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Solution of a problem of Tarski

by

A. Robinson (Jerusalem)

1. Introduction. In his classical paper “A decision method for
elementary algebra and geometry” Note 21 ([6], p. 57) A. Tarski raises
the question of providing a decision procedure for elementary sentences
concerning the field of real numbers which, in addition to equality, order,
addition, and multiplication, contain also the relation (atomic predicate)
A(z), to be satistied exclusively by the algebraic real numbers. In the
present paper, we solve this problem by specifying a complete set of
axioms for the above-mentioned relations, including A (x), such that the
veal numbers constitute @ model of that set (sections 3, 4). The cor-
responding problem for the field of complex numbers is of a somewhat
simpler nature (section 5).

We shall be concerned with algebraic fields in which certain addi-
tional relations have been defined, more particularly the relation of order,
Q(z,y) (i. e. x <y), the relation A4 (x), and a set of relations Dyl @y vy n)s
w,k=1,2,.., which will be detailed presently. Accordingly, when we
say that a field M’ is an extension of a field M including @ (x,y), and
(or) A(z) and (o) Duy(®y, ..., &n)y %, k= 1,2, .. we shall mean by this
that, for the elements of M, the relations @(z,y), 4(»), or D@y s very n)
hold in M’ if and only if they hold in M. Similarly, when we say that
two fields, M and M’, are isomorphic, including Q(x, ¥), 4{(z), and (or)
Dol ..., ), we shall mean that there exists an isomorphic correspond-
ence between the two fields such that the relations in question hold,
or do not hold, simultaneously for corresponding elements. In particular,
an isomorphism which includes @Q(,y) is simply am order-preserving
isomorphism.

We shall also require the notion of relativisation with respect to
the relation A(z) (compare, e.g., [7], p. 24). This is defined inductively
as follows (1.1-1.3)

1.1. The relativised form of an atomie formula X (e.g. E(w,¥),
S(z, a,b)) is the formuls itself. R(X)= X.
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12. R(~X)=~R(X), R(XAY)=R(X)AR(Y), R(XVY) = R(X)v
VR(Y) if ~, A, Vv are the basic connectives of the language. If other
connectives are regarded as basic, the list 1.2 has to he extended
accordingly.

13. R((He)Y(2)) = (Ha) [4(=) A R{X (2))],
R((2) Y (2)) = (2)[4(2) D R(Y (2))] .

2. Auxiliary notions and results from algebra. We shal
suppose that the reader is familiar with the concept of a real-closed field.
A real-closed ordered field can be characterized ag an ordered field in
which every positive number has a Square root and every polynomial
of 0dd degree has a root. It can also be characterized ag an ordered field
in which every polynomial of positive degree can Dbe decomposed into
linear and quadratic factors, the latter being of the form (w—ap +b,
with b > 0,

Let M be a real-closed ordered field which is an order-preservig
extension of an ordered field M o- Let M, be the field of elements of M
whieh are algebraic with respect to M,. Then it is not difficult to show
that M, is real-closed,

Let M be an ordered field which contains real-closed subfields M,
and M,. Let My= M,~M,. Then ¥ o 18 a real-closed ordered field.

Let M be a field containing subfields M, and M, and let M, be
% field contained in both M, and M,. Suppose that every set of elements
of M, which is algebraically independent with respect to M, is alge-
braically independent also with respect to M,. Then every set of ele-
ments of M, which ig algebraically independent with respect to M, is
algebraically independent salso with Tespeet to M; (see [8], p. 3) and
M, and M, are said to be algebraically independent over M,.

If, in the last two sentences, we replace “algebraically independent”
everywhere by “linearly disjoint” then we obtain a parallel result, and
a parallel definition related to the notion of linear disjointness in place
of algebraic independence (see [8], B. 4),

'2.1. THEOREM. Let M be o field which contains algebraically closed
subfields Ml and My, and let M, — My ~M,. Suppose that M, and M,
are algebraically independent over M. Then M, and M, are linearly dis-
joint over M.

Proof. Suppose, contrar

y to the conclusion of the theorem, that
there exists a set of elemen:

) ts of My, {ay, ..., a,) say, % 2 1, which is
hne@ly dependent over M, although it is linearly independent over M 0
Consider a set of this kind for which » ig a minimum. By assumption,
there exist elements by .y by, in M, not all zero, such that
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2.2, by bt Fhpan=20. . ;

T the minimum property of {a,, ..., @y} b, % 0, and so we
gz;eos‘::;;)ozz that more particularly bn% 1. Indeeq, 13e this is not 1.:he
case from the outset then it can be achieved by dividing the equation

icient.

b ﬂ;ﬁo\lv%; (;(;lef(ff by, <oy by—y belong to M then we have finished since
in that case the set {a,, ..., a,} would be linearly dependent over JI o-
Accordingly we may suppose that b, does'no-t .belong to Mg, by e My— 2 oé
We may supplement b, by a (finite of infinite) number of elefnents 0
M,—M, so as to obtain a transcendence base 8 of M, over Mo.. Then
for some finite subset 8" of 8, 8 = {0y, ..., 0%}, say, the coefficients
by, ..r, bn—1 all depend algebraically on Moy, ..., o), and we may sup-
pose o= b;. Let M be the algebraic elosure' of My(6y, ..., ox), then the
quantities which appear on the left hand side of 2.2. all bejlong to M.

The elements oy, .., 0 of M,—M, are algebraically mdepegdex;t
over M, and hence, by the assumption of the theorem, are algebraically
independent over M;. It follows that the one-one correspondence under
which the elements of M, correspond to themselves while

G e 0+ 1, 0320y, o, O 0f
ean be extended to an automorphism of M in vc‘/hich
By >y, st Byy weny O <y
and by« b, + 1 (since o, = b,) while by« b3, ..., by« b}, say. Hence, from 2.2,

23, (hi+1)a +bsapt...+bpa,=0.
Subtracting 2.2 from 2.3, we obtain

a4+ (bi =)ty + . + (0 —bn) 2 =0

Now the by, j=2,..,%n—1, satisfy n011—vanismng polygomia{s qzt([m)
whose coefficients are polynomials of oy, ..., o With eoei.iflclent's in A]O.
The above-mentioned automorphism transforms qj(m') into qj-(m),I ta; s]?
non-vanishing and with coefficients in M 0['01, o orly 1=2, .., % o)
lows that the b}, j = 2, ..., n—1, are algebrmg .thh regpect to M (oy, ..., 0x);
and hence helong to M,. Thus, the quantities

b =bj—b;,  j=2,.,n—1,

all bolong to M, while b,=1 by our simplifying assumption, and so
by=1, bj—b,= 0. Hence

Oy B Gyt oY1y = 0,
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showing that the set {ay, ..., @1} 18 linearly dependent over M,. The
minimum property of # now implies that {a, .., @#,—,}, and hence
{81, ..., @}, is linearly dependent over M,. This involves a contradiction
and proves 2.1.

Let M, be the intersection of two fields, M, and M,, which are
contained in a joint extension M. For M, and M, to be algebraically
independent over M,, it is necessary that if {s,,.., s} and {1, ..., t,}
are any two algebraically independent sets over M, which belong to M,
and M, respectively, then {s, ..., s, &, ..., £,} also is algebraically inde-
pendent over M,. It is not difficult to see that this condition is also
sufficient, for if a set {s;, ..., 55} of elements of M, satisfies a non-vanish-
ing polynomial with coefficients in M,, then there must exist a non-
vanishing polynomial p{a, ..., a), whose coefficients are polynomials
(with coefficients in M,) of a set of elements of M,, {1, cestndy m 20,
which is algebraically independent over 3/,, such that p(s,, vy Sg) = 0.
And the existence of such an equation signifies that the set {815 000y 81y
B1y s I} is algebraically dependent over M,.

2..4 THEOREM. Let 8 and T be two fized transcendence bases over M N
(maximal sets of algebraically independent elements ), of the fields M, and M,
respectively, where My= M, ~M,. In order that M, and M, be algebraically

independent over M, it is necessary and sufficient that the set SUT be
independent over M.

Proof. Necessity is obvious. To prove sufficiency, let {s,, ..., 8},
{ty ..., ta} be algebraically independent sets over M,, and belonging to
M, and M, respectively. Then the elements 81y «y S depend on a finite
subset {o(,..., 0;} of § over M,, and the elements by oy by depend on
a finite subset {r;, ..., 1.} of T over My, j=k, m>=n. By the exchange
the(?rem of Steinitz, the set {g,, ..., 0;} iy, for a certain numbering of the o,
eqmva]enjc t0 {8y, ..., 8%, Oxt1,..., 07} and the set {T1y o) T} 18, in @ similar
way, equivalent to {t,,...,t,, 7,4, .., Tm}. It follows that the elements
O1y ey 043 Tay oy Ty, depend algebraically on {s,,..., s, Oty eeny Ofy by eenylny
i1y 3 Tm} OVer M,. But the j+m elements O1y ey Ty T algebraically
mdepegdent over M, and so the set {s, ..., Olt1y ors Ofy biy oney T} 2150 8
glgebralcad]ly independent oyer My, and in particular, {8;,..., 8k, b1y, ln}
is algebraically independent over If 0 A
.2‘5 THEOREM. Let M be an ordered field which contains real closed
subfields M_’l and My, and let M,~— My~M,. Suppose that M, and M,
are algebraically independent over 3 o- Then M, and M, are linearly dis-
Joint over M,. ’ : l

Proof. Let M3, M}, M} be the algebraic closures of M,, M,, M,,

respectively, I3 —M(0), Mf= M,(3), M5 = M), M¥= MimM:. Let
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& and T be transcendence bases of M, and M,, respectively over M,.
By the assumption of the theorem, S~T is algebraically independent
over M,, and hence over M;. But S and T are also transcendence bases
of M* and M} over My, and so, by Theorem 2.4, M} and MZ are alge-
praically independent over M. It then follows from 2.1 that M{ and
M* ave also linearly disjoint over Mj.

) Now let {s;, ..., 8p} be a set of elements of A, which is linearly
independent over M,. Then the set is linearly independent over
ME = M,{4) also. Tt follows that {s,, ..., s} is linearly independent over
M,, and hence that it is linearly independent over M7, as asserted
by the theorem.

To illustrate a subsequent remark, we shall now display two real-
closed Archimedean ordered fields which are not algebraically independent
(and not linearly disjoint) over their intersection.

Let M, be the field of real algebraic numbers, and let s,, s, 1% be
three real transcendental numbers, such that {s;,s,, %} is algebraically
independent over M (i. e. absolutely). Put

fo=—8;5,—8s.
Then it will be seen that {,1,} is algebraically independent over M,
and the same applies to {sy, t,}.

Let M, be the real closure of M(s,,s,) within the field of real num-
bers, let M, be the real closure of Mf;, &), and similarly, let 3 be the
veal closure of Qo= My(Sy, Sa,trs ta) = M (81, Sp, ty). Then M is the real
closure of the compositum of M, and M,. All these fields are ordered
by their natural order in the field of real numbers. We wish to show
that the intersection of M, and M, is M,. If not, there exists a real trans-
cendental number £ in M which satisties polynomials p(2), ¢(z) with
coefficients in Ms;, s;] and Mft,, ;] respectively, and J‘Ireducibl.e‘in
these rings. Moreover, we may suppose that p(z) and ¢(z) are primitive
in these rings, respectively.

Put Ro= M8, 82, iy ta] = Mol81, 83, 1], then we have also .that
Ry= Mt , 1, 8] since §,= —s;& —1f,. Let a, be the field of quotients
of R,. Since p(z) and ¢(x) have a common root in an extension of @,
they must have a common factor in @gz]. The coefficients of p(z) belor_lg
t0 Ry, and so if p(2) is reducible in @[] it must be reducible also‘m
RJfx). But R, is obtained from M[s;, s;] by the adjunction of tl,.whlc_h
is transcendental with respect to M[s, s;] and p(w) is irreduclble.m
M s, s,1[2]. It follows that p(z) is irreducible in B[] Similarly, .taku?g
into account that B,= M, 5, 8], we find that g(a) is irreducible in
RJx]. But p(z) and g(z) have a common factor, and so

p(x) = dg(7)
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where d belongs to @,. Writing d in the form
= dy(81; 825 1)/ da(81y Sy 1)

where d; and d, are polymomials with real algebraiec coefficients ang
without a (non-trivial) common factor, we then obtain

dy(1y 82y )P (®) = dy (81, 82, 1) g (@) .

It follows that dy(s;, s,,1%;) divides the coefficients of p(»). But p(z) is
primitive in M[s,, s,][#] and hence also in Ry z]. It follows that d, be-
longs to M,. Also, writing —s;4,—1, for 8, in d, we obtain a polynomial
of t;, 1%, s with coefficients in M, and we conclude in the same way
that d, also reduces to an element of M,. Hence p(z) = dg(x) where
deM,.

Let n > 0 and compare the coefficients of 47 in p(x) and g¢(«). These
are polynomials of s, s, and of #,, #, respectively, with coefficients in 3/ o
and will be denoted by p,(s,, s,) and ¢4, t,). Then

2.6, Pul81, 8) = dqu(t;, 1)
and so

2.7 pulSyy &) = dgalty, — 8,8, —5,) .
Now sy, 8,, and ¢, aré algebraically independent over A,, so we obtain
a valid relation by writing 0 for s, in 2.7. Then

2.8, pul0, 85) = dgnlty, —8,) .
But the left hand side of 2.8 is independent of ¢, and so the same applies
to the right hand side. It follows that g,(f,, %) is independent of i, and
similarly, that p(s,,s,) is independent of $;. If so, then 2.6 yields an
algebraic relation with coefficients in M, between s, and #,. But s, and 1,
are algebraically independent over M, and so the coefficients Dy Gn all
reduce to elements of M,. It follows that £ is an algebraic number, con-
trary to assumption. We conclude that M, ~AMy= M,. M, and M, are
not algsbraically independent over M, since {81, 8} is algebraically inde-
pendent over M, while satisfying the equation '

St 8+t =0
whose coefficients belong to M,.

3. Distinction of the algebraic numbers in the field of
real numbers. Let K be a set of axioms for the coneept of a real-closed
ordel:ed field, formulated in the lower predicate caleulus in terms of the
relations of equality, E(z, ¥), addition, §(z,y, 2), multiplication, P (z,y,2),
and order, Q(w, y), and without individual constants (eompare [2], p. 43).
Let K, be the set of sentences obtained by relativising the sentences
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of K with respect to the relation 4 (z), and define sentences Xy, Xy, X,
and X, by

3.1, X,=(Hz)A(z), X,= (Uz)~A(x),

3.2. Xy=(2)(y)[E(w, y) D[4 (%) D 4(y)]],

83, X, =(0)(y)(Ue)[Q(x, y) A ~B(z, y) D Q(2, 2) AQ(2, y) VA ()],
respectively. (We observe that X, may or may not be a consequence
of K 4 depending on the detailed formulation of the axioms of XK. If the
system of [2] is used, X, follows from K, in view of the last axiom on
p. 38 of that reference.)

Let M be a model of I which satisfies X; and let M, be the set
of elements of M which satisfy 4 (x). Then M, is a model of K. X, re-
quires that M4 be dense in M.

Let n and % be two integers, positive but otherwise arbitrary. It is
not difficult to formulate in the lower predicate caleulus, in terms of
the relations E, 8, and P, a predicate Q.u(z, ..., #,) which states that
“yy vy @y Satisfy & non-vanishing polynomial of degree not exceeding %
with coefficients in M4 (i. e. satisfying A (z)).”’. More precisely, we may
formulate Qnr(@,, --., ©x) 28 an existential predicate, i. e. in prenex normal
form with existential quantitiers only.

We now define the sentence X,; by

34, Xuw= (m) - (Bn) [ DBy ooy ¥n) = Qs ooy )]
where Dpu(2y, ..., #,) 18 a new relation. Let Kp be the set of sentences
{ X}y n,=1,2,3, ..., and let

35, F*=KouK, ,u{X,, X, X, X,}uKp.

Then

3.6 THEOREM. The set K* is model-complete.

In due course, it will be shown by means of ad example that the
introduction of the D, is essential for the model-completeness of K*.

For the proof of 3.6 we shall made use of the model-completeness
test of [2], p. 16. To apply this test, consider any model M* of E*. M* is
a real-closed ordered field containing a proper subfield which is also

real-closed and which congists of all elements of M* that satisfy A(z).
Let '

3.7 X = (Ey)...(Wy) Z(ya, vy ¥2)
—Z free of gquantifiers-—Dbe a primitive sentence formulated in terms
of (some of) the relations #, §, P, @, 4, and Dy, and in terms of (some of)
the individual constants of M* such that X holds in some extension M**
of M* which is a model of K*. Then we have to establish that X holds
already in M*. (A primitive sentence i a sentence in prenex normal
form whose quantifiers —if any —are existential, and whose matrix is
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a conjunction of atomie formulae and (or) of the negations of such
formulae.) . .

Suppose that X is satisfied by ¥, = a;; ..., ¥s= 6¢ In M**, i e. that
Z{ty, ..., a5} holds in M** but that X does not hold in M*. The elements
of M** which satisfy 4 (z) constitute a real-closed proper subfield of I,
M, say, such that M* ~ Miq= M.

We dispose first of the case M 44 = M 4. In this case, we may sup-
pose M** to be of finite degree of tramscendence over B *. Indee(_l_, if
this is not the case from the outset, consider the algebraic closure M of
M*(ay, ..., a;) within M** (the set of elements of M** which are alge-
braic with respect to M*(ay,...,as)). M is real closed. Define that A(x)
holds in M for the same elements as in JM**, i. e. for the elements of M.
Then M is an extension of M* including A () (and, of course, including
Q(z, y)). It follows that M satisfies X, and X,, and also X;. Moreover,
My = M, is dense in M* and so it is certainly dense in M. Thus,
M satisfies X, as well.

Finally, we define that for any by, ..,b, in M, n>1 and for any
integer k& > 1, Dby, ..., by} holds in M__if it holds in M**. And since
M 4= M, consists of the elements of M which satisfy 4 (x) it follows
that Dby, ..., by) holds in M if and only if Q,u(by, ..., b,) holds in that
strocture. Thus, M satisfies Kp, and hence all sentences of K*.

Moreover, with these definitions, M** is an extension of M includ-
ing @, A4, and the D,;. Hence Z(ay, ..., a;), and with it X, holds in M.
The degree of transcendence of M over M* does not exceed ¢ and this
completes our argument. Accordingly, we shall suppose from now on
that M** is of finite degree of transcendence, m > 1, over IM*, while
retaining the previous assumption that M = M, .

‘We may then interpolate an ascending sequence of real closed ordered
fields between M* and M**

M= MOC UV C .. C Y™ = Y

such that the degree of transcendence of any member of the chain over
its predecessor (if any) is 1. We turn each MY into a model of K* by
restricting the relations A, D, of M** to MY, i. e. by stipulating that
these relations hold for given elements of M whenever they hold for
the same elements within M** It will be seen that the resulting strue-
ture (which will still be denoted by M) satisties I, K 4, and X, X,, X, X
To check that MY satisfies also K p consider any X, as given by 3.4.
We have to verify that for any b,, ..., by in MD, Dby, ..., b,) is indeed
equivalent to Qu(b,, ..., b,). But this is true since the equivalence in
question holds in M**, and since Quil®1y ., T,) nOW refers to polyno-
mials with coefficients in the same field M, for both M** and MP.
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Now let M® be the first M in which X holds, 0 << m. Then
MY does not satisfy X. The set of elements which satisfy A4 () is the
same in both fields and constitutes the field M 4. We propose to show
that this situation cannot arise.

Let ¢ be an arbitrary but fixed element (individual constant) of M®
which does not belong to M®, Define the set of sentences, H, as the
union of the following sets:

3.8. The set K* (see 3.5 above);

3.9. the diagram N of M including the relations @, 4, and D,
(see [2], p. 6 for the definition of a diagram);

3.10. the set of all sentences ~E(a,t) where a varies over the ele-
ments of M%), together with all the sentences ¢ (a, ) and Q(t, a) which
hold in M** for elements a of M%; and

3.11. for any finite set of elements {t,,...,#} of M%™ which is
algebraically independent over M,, r > 0, include all sentences

NDrﬂ,k(iytu---atr); k=132;'~

‘We note that if {3, ...,%,; i3 algebraically independent over M,
then {t,%,...,1,} also is algebraically independent over M ,, in view of
the faet. that ¢ is transcendental over M%), Thus, the sentences of 3.11
are all satisfied by M®. The same applies to the sentences of 3.8-3.10
and so M@ is a model of H, H is consistent.

Let My be an arbitrary model of H. We propose to show that Mg
contains & partial structure which is isomorphic to MY including
Q, 4, Dy. ITndeed My contains M ™ gince it is a model of 3.9 (or, Mg
contains a partial structure which is isomorphic to M® depending on
the precise definition of the concept of a model). Also, by 3.10, My con-
tains the individual constant ¢, which i§ different, within My, from all
elements of M%™, Hence M“V(t) is a proper extension of M%™®
within Mg.

Let M he the algebraic closure of M ""(t) within My. The ordering
of M%) by Q(&, y) within My is the same as the ordering of M*t)
within M® since both orderings are determined completely by 3.10
(compare [3], p. 44, 45). It follows that there exists an order preserving
isomorphism between i and the real closure of M%) within M®,
whieh is M® itself. In this isomorphism, the elements of M cor-
respond to themselves. Moreover, since My is an extension of M&
including A (), all elements of M, satisty A(») also within Mzy. We
maintain that these are the only elements of M which satisfy A(x)
within M.

%
:
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Suppose on the contrary that there exists an element ¢ of M which
does not belong to M, such that A(e) holds in My. ¢ depends on 1 alge-
braieally over M, Hence, if T = {t,} is a transcendence base of M
over M, then ¢ depends algebraically on T'w{t¢} over M4, and hence
on t together with a finite subset 7' of T, I"= {t;,..., &,}, = 0. In other
words, ¢ satisfies a polynomial equation

312, Pty ey by 6) =0
with coefficients in M4, not all zero. On the other hand, by 3.11 there
is in Mg no polynomial with coefficients satisfying A () and not all zero
which is satisfied by ¢,%,, ..., t,. And since 4 (¢) holds in Mz by assump-
tion, we conclude that the polynomials of ¢, which are the coefficients
of the left hand side of 3.12, regarded as a polynomial of its first r1
variables are all equal to zero. But these are polynomials in ¢ with
coefficients in M4, and since ¢ is transcendental with respeet to M4,
they can be equal to zero ouly if all their coefficients vanish. We conclude
that the coefficients of the polynomial of 3.12, regarded as a function of
r+2 variables, all vanish, and thereby arrive at a contradiction. Thus
the relation A(z) holds for corresponding elements of M and M®, more
precisely, it holds both in # and in M@ only for the elements of M.

Next we wish to show that any Dy, holds, or does not hold, simul-
taneously for corresponding elements of # and M® (when the former
are taken as elements of Mz). Suppose first that some relation Dpg(d,, ..., ba)
holds in M®, This is equivalent to the existence of a non-vanishing
polynomial of degree not exceeding & with coefficients in M, p (), .-., )
say, such that p (b, ..., b,) = 0 holds in MY. Let bi, ..., b, be the cor-
responding elements in M, then p(bi, ..., b)) = 0 holds in My (since the
correspondence is an isomorphism) and 80 Db, ..., b,) holds in Mg.

Conversely, suppose that for some b, ..., b, in M, n > 1, a certain
Dy holds in M. That is to say, there exists a non-vanishing polynomial
of degree not exceeding % with coefficients in Mgy, p(@i, ..., T,) 57,
such that p(by, ..., by) = 0 holds in My. In this statement, Mg, iz the
real closed field which consists of the elements of My that satisfy 4 (x).
Let by, ..., b, be the corresponding elements of Mm, then we have 1o
show that there exists a non-vanishing polynomial q(®yy --my @y) of de-
gree <k with coefficients in M, such that g(b,, ..., b,) = 0 holds in MY
But this will be the case precisely if ¢(b{,...,5,)=0 in My and so it
iy sufficient to establish the existence of a non-vanigshing polynomial ¢
of degree < I with coefficients in M 4 ‘which satisfies the latter condition.
Now the existence of polynomials p and ¢ as mentioned is equivalent
to the linear dependence of the product of powers of the b,

b{mlbéml...b;bm", m, =0, Zm’ék
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over My, and over M 4 respectively. Accordingly, we only have to show
that any set of elements of M which is linearly independent over M,
is linearly independent also over Mp,. We note that M = M~Mgy.
Thus we have to prove that M and Mgz, are linearly independent over
their intersection or, by 2.5, that M and My, ave algebraically indepen-
dent over their intersection, M 4.

Let T be a transcendence base of M%™ over M,; then Tu{t} is
s transcendence base of M over M 4. Let {¢,, ..., ¢;} be a set of elements
of Mg, which is algebraically dependent over M. Then {e, ..., ¢} is
dependent algebraically already over some field Mu(ty, ..., 1, t} where
{t,, .vs 15} 18 2 finite subset of T. Thus, the ¢y, ..., ¢; satisfy a non-vanishing
polynomial p(@y, ..., 1) with coefficients in M4, ..., %, 1) or, more
partienlarly, in Malt, ..., s, ¢]. In other words, there exists a non-van-
ighing polynomial (¥, %15 ey Yoy 1y -y Fa) with coefficients in M,
such that

Gty tyy weey gy Coy ey €2) = 0

Consider now the polynomial Q (Y, ¥y, -y ¥s) = QY Y1388 Cry -y Ca)
which is a non-vanishing polynomial with coefficients in My4. Then

Qt by, ...yt =0.

But the set {t, ..., is algebraically independent over M4, and so,
by 3.1, {£,t,, ..., ts} is algebraically independent over Mgz,. It follows
that the coefficients of Q (¥, 91, -.-s ¥s) 21l vanish, i. e. that the coefficients
of Y, ¥y s Ys AN QY Yuy -ry Yoy By ooy %2) BT polynomials of wy, ..., %3
with coefficients in M, which vanish for @, = ¢, ..., #;=6;. But these
polynomials do not all vanish identically and so the set {c_1 y sery G2} 18
algebraically dependent over M 4. Thus, we have shown that M and Mpa
are algebraically independent over their intersection M. As explained
above, this entails, in view of 2.5, that any Dy holds, or does not hold,
simultaneously for corresponding elements of M and M®.

We have therefore shown that M regarded as a partial structure
of My including @, A, and the Dy is isomorphic to M® including @, 4,
and the Dy, by an isomorphism under which the elements of M
correspond to themselves. It follows that X holds in M and (being an
existential sentence) also in My. Since My is an arbitrary model of H
we conclude that X 4s deducible from H.

More particularly, X is deducible from K*uN togetber with‘ﬁnitke
subsets of 3.10 and 3.11. Thus, there exist predicates ¥,(z) and Y,(2)
of the form

313, Yy(2) = ~E(a,2) A v A ~B(a5,2) AQ (A1, 2)A o AQ (@1, 2)A

AQ(2, Bipa)A oo AQ(Z) ap)
Fundamenta Mathematicae, T. XLVIL 13



Artur


190 A. Robinson

and ) _

314, Yye) = ~Dypapl2) iy ooy b ) A oo AvDyyip(2t], ., AN
—where the a,,t" belong to M*™, and where, for given x the #* are
algebraically independent over M, — such that

Y@ aX,(1) DX

is deducible from K*UN. But t does not belong to M®™ and does not
appear in X and so the senfence

([ ¥al2) A Tale)]] D X

also must be deducible from EK*UN. E* and N are satisfied by M@,
Accordingly, in order to establish that X holds in M%™ we only have
to verify that

(H2)[¥,(2) A Yal2)]

also holds in M®™, i. e. that Y,(e)A ¥Y,(e) bolds for some 4 in MO,

Lot Mo= Mty oy try oy thy ooy by) DA let Ty = max(ky, ..., ky).
Then we may replace ¥,(z) by the stronger condition that z does not
satisfy any equation of degree not exceeding k, with coefficients in M.
Similarly (compare the argument in [2], p. 46), we may replace Y.(2)
by the condition that z belongs to the open interval (', a”’) where o
and & are specified elements of M% ™, a’<a’. And since M 4 15 dense
in %, we may specialise this condition by supposing that &’ and o’
belong to M 4.

If My= M4, choose an arbitrary element b of M9, Tt M, M,,
80 that set {t}} is not empty, choose a transcendence base of M 0y S say,
from among the elements of {#}. Then M, is finite algebraic over I 4(S),
of degree hy say. Let se§ and define b in M as the positive root
od the polynomial 2%—|s| where k= k,h,--1. This polynomial is irreducible
in M4(s) and hence in M (S), and so b is of degree k& over M 4(S), and
of degree >%, over M,. Thus, for both M,= M, and My~ M, our
choice of b ensures that it does not satisfy any polynomial of degree <k
with coefficients in 3,. The same applies to any element

_0ted
T Gy,

0

10— €0 7 0

where ¢;, ¢, ¢y, 6, belong to M, and so it only remains to choose ¢, , ¢, 63, ¢4

in such a way that z = a belongs to the open interval (a',e’’). A suitable
choice is

a' +a’b
ah_l__HT

which is a weighted mean of ¢’ and .
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We have now shown that X holds in M®? eontrary to our original
assumption. This leaves us with the case M, M, where we recall
that M4 and M, are the fields defermined by A(e) in M** and M*
respectively. By assumption, X holds in M** but not in M*.

Let M*** be the algebraic closure of the compositum of M* and
M 4 in M**. M*** ig real closed and is the intersection of all real-closed
subfields of M** which include both M* and M,,. Defining the rela-
tions A and Dy for elements of I*** ag in M** we see without diffi-
culty that IC, K4, and {X,, X,, X,} are satistied. Also, sinee M 4, is dense
in M* it is certainly dense in IM***, showing that X, is satisfied as
well. Moreover, for any given n, k=1, 2, ..., the equivalence between Q,;
and D, holds in M™** since the set of elements which satisfies A(z)
is the same in M*** as in M* (i. e. M 4,). Thus, the sentences X,; all
hold in M***, M*** iz a model of K*.

Now suppose that X does not hold in M*** although it clearly is
defined in that structure. Replacing the M* of the gemeral problem by
M** we then have the case in which A(x) determines the same field,
M4, in the two given models of K* But we have just shown that in
that casge it is impossible that X holds in one model but not in the other.
‘We conclude that X holds in M***. But M*** is an extension of M*
including @, A, and the D,,. Replacing M** by M*** (if necessary)
we may therefore suppose from the outset that ** is the algebraic
closure of the compositum of M* and M.

Let T be a transcendence base of M4 over M 4. Since the elements
of M** are algebraically dependent on M, oM*, T is a transecendence
base of M** over M* as well. Suppose that X is satisfied by v, = a,, ...,
yi=a;in M** (see 3.7). Then there exists a finite subset of T, S = {;, ..., lm}
say, such that the elements a, ..., a; are algebraically dependent on §
over M* Thus, if # is the algebraic closure of the ordered field M*(S8)
in M**, then M includes a, ..., as. M is real-closed and by defining 4
and Dy, in M as in M** we turn M into an extension of M* including
Q, 4, and the D,;. The elements of M which satisfy A (z) constitute
a subfield M, of M. M, includes M, and 8, and hence also M 4(8).
Moreover, M 4 is the algebraic closure of. M (§) within M**, and hence
within M. To see this, we prove first that the fields M., and M* are
algebraically independent over M. Indeed, suppose that a set of ele-
ments of M*, b,,..,b, is algebraically independent over M ,. Then
~Dpifby; ..., by) holds in M* for k=1,2, 3, ... But if so then all these
sentences hold also in M** where the relations D, refer to polynomials
with coefficients in M 44. Thus, the elements b, ..., b, are algebraically
independent also over M, 4, M4 and M* are algebraically independent
over M,.

13*
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Now suppose that M, contains an element ¢ which is not algebraio
over M ,(8) although, by construction, it is algebraic over M*(§). Then
the set {t}§ is algebraically dependent over IM*. It follows, by what
has just been proved concerning the algebraic independence of Jf a4
and M* over M, that {f}u§ is algebraically dependent over M 4- But
S is algebraically independent over M,, and so ¢ depends on M 4(8)
algebraically, M, is the algebraic closure of M 4(8) within M** and
within #. Moreover

MA=MAA.“M7 MAzﬂ/IAAF\M*:MAﬁM.*,

and # is the algebraic clogure of the compogitum of M, and M*in M**
Now M4 is a subfield of M,, and so M, and M* also are algebraically
independent over M,. Hence, by 2.5, M, and M* are linearly indepen-
dent over M,, and this in turn implies that if the elements byy eees by
of M* do not satisfy any non-vanishing polynomial of degree <k with
coefficients in M 4, for specified & then they do not satisty any such poly-
nomial with coefficients in #, either. In other words, Q,, holds in i
if and only if it holds in M* And since Dby, ..., bs) holds in I7 also
if and only if it holds in M*, it follows that X, holds in J. K and K 4
evidently hold in M and so do X,, X,, X,. However, we do not claim
that X, holds in I, i.e. that M, iz dense in I7.

Leb p = p(w;, ..., %) be a polynomial with coefficients in M* Then
it is not difficult to formulate, in the lower predicate caleculus, and by
means of the relations B, §, P, Q, and of some of the individual constants
of M*, a predicate Qp(@y, ..., om) which states that P(@yy eeny ) > 0.

Disregarding an earlier notation, we now denote by H the union
of the following sets, where we recall that S — {yy ey tu}:

3.15. The set K*;

3.16. the diagram N of M,

3.17. the set of all sentences Q,(ty, ..., tm) for which Py ey lm) >0
holds in M;

3.18. the set {A(t), A(ty), ..., A (tm)}.

H is consistent, for M** is a model of H. Let M # be any other model
(_)f H. We bropose to show that Mz containg a partial model which is
1somorphic to ¥ including @, 4, Dy, under an isomorphism under which
the elements of a1+ correspond to themselves.

My 15 an extension of M* by 3.16, and contains & — {ty ooy tuds
by 3.18. Moreover, § is algebraically independent over M* in H for by
3.17 we have, for any non-vanishing polynomial p with coefficients in M*

that either @i, ..., 1m) or Q—p{t1s -y tm) holds in My, and hence that
p(tu ey tm) # 0 in A‘M—H'
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Let M= My, oostm] in My; let My= M*(4y, ..., ty) in Mz so
that M, is the field of quotients of 3;; and let Mz be the algebraic clo-
sure of M, within Mz. Then M, is isomorphic to the ring M*ty .oy tm]
in M** by the correspondence by which the elements of M* as well as
fy, .y tm cOTTEspOnd to themselves, since both rings are purely transcen-
dental extensions of M* by the algebraically independent elements
tyy s tm. Moreover, by 3.17, the order defined in both rings is the same,
and so the ison}orphism includes @. Passing to the fields of quotients,
we find that M, is, similarly, isomorphic to the field M*(yy oy bm) in J*.
Also, My is a real-closed field, and so the algebraic closure of M, within
Mg, Mg, also is real closed. But any ordered field determines uniquely
(including the ordering) its real closed algebraic extension. It follows
that Mg is isomorphic, including @, to M, by an extension of the iso-
morphism just considered. We propose to show that if in Mz we define 4
and the D, as in My, then the isomorphism includes these relations
as well.

Let My be the set of elements of My which satisfy A (z) under
this definition. Mz, is a real closed field which includes M 4, by 3.18,
and the elements ¢, ..., %y, by 8.18. Hence My, includes the algebraic
closure M, of M u(ty, ..., t,) within My, and Mg itself is the algebraic
closure in My of the compositum of M.(t,...,t,) and of M*. But M,
is the set of elements of My that correspond to elements of M 4, and
so we only have to show that Mz, = M, in order to establish that the
isomorphism includes A.

Suppose on the contrary that 4 (») is satisfied in Mz by an element ¢
which does not belong to M,. Let R be a transcendence base of M*
over M ,, then all elements of Mg and in particular ¢ depend algebraic-
ally on SUR over M 4. It follows that ¢ depends on some finite subset R’
of B over M(t, ..., tn), B= {r, ..., 7;} say. Thus, there exists a non-
vanishing polynomial p(x) with coefficients in M {ti, ..., tm, 71y .oy 75}
such that p(t) = 0. In other words, there exists a non-vanishing poly-
nomial g(y, ..oy Yy 21y e 27, &) with coefficients in M4 such that

319, gty oeslmy Ty ey 7y, 1) = 0.

Let Mgz, be the set of elements of My which satisfy A(z), so that
Mps= MysnMyg and My= Mg,~M* As before, M* and My, ave
algebraically independent over M 4. The same applies to M* and Mz,
since the latter is a subfield of Mgy, But {ry, ..., r;} is algebraically
independent over M, and so it must be algebraically independent over
My, also. Now the elements by, eoes tm, ¢ all belong to Mpgy. It follows
that if we denote the coefficients of the products of powers of 2, ..., 2;
N qY1y ey Ymy 225 eees 24y 8) DY Ga(Wyy oory Ym, ), then in view of 3.19,

3.20. @ity ey by, t) = 0 for all A
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If we can show that the coefficients of at least one g,(1,, weey by )
do not all vanish, then we have finished for in that case 3.20 shows that ¢
belongs to M, after all. Now {f,, ..., %} is algebraically independent
over My, and so if the coefficients of all g(t,, ..., ¢n, #) vanish, then
so do the coefficients of all gx(¥y, ...; ¥m, ) and hence of Y1y ooy Yoms
21y ooy %, @), This is contrary to assumption. We conclude that the iso-
morphism between M and Mg includes A (z). Moreover, the axioms X,
hold both in M** and in Mg. Accordingly, in order to prove for any
given Dy that it holds for corresponding elements in M and in Mg,
we only have to show that @, holds for corresponding elements. But if
a set of elements by, ...y by in J satisties a polynomial p(w, ..., @,) with
coefficients in M 4, then the _corresponding elements in My satisty the
corresponding polynomial in My, and the coefficients of that polynomial
belong to Mzy. Thus @n, holds for corresponding elements, D, holds
for corresponding elements, the isomorphism includes D,.

Since X holds in M, the existence of the isomorphism in question
shows that X holds also in Mz. But X is an existential statement, and
50 X holds also in Mg, which is an exteusion of ¥y including @, Ay Dy,
It follows that X is deducible from H. More particularly, there exist
polynomials py(y, ..., L)y vy D@1y .., Bn) With coefficients in M*, j >0,
such that the sentence

A) A A A o AA(tR) A Qpl('tla ey bm) A A Qp;(tly vy ) DX

is dedueible from E*UN. But ¢, ..., %, are included neither in X nor
in K*UN and so the sentence

321 [(Hy) o (AYm)[A (Y1) A e A AYm) A QW ooy Yom) A -

A QufY1s s Ym)} D X
also is deduecible from K*UN. Now K* and N hold in M* Hence, in
order to prove that X holds in M* we only have to show that M*
satisties the implicans of 3.21. In other words we have to show that
the system of inequalities

322, py(¥rs ey Ym) >0 ’

Po(Y1s ey Ym) > 0

has a sol}ltion In M* with the auxiliary condition that the clements of
the solution all belong to M.

3.22 has a solution in M, i. e.
8.23. Qp(U1s s Ym) A oo A Qp(Way vevy Yn)

Is satistied m M, by y1=1t1, e, Y= tm. I is a real-closed field which
Is an extension of M* and the elementary theory of real closed fields
18 model-complete ([2], p. 44). Tt follows that 3.23 possesses a solution
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already in M*, e. 2. ¥1= 01 ..; Y= €n. NOW it is not difficult to show
that if 3.22 is satisfied by ¢y, ..., ¢, then we can find in M* a positive
quantity & such that 3.22 is satisfied also by any d,..., d, such that
< &< ¢;+e But M, is dense in M* and so we may choose the dy
as elements of M 4. Thus the implicans of 3.21 holds in M* and the same
therefore applies to the implicate, X. This is contrary to our original
assumption, and completes the proof of 3.6.

4. Completeness and decidability.
4.1, TaeorEM. The set K* (see 3.5) is complete.

Proof. Let M4 be the ordered field of real algebraic numbers and
let ¢ be an arbitrary but fixed transcendental number. Let M* be the
algebraic closure of M () within the field of real numbers. Then M* is
regl-closed. Define that 4 (z) holds in M* precisely for the elements of M 4.
Define that Dp(®y, ..., Zy) holds for elements a,, ..., @, of M*if Quz(ay, ..., a,)
holds in M*. With these definitions, M* becomes a model of K*,

Now let X be a sentence which is defined in K*. Thus X may contain
the relations E, S, P,Q, A, and Dp;. X does not contain any individual
constants. (However, all real algebraic numbers can be characterised
without the use of individual constants.) We have to show that either X
or ~X is deducible from K. .

Let N be the diagram of M*. Then K*UN is complete, by 3.6.
Tt follows that either X or ~X is deducible from K*UN. We may sup-
pose that the former is the case. If so, we shall show that X is already
deducible from K* alone. Clearly this is sufficient to prove 4.1.

We define the set of sentences H as the union of the following sets:

4.2, The set K*;

4.3. the diagram N4 of M, with respect to the relations Z, 8, P, ¢
only;

4.4. the set containing the single sentemce ~A(%);

4.5. the set of sentences Q(f,¢) or ¢(e,t) according as @(f,¢) or
Q(c,t) holds in M*, wheve ¢ varies over the elements of M,.

H is consistent for it is satistied by M*. Let Mg be any model of H.
By 4.3, My is an extension of M,; it contains the element i which is
different from (not equal to) all the elements of M, since the latter
satisty A (z) by 4.3, while ¢ satisties ~A (x) by 4.4. Let M be the alge-
braic closure of I 4(t) within Mg, and define the relations 4 and Dy
in M as in M. We propose to show that by this definition # is iso-
morphic to M* including @, 4, Dn, such that the elements of M,
correspond to themselves nnder the isomorphism.
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M%) is a simple transcendental extension of M4 in My as it is
in M* and its order is the same in both cases, by 4.5. Since the real-
closed algebrajc extension of an ordered field is uniquely determined
also as to order, it follows that M and M are isomorphic, including ¢,
by an extension of the isomorphism between M (i) in M, and M 4(2)
in My (under which all elements correspond to themselves). The elements
of M satisty 4 (z) both in M and in M*. Since no other elements of Jr*
satisfy 4 (), we have to show that no other element of M satisties A (z)
either.

Suppose that 4(s) holds in My, and hence in M for an element
of M which _does not belong to M,. Let M’ be the algebraic closurs
of M 4(s) in M. Since My satisfies I, it follows that all elements of M’
satisfy 4 (@). But H is of degree of transcendence 1 over M 4 and so M’
which is a subtield of M must actually coincide with it. It follows in
particular that 4 () holds in M which contradicts 4.4. Thus, the only
elements of M which satisfy A(x) are the elements of M, the isomor-
phism between M* and iﬁ includes A (z). Moreover, the axioms X,
hold both in M* and in M. Thus, we again have to show only that @,
bolds for corresponding elements, and this follows immediately from the
fact that the isomorphism includes A (z). Accordingly, the isomorphism
inelEdes Dyl @y, ooy ) a8 well, k=1, 2, ... Tt follows that X holds also
in M. But K* is model-complete, and My is an extension of I including
Q, 4, Dpy. Accordingly, X holds also in Mg, implying that X is dedu-
cible from H. Thus, there exist elements a,, ..., @; in M, such that the
sentences

46, [~AW®) AQau ) A A Qe ) A Qt, aa) Ao A QU a)] D X
and hence

47 [(ED)[~A(@) £ Q(a, 2) A o A Qlar, @) A Q (@, Gra) A ..

. AQ(@, a)]] DX
are deducible from K*UN,. By an argument used previously (see the
sequel to 3.13 and 3.14 above) and explained in detail elsewhere ([2], p. 46)
we may replace 4.7 by the condition

48, [(z)[~A() A Q(a', 2) A Qz,a")|D X
where a’ and 4 are two particular elements of M 4, o’ <a.

Now let M be an arbitrary model of K* We have to show that X
holds in M.

M ‘contains the real algebraic numbers, and so is a model of K*UN -
Henf:e in order to show that X holds in M » we only have to verify that
the implicans of 4.8 'holds in that structure. In other words, we have to
show thaif t0 any pair of real algebraic numbers, a', o’ such that o < a'"
we can find an element a which belongs to the open interval (a’, a'')
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and which does not satisfy 4 (z). (Briefly, the elements of M which do
not satisfy A (x) are dense in the set of real algebraic numbers.) Now,
by X,, M contains at least one element which does not satisfy 4 (z).
Thus there exist a positive element of this kind, & say. It follows that
the element a = (&' +ba’")/(1+b) does not satisty A(x) either. But « is
a weighted mean of ¢’ and " and belongs to the open interval (a’, "),
as required. Accordingly X is deducible from K*. Similarly, if ~X holds
in M* then ~X is deducible from K*. This proves 4.1.

Let E** = KUK 4u{X,, X,, X5, X}, so that K** is obtained from K*
by the exclusion of the sentences of Kp, Xnzy n,k=1,2, ... Let X Dbe
any sentence which is defined in K**, i. e. which is formulated in terms
of the relations E, 8, P, @, A and without individual constants. Suppose
that X holds in a model M, of K** while ~X holds in a model M, of E**,
Now both in M, and in M, we may introduece the D, in such a way
that the sentences X, are satisfied by simply defining that Dy, ..., 2,)
holds for elements ayy ..., a, of M, or of M,, if Q.u(zy, ..., z,) holds for
these elements. In this way we turn M, and M, into models of K*. But
K* is complete and so it is impossible that X holds in one model of K*
and ~X in another. Thus either X holds in all models of K** or ~X
holds in all models of K**. We have proved

4.9, TaeoREM. The set K** is complete.

Now both K* and K** may be supposed to be recursively enumer-
able (and even recursive, e. g. if based on [2]). Hence ([7], p. 14,
and [1]) «

4.10, TanoreM. The theories of K* and K** are decidable.

A particular model of E** is the ordered field of real numbers within
which the real algebraic numbers constitute the set which satisfies A(x).
If we supplement this by a suitable definition of the relations Dy, as
above, we obtain a model of K* Using either K* or K** we have there-
fore solved Tarski's problem.

In [6], p. 45 and 57, Tarski also raises the question of finding a de-
cision procedure for the theory of (i. e. the set of all sentences which
hold for the) real numbers, in which the relations ¥, §, P, @ have been
supplemented by a relation for the exponential function to the base 2
(e. g. F(z,y), to denote the relation 2%= y). This problem is still un-
solved. Tarski points out that the corresponding problem for the com-
plex numbers possesses a negative answer since the existence of a de-
cision procedure for that case would imply the existence of a decision
procedure for the elementary theory of positive integers and that theory
is known to be absolutely undecidable. It is of interest to note that if
to E,8,P,Q¢ and F we add the relation A (z) for the real algebraic
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numbers, then the resulting theory also is undecidable. Indeed, in that
case we can define the rational numbers # by the condition

Az) A () [F (2, y) D Ay)]

by virbue of the theorem of Gelfond and Schneider (compare (5], p. 75)
and the theory of rational numbers is absolutely undecidable by a result
of J. Robinson [4). A familiar argument [7] now implies that the theory
under consideration also is absolutely undecidable.

Our decision procedure for the relations E, §, P, @, 4 (and D,y
i8 not hased on an elimination method such as was provided by Tarski
for the relations E, 8, P, . However, it has been shown [3] that in
certain circumstances model-completencss ensures the existence of an
elimination method. We are now going to discuss this point informally,
Let @(@y, ..., %) be a predicate which is formulated in terms of the rela-
tions of K* and without individual constants. Then it is known. ([21, p. 21)
that there exists an existential predicate,

Q' (@5 ooy ) = (Hypy) ... (AYm) Z (@1 ey By Yy, vy Ym)

where Z is free of quantifiers such that @' is equivalent to @ with respect
to K* i. e. such that

411, (@) ... (2)[Q (24, s Tn) = Q' (@, vy @)
is deducible from K*.

) We now pass from X to a set K which containg sentences
with universal quantifiers onl§, the existential quantifiers having
been replaced by “Skolem-Herbrand functors”. This can be done in
a mechanical fashion, by replacing, for example, a sentence of the
form (®y)(2)(Tw)Y (3,2, w), Y free of quantifiers, by (2) Y (g, #, p(2) .
However, we have some freedom in the choice of the sentences of K
and we may try to specify them in such a way that the functors in-
trodueeq are ag simple as possible. For the axioms of an ordered field,
Wwe require only the individual constants (functors of order 0) 0, 1 as well
a8 _funetors for the sum, the product, the inverse with respect to ad-
dition, and the inverse with respect to multiplication. For the latter,
we may define ¢(0) = 0""= 0, with the axiom

(@) [B{x, 0) v P(z, ¢(a), 1)]

The axioms of order do not require the introduetion of additional functors,
but in order to state that the field is real-closed we require a functor
for 'tpe Square root — where we may take the positive square root for
Positive numbers and 0 for ali non-positive numbers —and functors for
the roots of equations of odd degree, n == 3,5, ..., regarded as functions
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of the coefficients. These can be made one-valued by choosing always
the smallest root of the equation in question, but this point is inessential
for the sequel.

Next, in place of K4, we introduce sentences which state that the
application of the functors defined so far to arguments which satisfy
A () yields values which satisfy _{1(/1;). In particular we have A4 (0), 4().
Let the resulting set be called K.

In the group X,—X,, X, is now redundant and X, is already in
a suitable form, with universal quantifiers only. In place of X, we intro-
duce the sentence ~:A(t) which includes the new constant f. In order
to replace X, by a sentence without exisfential quantifiers we require
a funetor y(x,y) which yields an element of M, for 2 <y and which
may be taken as 0 for o > y. If 2,y are real numbers whose decimal
expansion is known, and M, is the field of rational numbers, then it
is not difficult to make a suitable choice for y(x, y). Call the resulting
sentence X,.

Finally consider the sentences X,;. Each of these may be replaced
by a pair of sentences,

412, (@y) ... (@) [Durd @1y ooy B0) D Q@15 ooy 20)]
and
413, (2y) . (@) [@ualyr, ooy @n) D Dyl @y, oves )] -

Now, as stated, the predicates Q.; may be written in prenex normal
form with existential quantifiers only. It follows that if in 4.13 we re-
place D by ~..v in the familiar way, and transform to prenex normal
form, we obtain a sentence with universal quantifiers only, so that no
additional functors are required. On the other hand, in order to replace
4.12 by sentences in prenex normal form with universal quantifiers only,
we require functors @{?(w,,...,s,) which constitute the coefficients of
a non-vanishing polynomial p(z, ..., ©,) of degree <% which is satisfied
by %, ..., @y if D, holds, and which may be chosen arbitrarily if D,
does not hold for the arguments in question. Denote the set of sentences
obtained in this way from 4.12 and 4.18 by K, and define

Kfr=KEUR u{~A@®), X, X Kp.

Then X* is deducible from K* and so 4.11 is deducible from K* as well.
Now the sentences of K* are in prenex normal form with universal
quantifiers only. We may therefore conclude by means of the extended
first e-theorem (compare [3]) that there exists a predicate Q"'(z, ..., @)
formulated in terms of relations and functors of X* and free of quanti-
fiers such that '

414 (@) (@) [@ (1) ooy @) =Q (@1, oy Tul].
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Combining 4.11 with 4.14 we obtain that

435, (8) oo (@) [Q (215 wory Bn) = Q"(Z, ey )]
is deducible from K*. Thus, Q''(a, ..., @,) Tepresents the result of “ejj
minating the quantifiers” from @(w, ..., %,). This has to be achieved

at the cost of introducing in addition to some “natural” functors like ‘

the sum and product also some wvery unnatural ones like p(x, ¥) and
the ¢, ..., #,). The form of Q"(@,, ..., ,) is independent of the par-
ticular choice of the functors (e. g. whether we choose the largest or the
smallest root of an equation of odd degree). But the use of @'’ to decide
whether or not ¢ helds for a given set of arguments presupposes that
we are actually able to compute these functors, or rather to decide whether
their iterates satisfy the atomic relations contained in @". Moreover,
not all the steps which are involved in the derivation of Q" from Q are
constructive and so our arguments do not yield an effective procedure
of elimination in their present form.

Finally we wish to give an example which shows that the intro-
duction of the relations Dyu(#;. ..., @,) was essential in order to establish
model-completeness. More precisely, we shall establish that the set of
axioms K**, though complete by 4.9, is not model-complete. For this
purpose we refer to the fields M,, M;, M,, M described at the end of
section 2 above. If in M,, regarded as an ordered field, we define that
A (x) holds precisely for the elements of M, then the resulting structure
is a model of K, K, and X,, X,, X, (see 3.1, 3.2). It also satisfies 3.3
sinee M,, which is the field of real algebraic numbers is dense in any
other Archimedean field. Thus M, with the specified definition of A (x),
constitutes a model of K**, Similarly, if in M we define that A (x) holds
precisely for the elements of M,, then we thereby turn M into a model
of K**. Moreover M,~M,~ M, and so M is an extension of M, includ-
ing A(z). Now M, satisfies the following sentence which can obviously
be formulated in the first order predicate calculus— ‘For all z, and o,
8,%;+8;+ @, 7 0”. But this sentence does not hold in M since Syt 8+ 1
= 0. Thus K** is not model-complete.

5. Distinction of the algebraic numbers in the field of
complex numbers. We now come to the corresponding problem in the
theory of algebraically closed fields. Disregarding some of our earlier
notation, let K be a set of axioms for the concept of an algebraically
closed field, formulated in terms of B, 8, and D, and let K 4 be obtained
by the relativisation of the sentences of K with respect to A (x). Let
the sentences X,, X,, X, and Xy, n,k=1,2,3, ..., be defined by 3.1,

3.2, and 3.4, as previously, and put K= KUK 4u{X,, X,, X;}wEp
where K is the set of all Xpx. Then
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5.1. TwEoREM. The set K* is model-complete.

This theorem can be proved by a method similar to that used in
the proof of 3.6. Although the details are somewhat less complicated,
they still require considerable space. For that reason we shall omit this
proof here and -shall instead give an independent proof of one of the
corresponding theorems for ordinary completeness. However, in the first
instance we shall accept 5.1 and shall derive theorems for ordinary com-
pleteness on that basis.

E* is not complete since it does not determine the characteristic
of its models. We define extensions K of K*, p= 0 or p positive and
prime, as follows.

For positive p, we add to K* a sentence X, which states that the
repeated addition of any element to itself, p times, yields zero, while
for p=0 we obtain K; by adding to H* the sequence of sentences
~X,, ~Xg, ~X;, ... Then the models of K}, p >0, are characterised
by the property that they are fields of characteristic p which are models
of K*. Any K, possesses a prime model in the sense of [2], p. 72, which
is obtained as follows. Let My be an algebraically closed field of trans-
cendence degree 1 over the field M, of absolutely algebraic numbers of
the characteristic in question. Within M} we ascribe A(z) precisely to
the elements of M,, and we define that D,u(z, ..., #,) holds precisely
when Qui(®, ..., @p) holds, for any set of n elements of M}. By this
definition, M; is a model of K. Any other model M of K} contains
a partial structure M’ which is isomorphic to M} including A and D,;.
Such a structure is obtained by choosing an element ¢ in M which does
not satisty A4 (x). Such a t exists, by X,, and is by necessity transcen-
dental. We define M’ as the algebraic closure of Mp(f) in M, and we
maintain that M’ is isomorphiec to M, including A (z) and the Do, ..., Tn).
Indeed, let s be any element of M} which does not satisfy A (). Then
the natural isomorphism between M,(¢) in M’ and My(s) in M7 can be
extended to an isomorphism between M’ and M; which satisfies the
required conditions. Hence, in view of the prime model test of [2], p. 74,

5.2. TueorEM. The sets K are complete, p=0,2,3,5, ...

Now let Kp*= KUK u{X;, X,, X3} so that K, is obbained from
K3 by removing the sentences of Kp. Using the method by which we
passed from Theorem 4.1 to Theorem 4.9 above, we arrive at

5.3. THEOREM. The sets Ky are complete.

An independent proof of 5.3 will now be given.

Let 8 = {s, 8y, 83, ...} and T = {t;, ts, {, ...} be two infinite sequences
of individual constants such that & and 7 bave no element in common.
We define 2 set of sentences H as the union of the following sets:
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5.4. The set K3*
5.5. The set of sentences {A(s;), A(8y), 4(8), ...}.

5.6. The set of sentences {¥Y,} where q = q(2,, ..., 4,) varies over
all non-vanishing polynomials with integer coefficients (all elements of
the prime field for finite characteristic), and -where Y, states that
(815 e 8n) # 0. Thus, {¥,} ensures that the set § is algebraically inde-
pendent over the prime field (i. e. absolutely).

5.7. The set of sentences {Zu}, #, k=1,2, ..., which states that
there iy no non-vanishing polynomial # (@, ..., #,) of degree <k with
coefficients all satisfying 4 (#) such that 7(t,, ..., 1,) = 0.

It is easy to show by means of a suitable example that H is con-
sistent. Suppose that the sentence X is defined in K3* (i. e. formulated
in terms of E, 8, P and without individual constants), and that both. X
and ~X are comsistent with H. Let M, be a model of Hu{X} and M,
& model of Hu{~X}. By the theorem of Liéwenheim-Skolem we may
suppose that both M, and M, are countable. Let M4 and M,, be the
subfields of elements satisfying A4 (#) in M, and M, respectively. Then
both M,4 and M., are of absolute degree of transcendence x,, by 5.5
and 5.6. Accordingly M., is isomorphic to M,,. Also, by 5.7, the set T
is algebraically independent over M., and Moy, in M, and M,
respectively, and accordingly, M, is of degree of transcendence s, over
M., and M, is of degree of transcendence Ko Over M, . It follows that
any given isomorphism between M, and M.4 can be extended to an
isomorphism between M, and M,. Thus, there exists an isomorphism
between M, and M, which includes 4 (#). But in this case it is impossible
that X holds in M, and ~X in M,. We conclude that either X is de-
ducible from H or ~X is deducible from H. Tt will be sufficient to con-
sider only the first of these two possibilites further.

Since X is deducible from H, there exist finite subsets of 5.5-5.7
from which, together with K3*, we can deduce X. And a little reflection
shows that, in consequence, there exists a sentence of the form

3.8 A(s) A A A (8y) /\qu A e /\Yqi ANy DX
which is deducible from Kz*. In this sentence, g, ..., g7 are non-vanishing
polynomials with integer coefficients, D= @y ey @m) 5 ony G5 = Gs(&1 5 one )
(see 5.6 above), and we may simplify 5.8 by replacing Yo Ao A Xy by
Y, where g=g,...q;. Also, by trivial modifications wo may achieve
that the number of variables in ¢ is the same as the number of terms
A (s;) which appear in the implicans. N ext, we observe that ¥, is of the
form Q (s, ..., 8,) where Q(ay, ..., z,,) is a predicate which signifies that
iy -1 &m do nob satisfy the particular polynomial ¢(z,, ..., &), while
Zng 18 of the form R(1,, ..., 4,) where R(a,, ..., 2,) is a predicate which
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signifies that zy, ..., , do not satisfy any non-vanishing polynomial of
degree <% coefficients satisfying 4 (2). Then 5.8 becomes

5.9. A(S)A o AA(Sm) AQS1y ey 8m) ARy, ooy 1) D X

Since 5.9. iz deducible from K;* we may conclude in s familiar
fashion that

5.10.  [(Eay) .. (Eatn) (HY) oo (Hyn) [A (1) A woo A Al) A

ANQ(@yy ey Tm) A B(Y1s -or, ¥a)]]D X
also is deducible from K3*. Hence, in order to prove that X is deducible
from K}* alone we only have to show that the implicans of 5.10 is de-
ducible from K3* i. e. that it holds in every model of KZ*.

Let then M be a model of K3* and let M, be the subfield of M which
consists of the elements of M that satisty A4 (z). Then M, is infinite and
so we can find elements in M, that satisfy Q(zy, .., z,), i. e. we can
find elements in M that satisfy A(@)A ..\ A(ze)AQ (@, ..., &) T Te-
mains to be shown that in M we can find elements @, ..., @, which do
not satisfy any non-vanishing polynomial of degree <%k with coeffi-
cients in M 4.

Choose an element a of M, which does not belong to M, and put

3.0, @=a®t0"t §=1,2, .., n.

(This is Kronecker’s substitution “in reverse”.) Suppose that there
exists a non-vanishing polynomial (w;, ..., @,) of degree <% with coeffi-

cients in M4 such that
F(Byy weey Gn) = 0.

Now a is transcendental with respect to M, (which is algebraically
closed), while by a familiar argument the substitution 5.10 transforms
different products of powers of the a; into different powers of a. Hence
the substitution of a for the a; in 7(ay, ..., ) — or more precisely, the
substitution of y for the ; in 7(#, ..., #,) by means of )

i1
Xy = y(k+1)

vields a polynomial whose coefficients are all zero, and the same must
therefore be true also of #(a, ..., #,). This is contrary to assumption
and shown that the a; given by 5.10 satisfy the required condition. Thus
M satisfies

() oo (AYn) B(Yps oory Yn)

and hence, satisfies the implicans of 5.9, and hence satisfies X. This
completes the proof of 5.3

In conclusion, the author wishes to express his indebtedness to
Dr. A. Lévy for reading this paper in manuseript, and for suggesting
a number of improvements.
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On clusters in proximity spaces *

by
S. Leader (Rutgers)

1. Introduction. The topology in a mefric space is determined
by stating which points are close to each given set, a point being close
to a set B if the distance between @ and B is zero. A continuous mapping
is just a function which preserves proximity between points and sets:
fo is close to fB whenever z is close to B. In 1922 K. Kuratowski [3]
had abstracted the proximity relation “z is close to B* by axiomatically
characterizing the set B of all points close to B.

Now the uniform topology in a metric space is determined by stat-
ing which sets are close to each given set, a set A being close to a set B
if the distance between A and B is zero. A uniformly continuous mapping
is just a function which preserves proximity between sets: fA iy close
to /B whenever A is close to B. (See [17].) This immediately suggests
abstracting uniform topology by axiomatizing the proximity relation
“4 is close to B as & binary relation on subsets of a set X.

Strangely enough, this remained undone until 1952 when V. A. Efre-
movich [1] introduced a set of axioms characterizing proximity relations
and thus launched the theory of proximity spaces. This theory is an
elegant generalization of uniform topology in metric spaces, yet is more
specific than the theory of uniform structures. (See [6].)

The compactification of proximity spaces was first treated by
Yu. M. Smirnov [8]. Smirnov’s treatment involves constructions using
transfinite induetion. In this paper we introduce an alternative approach
to the eompactification of a proximity space based on the simple concept
of a “cluster”, which is extrinsically just the class of all sets close to
some fixed point. We avoid transfinite induction by using the axiom
of choice in the following form: Given a class of elements, every subclass
having & property of finite character is contained in some maximal sub-
class having that property [16].

2. Proximity spaces. Let X be an abstract set. A point is a subset
of X having no proper subsets. A prowimity relation in X is a binary
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