in fact, suech a consistent extension,
we have arrived at a contradiction, establishing (.1). ’

Each of (.1) and (.2) is easily seen to imply the other. (If there were
no ¢ as in (.2), then the smallest natural model of @ would be a model
of Th(W,) and, hence, would be A,..)

In case @ is recursive, or definable in ,, & certain specific sentence
“saying” that there exists a natural model of @ may be taken for the
sentence o of (.2), and a different proof of 5.5.2 and 5.5.1 (in which one
considers the smallest natural model of @) can be constructed, closely
resembling ideas which appear in Shepherdson [1] and Mostowski [2].
In the most general case of 5.5, however, we do not know how to exhibit
a specific sentence fulfilling (.2), though, as we have seen, 5.5 can still
be obtained, by relying on Tarski’s theorem on the impossibility of defin-
ing truth.

Jor any sentence o of ZFS, [=mar)¢(ds) 0.

§ 6. Inaccessible ordinals.

DrriNITION 6.1. An ordinal « is called weakly tnaccessible if o is
regular (1. e. no ordinal 8 < « is confinal with «), and a s of the form w,,
with ¢ a limit number (17).

It was shown in Shepherdson [1], assuming the axiom of choice,
that (in our terminology) the natural models of VNB are exactly the
systems .., where o is a strongly inaccessible ordinal >w. The notion
of strongly inaccessible ordinal has often been defined only under that
assumption. Lévy ([1]) has recently proposed that, in the absence of

(¥} The initial ordinals w. are, of course, defined inductively by the requirement:
Wy = w; if a0, w, is the first § such that wy< f whenever ¥ < a.
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the axiom of choice, a definition essentially the same as that of 6.2, belos,

{or its equivalent in 6.3) be given — Shepherdson’s result then insuring

equivalence with the ordinary notion when the axiom of choice is assnmed,
DEFINITION 6.2. « i3 called strongly inaccessible provided that

(1) «a is infinite, and whenever x e R{a), yC R(a), and f is a function
on x onto y, then y < R(a).

Leuma 6.3. a s a strongly inaccessible ordinal >w if and only if
W1 18 a model of VNB.

Proof. It is elementary to verify that « is a limit ordinal > if
and only if %, is a model of the axioms of VNB excluding (, — the
VNB version of the axiom of replacement (8). If %,,, is, moreover,
& model of axiom, C, then clearly a fulfills (1). Conversely, if (1) holds,
one easily sees that « must be a limit ordinal and that C, is true in 9,,,.

Levia 6.4, If the axiom of choice is assumed, then 6.2 coincides with
the usual definition of “strongly inacoessible ordinal” (at least, as applied
to infinite ordinals).

Proof. As already remarked, this result (using 6.3) is given in
Shepherdson [1]. It may also be proved directly from 6.2 and with no
use of metamathematical notions; the proof depends, of course, on which
one selects of various definitions known to be equivalent (for infinite
ordinals) on the basis of the axiom of choice (cf. Tarski [2]).

As a fnrther justification of 6.2, we note:

Leyas 6.5. A strongly inaccessible ordinal is weakly inaccessible.

Proof. One easily sees that if (1) holds for «, then a is regular and
hence, of the form w,. To see that y % 6+1, one uses the well-known
fact (not depending on the axiom of choice) that there is a one-to-one
correspondence between wsy,, and the family of all similarity classes of
well-orderings of w,.

6.6. Remarks. It may also be shown that (1) is equivalent to the
apparently weaker condition obtained from it by replacing ¢“function’”
by “one-to-one function”. {One has only to consider the set {X | for some
vey, X ={ul uezx and f(u) =v}}).

It may be of interest to note that certain natural conditions equi-
valent to (1) under the assumption of the axiom of choice, appear to

be (in its absence) of varying strengths. Consider the conditions (2)
and (3}, below (19):

(f") We speak of the particular axioms of Godel [1] when we really should speak
of their translations ~— in the sense of footnote 11.

*) Carél.inffl numbers are denoted by small Gothic letters. The less-than relation
and exponentiation among cardinal numbers are assumed, defined in the ordinary way.
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() a is an nitial ordinal,
(2) | (b) whenever b <z, 2° <37,
(¢} if XC R(a), X <@, and, for each zeX, 7 <& then {JX <a.

(3) @ is infinite, and whenever £ C R(a) and ¥ < E(a), then = e R(a).

The following facts can be established: Condition (2) is equivalent
to the conjunction of (1) and the condition:

()

Condition (3) is equivalent to the conjunction of (2) and the statement:

(5)

However, we do not see any way to derive (4) from (1), or (5) from (2).

every x e R(a) can be well-ordered.

R(a) can be well-ordered.

The equivalences just stated are proved as follows:

To derive (1) and (4) from (2) one may proceed as follows (assuming (2)): First
one easily proves by induction ou § that B(B) < T, for every < a. Hence (2) implies
not only (4), but also that, for any « ¢ R{(e), Z< @ Now, assuming the hypothesis
of (1), one sees that ¥ < @, and by applying 1.1.3 and 2(c), oue finds that ry) < a,
so that y ¢ B(¢), and (1) holds. .

Assume now that (1) and (4) hold. It is easy to derive 2(a) from (1). Now note
that if @ ¢ R{a) then &< %. Indeed, by (4), there is some y with &~ y. But, if Y= a,
then from (1), one easily obtains a ¢ E(e), which is absurd. Hence z~ y< «, so, by 2(a),
%< a. Using the italicized statement, and 2(a), one sees that ¢ is a limit ordinal and
that if f<¢ a, then P(f) ¢ R(a) and P (§) < & Thus 2(b) holds. Under the hypotheses
of 2(c), we obtain X~ f < «, and so, by (1), X ¢ E(a), whenee UX ¢ B(a), and UX < @.
Hence 2(c) holds. o

Assume (3). Taking “o” for “&” in (3), it follows that & = E(a). (5) is an imme-
diate consequence. From 1.1, it follows that if & ¢ B(a), then T < E(a). Thus, if < a,
then f<C B(f) < E{a) = @, so that 2(a) is valid. 2(b) and 2(¢) are now easily obtained.
___ Finally, suppose that (2) and (5) hold. From (2), as we saw above, it follows that
R(B)< @ for each f< a. On the other hand, from (5) it easily follows that R(d) is
the least upper bound of all B(f), for f < a. Consequently, E(a) = a. Using this last
fact, (8) is easily derived from (1) (%).

Returning now to our principal topic, we note the familiar

Luania 6.7, If o is a strongly inaccessible ordinal > w, then U, s
a model of ZFS.

Proof. 6.7 is a corollary of 6.3 and the well-known fact that the
subsystem of any model (4, E) of VNB with universe {z| for some ¥,
zEy} is a model of ZFS. Alternatively, one may easily verify 6.7 directly.

It follows at once from 6.5 and 6.1 that if « is a strongly inaccessible
ordinal >, then o is not confinal with a. Applying 6.7 we obtain at

(29) Condition (3) appears in Mostowski [2], p. 156. Compare also p. 84-87 of
Tarski [2]. In the latter, a condition is proved which is related to the fact that (3) im-
plies (5), but much more difficult to establish.
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once from 5.3 our principal result, that, if a strongly inaccessible ordinal
exists, then the converse of 6.7 is false. Indeed, applying also 5.4 and 5.5,
we obtain at once:

TueorEM 6.8. Suppose there is a strongly naccessible ordinal and
denote by 0 the first such ordinal. Let 8’ and 0* and £ be the smallest ordi-
nals such that Wy 4s an elementary extension of Wy and W, s elementarily
equivalent to Wor and Wy is a model of ZES, respectively. Then:

' B<b* <t <b.

6.8 has the following

COROLLARY 6.9. If o is an ordinal for which (2) holds, then there ewists
a denumerable set B such that UA, is an clementary extension of (B, eg>.

Proof Such a B is obtained by applying, in order, 6.8 and 2.1,
noting that, by 6.6, (2) implies (1) and (4). (Elementary extensionality
is transitive, as one easily sees from its definition (ef. Tarski-Vaught [1]).

6.10. Remarks. Corollary 6.9 is a form of the so-called Skolem
paradox (cf. Skolem [1]; Tarski-Vaught [1], footnote 7). As far as we
can see, the old method of proof —in which 2.1 is applied directly —
could not be employed without the additional assumption that R{a)
can be well-ordered.

On the other hand, if by the Skolem paradox, one means the
statement

(6) there exists a denumerable set B such that <B, eg) is @ model of ZFS,

then, as Mostowski ([2], p. 163) has remarked, the Skolem paradox can
be established (and without any use of our methods) on the basis of the
assumption that a weakly inaccessible ordinal exists. This iz accomplished
by making use of the results of Godel [1] on “constructible” sets.

In the following theorem, we shall see that the result of 6.8 that
6" < 6 cannot be avoided by adjoining to the natural model {R{a), er@>
any further relations or operations.

TaworEM 6.11. Suppose that a is a strongly inaccessible ordinal,
and U is any algebraic system of the form {B(t)y €rimys Xog ooy Xim—iy
Then the wnion of all definable elements of U is R(B), for a certains g < a,
and A has o subsystem with universe R(B) of which it is an elementary
extension.

Proof. Almost all of the statements of 6.11 may be established by
direet analogues of the arguments in 5.2 and 3.3 (noting as above that
o is not confinal with a, to show that B < a). The only exception is the
major assertion, namely, that % has a subsystem B with universe
B={JD(¥) and % is an elementary extension of B. Here a slight, but
essential, modification in the argument is needed.
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It again suffices to show that 2.3.1 holds. Suppose, then, that ¢ is
a formula of the theory Th(), with at most the free variables Vo ey Vi
bos ooy bps € B and |=q@[by, ..., by, #]. Then, as in the proof of 5.2,
there are constant terms g, .., 7,—; of Th(2) such that

biett?  (i=0,..,n—1).

Defining 7 exactly as in the proof of 5.1, one cannot now apply 5.1, but
nevertheless, from the faet that o is a limit ordinal, one sees easily that:

(M eV Va@(Voy oory Vaogy V) >
V0 (@(Voy es Vaery Va) AVn € T{Vg5 e,y Vn1)).
Let ©" and 7" be defined exactly as in the proof of 5.2.

Let C=f® X ... X742, = the set of all functions  on n= {0, ..., n—1}
such that, for each i < n, 2(i) ¢ 7. Since a is a limit number, it follows
easily that ("¢ E(a). Since « is strongly inaccessible, we see, by 6.2, that
the set

0" = {z| for some z¢0, z=1®[5(0), ..., x(n—-1)}}

also belongs to R(a).
It now follows, by elementary semantical considerations, that
C'= 7™, and hence, using (7), that, for some y,
yet"'® e D(A)
and :

Fau@[boy ey bueyy ]

Thus 2.3.1 holds.

§ 7. A different formulation. Here we shall discuss, briefly and
rather roughly, a way in which the ideas involved in the procedures
of § 5 and § 6 may be employed in a new, slightly different, context.

As we remarked already, the whole development of § 1-§ 6 can be
translated into a collection of theorems of the formalized theory ZFS,
itself. On the other hand, the new procedure would be formally carried
out not in ZFS but in another theory, ZFS'. This theory has, in addi-
tion to e, another non-logical constant, the binary predicate St — which
might be labelled “the satisfaction predicate’’. The axioms of ZFS are
also axioms of ZFS'. Moreover, in the schema of replacement (cf. 3.1)
the formula ¢ is now allowed to be any formula of ZFS’ (in which v is
not free). Finally, ZFS’ has one more axiom, expressing the recursion
conditions for the notion of satisfaction. We will not give this axiom
explicitly, but will content ourselves with indicating its informal ecounter-
part. If we use, in the informal language, the symbol 8" to correspond
to the formal St, then the informal counterpart of the axiom in question
is the statement:

Fundamenta Mathematicae, T. XLVIL 16
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If &= (@yy ooy @ny o) 18 amy (ordinary infinite) sequence, p and 1y
are any formulas of ZFS, and &, lew, then:

28t v =v; or xSt vyevy if and only if o=z or pemy, respectively;

z8t~¢ if and only if it is not the case that zStp; wStpAy if and only
if 28tp and x8ty; and similarly for v, —, &

8t Avre if and only if, for any sequence y, if y;= w; for every ¢ % k,
then yStp; and similarly for \/.

‘What we now claim is this:

TumoreM 7.1. The statements (1) and (2), which follow, are provable
on the basis of the informal assumptions corresponding to ZFS' (or, alter-
natively, the formal counterparts of (1) and (2) are valid sentences of ZFS'):

(1) There exists an ordinal B such that, for any formule ¢ of ZFS and
any sequence © of members of R(B), @ satisfies ¢ in Wy if and only
if z8tep. ,

(2) There exists a natural model of ZFS.

Proof. To prove (1), on the basis claimed, one proceeds (roughly
speaking) by imitating either the proofs of 5.1, 5.2, and 5.3, or else that
of 6.11 (with m = 0). All phrases of the form ‘“z satisfies @ in 2A” or
“» satisfies p in %" in the old proofs are replaced by “x Stp”, but phrases
“x satisfies @ in B or “x satisties ¢ in U are left unchanged. Of course
one first must eliminate in the old proofs all defined nofions whose defini-
tions invelved the notion of satisfaction. (Moreover, the imitation and
replacement procedure must also be carried out for 2.3 and its proof
(ef. Tarski-Vaught [1]).) The old arguments showing that g < a are
replaced by an argument (based on omne of the new, informal, replace-
ment axioms) showing that there is a set consisting of all “definable’ sets.

To prove (2) one notes that it is a consequence of (1) and the sta-
tement:

(3) If @ is any valid sentence of ZFS, and © is any sequence, then z8ip.

It is a simple matter to derive (3) from our present assumptions (2).
(In deing so, however, one uses, again, one of the new (informal) repla-
cement axioms (22)),

7.2. Remarks. In analogy with 6.9, one easily establishes that,
in the system ZFS” obtained by adding to ZFS’ the axiom of choice,
the formal counterpart of the following statement is wvalid:

(*) One may want to derive (3) already in the proof of (1), if the proofs of 5.1,
5.2, and 5.3 are imitated.

(*) That this use cannot be avoided follows from results in Mostowski [31.
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(4) There exists a denumerable set B such that, for any formuls @ of ZFS
and any sequence » of members of B, z satisfies ¢ in (B, ez if and
only if xSte.

Both (1) and (4) may be taken as agsertions regarding the ‘universe’,
(4) being a very strong form of the Skolem paradox.

It appears that none of (1), (2), and (4) could be established in ZFS’
without the use of our present method. To obtain (4) by the older me-
thods one would need some form of the “axiom of choice for the universe’’ —
say, either Godel’s “‘constructibility axiom® or a new non-logical constant,
the “selector”, and an appropriate axiom and axiom schema involving it.

It may also be remarked that, using an analogue of the idea of
Mostowski mentioned in 6.10, one can establish (with or without the use
of our method):

In ZFS', the formal counterpart of statement (8) or § 6 is valid.

Certainly the assumptions of the informal counterpart of ZFS' or
ZFS" are very much weaker than the assumption of the existence of
an inaccessible ordinal (23). Yet in ZFS' such important sentences of ZFS
itself as the formal counterparts of (6) of § 6 and (2) are valid ().

In (1) and (2), above, we have stated analogues of only part of the
content of 6.8. Of course, one could similarly obtain analogues of the
rest of 6.8. To obtain an analogue of 6.11 with m >0, one must
expand ZF3' into a certain stronger theory with non-logical constants
€ £y wry Em—y, St’. There is an interesting special case of this, in which
one iterates the precedure that took us from ZFS to ZFS’, obtaining
a theory with non-logical constants e, St, St'. This theory, and those
obtaired by any finite number of further iterations, seem still to have
a fairly simple intuitive content.

§ 8. A converse theorem. Theorem 8.1, below, of this concluding
section, gives a kind of converse to the preceding results (e. g., 5.3).
This theorem and the ideas used in its proof were suggested to us by

(®) Assuming that ZFS’ or ZFS” is consistent, one can show in a finitary way
that the theory T — obtained by adding to ZFS the formal counterpart of the stat-
ement ‘““there exists a weakly inaccessible ordinal'’ — is stronger in various precise
senses. For example, one can easily show that the formal counterparts of such state-
ments as “ZF$"” has a model of the form ¢4, ¢ 49 v’ and “ZFJ is consistent” are
valid in 7. (“Weakly inaccessible” suffices, in view of the idea of Mostowski quoted
in §6.10.) For precise notions corresponding to various terms used, in this footnote,
see Feferman [1] and Montague [3]. .

() This remark perhaps sheds a somewhat different light on the question dis-
cussed on p. 161 of Mostowski [2] (the & mentioned there is valid in ZFS’, as one
easily sees by using the ideas here together with those in Mostowski [2]).
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gome recent work of Dr. Azriel Lévy, in which Theorem 6.8 is applied
to the problem of showing the congistency of a new theory of sets of
Ackermann (¥). (More recently still, Lévy has obtained a certain result
of which 8.1 is an almost immediate corollary.)

TemorEM 8.1. Suppose that f < o and that W, is an elementary ex-
tension of Us. Then W, and g are models of ZFS.

Proof. From 3.1 and 1.1, one easily sees that in any system of the
form U, the axioms of extensionality, union, and regularity hold. More-
over, the power axiom is true in %, if and only if § is a limit ordinal,
and the axiom of infinity holds in A, if and only if w < 6.

Assuming, now, that our hypotheses hold for a and B, we note first
that § must be a limit ordinal. Indeed, suppose 8 = y+1. Then in s, v
satisfies the formula Avy(~v,evy). Consequently, y satisfies the same
formula in 90, which iz absurd, since yegeR(a).

It follows that the power axiom holds in 2, and consequently,
also in U, as A, and A, are elementarily equivalent. Moreover, since
we now have a> 8 > w, the axiom of infinity holds in 2, and hence,
also, in Az.

It remains to show that the axioms of replacement are true in Ay
(and, hence, in 9,). Clearly, it will suffice to show that: if ¢ is any for-
mula of ZFS, with free variables at most v,, ..., V4, where n > 3, and
Zyy -y Bng € B(B), and
1 g (A Va1V 1 Va@) [0, oory Tnz],
then
(2) I=§13 (vvn-}-l/\vn (Vn € Vpi1 ¢ vvn—l(v‘n—l €Vp2 A ‘P))' ['/»0; e wn—2] .

Suppose, then, that @, ..., @,—s € B(f) and that (1) holds. Since ¥, is
an elementary extension of %, the statement (1), obtained from (1) by
replacing “U," by “A,”, also holds. For the same reason, it will be enough

$o establish (2'), obtained in the same way from (2). Now obviously (2')
will be established if we can show that the set

C={c| for some b, bew,_s and =a, @[@oy +rry Tnegy B, €]}

is & member of R(a), and, hence, if we can show that ¢ C R(p). But
suppose that ce(, so that, for some b,

(3) bex,s and Fu, @[y, ooy Tns, b, 6].

(*) See Lévy [1]. A version of the part of Lévy [1] in guestion will appear soon
in the Journal of Symbolic Logic under the title An inmer model for Ackermann’s set
theory.
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Now, by (1), there is a ¢’ e R(8) such that
(4) ’=ﬂlﬁ¢[$oa vy &n—gy b, e'l.

Consequently (4') (obtained as before) also holds. From (4"), (3), and (1),
it follows that ¢ = ¢’. Thus ¢eR(B), as was o be proved.

Using Theorem 8.1 or, rather, its formal counterpart, together with
Godel’s theorem on the impossibility of proving consistency, one easily
sees that the formal counterpart of the statement:

there exist o« and £ such that a > g and 9, is an elementary exten-
sion of Ay,

is not a valid sentence of ZFS.
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A note on theories with selectors
by
R. Montague (Los Angeles) and R. L. Vaught (Berkeley)

It is well known that for certain elementary theories, such as Peano’s
arithmetic, no gain is made by adjoining to the theory the Hilbert
e-symbol (and the associated new rules of proof). Such theories might
be called *theories with built-in Hilbert e-symbols” or, simply, “theories
with selectors”. Our purpose in this note is to point out that the (purely
syntactical) property of being such a theory is equivalent to a certain
semantical property.

Familiarity will be assumed with the introductory sections of our
paper, Natural models of set theories (this volume, p. 219-242) (2). Specific-
ally, what will be needed is the second part of § 1 (beginning “In meta-
mathematical considerations...”), and § 2 of that paper.

The semantical properties we shall discuss involve the notion of
the set D(U) of all definable elements of a realization % of a theory.
In addition, the following further notions are required:

DEFINITION 1. Let A= (A, X,, ..., Xpn—1> be a realization of an arbi-
trary standard theory. ' a

(1) If D(A) is not emply, then the corresponding submodel of defin-
able elements, or D(N), is the subsystem of U with universe D ().

(-2) If B is any subset of A, then by D(A, B) — the set of all elements
of A definable in U in terms of elements of B — we mean the union of
all sets D(W*), where W= <A, Xy, .0y Tppesy boy ooy bpsd, new, and
boy ey bpy € B.

(.8) Assuming that D (%, B) is not eimpty if B is empty, then, by D (A, B)
we mean the subsystem of U with universe D (N, B).

(It is obvious that D(A) and D(A, B) are closed under any oper-
ations as required in (.1) or (.3).) :

We shall actually establish three different equivalences, correspond-
ing to various precise senses that might be given to the notion “theories
with selectors”. The first is:

(1) Hereinafter referred to as NM. Numbers in brackets will refér to the biblio-
graphy of NM.
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