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Equivalence of singular and Cech homology for ANR-s
Application to unicoherence
by
S. Marde§ié (Zagreb, Yugoslavia)

In § 1 of this paper we consider (non-compact) absolute neighborhood
retracts for metric spaces (abbreviated as ANR-s) and define a natural
isomorphism between singular homology (cohomology) and Cech homology
(cohomology) groups based on arbitrary open coverings (*).

In § 2 we state a necessary and sufficient condition (inferred from
Jiterature) for unicoherence of normal paracorpact connected and locally
connected spaces in terms of 1-dimensional (ech cohomology. In the case of
connected ANR-s we obtain then a criterion for unicoherence in terms of
singular homology. The application of this criterion to a class of function
spaces gives (among other things) the answer to a problem of XK. Borsuk.

All groups in the paper are assumed to be discrete.

During the work on this paper the author received valuable help
and information from Professor A. H. Stone and from Professors T. Ganea
and 8. T. Hu.

§ 1. Equivalence of singular and Cech homology for ANR-s

1. Let X be a topological space (no separation axiom is assumed),
@ a discrete Abelian group and p an integer, p > 0. We denote by
H,(X;@;8) and H®X; @;8) the singular homology and _cohomology
groups (over the coefficient group @) respectively, both taken with

(* The equivalence of both theories was well-known for finite polyhedra. An
extension to locally finite polyhedra can be found in the paper [5] by C. H. Dowker
(8.1, p. 565 and 8.2, p. 566). For the definition of locally finite polyhedra see for in-
stance [13], p. 390; for a proof that these polyhedra are ANR-s see Corollary 3.5, p. 394
of the same paper. Recently J. Dugundji in [8] (Theorem 2.1, p. 41) and Y. Eodama
in [14] found proofs of the equivalence in question for arbitrary ANR-s. In distinetion
from our proof, which is direct, the proofs of these authors reduce the general case
to the case of infinite polyhedra. In the case of cohomology (not homology) the equiv-
alence can be considered also as a consequence of Cartan’s unigueness theorem for
cohomology with coefficients in sheaves (H. Cartan, Séminaire 1950/51, Cohomologie
des groupes, suite spectrale, faisceaux, N° 16). .
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diserete topology. H(X; 6; 0) and H”(X; @; () will denote Cech homo-
logy and cohomology groups (over @) based on arbitrary open coverings
(not necessarily finite) and taken discrete (for a definition see [117, p. 237
or 6], p. 90-91). We establish an isomorphism between S and  groups
by interference of Vietoris homology groups Hp(X; @; V) and cohomology
groups H?(X; G;V), taken in the seuse of [6] (p. 90-91). For the con-
venience of the reader we reproduce here the definition of these groups.

Let o = {U;} be an arbitrary open covering of X. A family p = {M;}
of subsets of X is said to be inseribed in if each M is contained in a U,.
The Vietoris complex V, is a simplicial complex whose vertices are all
points of X; a finite set of vertices forms a simplex if and only if it is
contained in a Ujeo. I o <o, ie if o is a refinement of @, my:
Vv, -V, is the injection induced by Vo CVu. Mo induces the homo-
morphism 7yt HplVars G)—>Hy(Vo; &) of homology groups and the
homomorphism @k HP (Vs &) —H?(V,; & of cohomology groups. These
groups and homomorphisms form an inverse and a direct system of
groups when e runs through the set © of all open coverings of X ordered
by <. The groups Hy(X; &; V) and H?(X; G; V) are defined as the inverse
and the direct limit of these systems (*).

We state now the main result of this section.

TreoreM 1. Let 4 be an ANR and G a discrete Abelian growp. There
exist natural isomorphies

€) Hy(4; 6; 8)~ Hyld; 63 V)~ Hy(4; 65 0)
(2) HP(4; G; 8)~ HP(A; &; V)~ HP(4; 65 0) .

The proof is needed only for the first isomorphy of (1) and (2), since
the second isomorphy has already been proved by C. H. Dowker for
all topological spaces ([6], Theorem 2 and 2a, p. 91, Lemma 7, p. 91
and Lemma 7a, p. 93).

9. In the proof of Theorem 1 we shall need a notion of barycentric
subdivision of a Euclidean complex K with respect to a closed subcomplex L;
the resulting complex will be denoted by K* mod L. Its vertices are, by
definition, all Vertices of I and all barycenters of the simplexes belonging
to E\L. Let oy, 0y, ..., 0 b a sequence of simplexes from K, o; being
a face of opy,, 2nd let o, be the last member of the sequence still
belonging to L. Then the vertices of ¢,, and the barycenters of opiyy s n
form, by definition, a simplex of K*mod L (*). Only the sets of vertices

() Ho(X; G;V) is a suitable generalization of the classié Vietoris definition;
H?(X; @; V) is the Alexander cohomology group. .

@) In the case when all ¢, i =0, ...,n, belong to E\L, their barycenters form
a simplex of K* mod L too.
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obtained in this way are considered as simplexes of K* mod L. L is ob-
viously & closed subcomplex of K* mod L and the process can be iterated,
yielding thus complexes K*mod L.

Tmvs 1. Let K be o finite Buclidean complex, L a closed subcom-
plex of K and w an open covering of the polyhedron |K|. If the closed sim-
plewes of L are inseribed in o, there exists am integer k such that the closed
simplexes of K*mod L are also inscribed in w.

The proof rests upon the following. statement:

(a) Let o be a Ruclidean simplex, T & face of o and U an open set of
lo| containing the (closed) carrier || of z. For a sufficiently large k the
dosure of the star St(v;|of mod|z|) (*) belongs to U.

Proof of (a). Let o= (Gq, ..., Gp, oy ey by)y T=(ho; ovv) Op), n=p+gq.
Tt @ and ¢ are barycenters of t and o respectively, then an elementary
computation (in vector notations) yields

1 q
@ c——a=mg;(b,~——a,).

Hence, if d denotes the maximum of the distances fB—al, §e{ly.rqh
we obtain
q n
el < =2 . d.
(2) lle a]|\n+1d<n+1d
(2) is a fortiori true for barycenters ¢ of simplexes o' €St(z; |o]). Since
the simplexes of St(z;|o|k mod|r|) are of the form

k ) i
(3) OF = (Ggy vovy gy Gty ey Orgri)y 475 B) S04

o, being barycenters of simplexes of ' e St(z; |c|k'1m0d[r{), the applica-

tion of (2) yields
(k1

®  max |t —al
'”/"“1 ri 1o

(4) lon—al <

n \? —8 n \F
" =2l < K| s | &
< et ot <2

We infer from (4) that, for ¥ sufficiently large, all ¢, will be arbitrarily
close to a e |iz|. Thus there is a k for which all (closed) simplexes (3) belong
to U D |v|. This proves the assertion (a).

Proof of Lemma 1 is now carried through by induction following
the integer dimZ. For dimZL = —1, i.e. in the case when L is empty,

A

() If ¢ is a simplex of K, then St(o; K) denotes the open star of ¢ with respect
to X; |o| denotes the closure of o.
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the statement coincides with the well-known fact that iterated (absolute)
barycentric subdivisions reduce the mesh of a complex under any given
positive number, hence also under the Lebesgue number belonging to w
(see for instance [11], Lemma 6.5, p. 63 and Lemma 7.5, p. 65). We now
assume Lemma 1 true for &imZ < p, p > 0, and prove it for dim L = p.
An arbitrary p-dimensional simplex 7elL is the only p-dimensional
simplex of L~ |o,| for any o, e St(z; KimodL). Therefore, the effect of
further subdivisions of K modulo L coincides in |oy| with the effect of
the subdivisions of |o,| modulo [z|. This fact emables us to apply the
statement (a) to |oy], |7] and Un o, where Ue o, U2, IE Fur)
i5 chosen in accordance with (a), then for k(7) = 14-maxk.(z) we ob-
viously get : r

(5) CL8t(7; K*7modL)|CU e w .
Finally, for k = maxk(z), v ranning through the set IALP™ of all p-di-

mensional simplexes of L, we find that the sets |Cl St(z; K*mod L),
reIP\IF7Y, are inscribed in . Removing all the simplexes belonging to
these {open) stars, we get a closed complex K, with dim (If, ~ L) < p.
From the assumption of induction it follows now that continuing the
process of repeated subdivisions modulo L we shall obtain, after a finite
nomber of steps, a complex inscribed in w. This ends the proof of Lemma 1.

The subdivision X! mod L induces a homomorphism Sd of the group
C(E) of (ordered) chains of K into the group C(K*modL) of chains of
KimodL; 8d is defined by induction as follows:

(6) Sd(e%) =o.

If o? L, then

(N 8d(o?) = o?,
otherwise

(8) Sd(0?) = b,(8d907) ,

5,(84907) denoting the join of Sd@oi”l with the barycenter b, of o?. Ob-

viously Sd commutes with 9. Applying Sd subsequently we get i
C(K)—>C(E*modL).

Remark 1. If o = 2 g;of is a chain (over @) belonging to the com-
plex K and L = |da®|, then

9) d(Sdar) = SA(9ar) = da7 .

) 3. Let X be a topological space, w an open covering of X, § the
singular complex of X, 8, C 8 the subcomplex consisting only of singular

simplexes whose (closed) carriers are inscribed in o and #,: C(8,)—~C(8). -

the induced injection.
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LEmma 2. There exists a chain mapping e,: C(8)—C(8,) with the
following propertios:

) el Cls2], <8,
(2) EpNw = 1,
(3) Nuo 22 1,

the sign = denoting chain homotopy.

If o and o' are two open coverings of X, there ewists a chain trans-
formation Age: C(8)—>C(Suyuw) such that
(4') aAmw’ +Amw’9 = n:um'aw'—"}:;m’sw’ ]

Nooe denoting the injection induced by Su C Sucw ®).

Proof. We define &, by means of a chain mapping o,, assigning
to every singular simplex §¥ = (o®, @) a chain of & gimplicial subdivision
of |o?|, such that |a,s?| coinecides with this subdivision (o? is a Euclidean
ordered simplex and ¢ a map of |o7] into X). e, is then given by

(3) £, 8P = £,(07, ) = ¢(0.5?) -
As t0 @, it is defined by induction starting with
(6) - 0,80 = a,(a% @) =0

If 57 = (0%, ¢) and b is the barycenter of ¢, we consider the join b(a',,,asr);l
a,95? is by supposition a chain of a subdivision of |9c?| and obviously

(7) 9B (a,987) = €57 -

We take now the kth barycentric subdivision of [bawasplmod]qwé)spl,
% being the least integer for which the subdivision is inscribed in the
covering ¢~ w). According to Lemma 1, k exists. We put finally

(8) 0y 8P = Sa¥b (a,07) .
According to Remark 1 and (7) we have

(9) Da,s? = b (a,987) = 2,957 .
From (5) and (9) we infer thab

(10) De, 8P = £,087

holds, showing that e, is & chain mgpping. |ens?]| 18 obviousty inscribe.d
in . Furthermore, it is clear that & satisfies (1) and (2). As.to (8), 1'13
follows easily from the last statement of the lemma. Indeed, if .o < @'

(%) Compare this lemma with Theorem 8.2, p. 197 of [11].
Fundamenta Mathematicae, T. XLVL

«
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then w <wuw’ and thus 8, . = S,. Therefore, #5,. reduces to
identity 1 and 7o, to the injection 7,,: O(8,)—C(S,). Thus (4) goes
over into

(11> . aAwm’+Awm’a = &y~ No'wEo’ +

In the special case when X ¢ O, 7o, Teduces t0 7, and &, to 1. Leaving
out the index o we get

(12) Ay +A,80 =1 — Nt Eur?

Proof of (4). To every s»— (o?,9) e 8 we agsign a chain Bows?
of the following simplicial subdivision of the prism |o?| X I, I=7[0,1].
On the lower base the subdivision coincides with |aws?[, on the upper
base it coincides with |a,s?]; we assume further that the other faces of
the boundary of the prism are already subdivided as prisms of lower
dimensions. Finally, we take the join of the barycenter b of the prism
with the given subdivision of the boundary of the prism. Tet D(z,1):
lo*ixI—+X be the mapping defined by

(13y Pz, 1) =p(7).

We now take the kth barycentric subdivision of the described simplicial
subdivision of [o?] x I modulo the (already subdivided) boundary, % being
the least integer for which the obtained complex ig inseribed in @2
k exists according to Lemma 1.

Finally, we set

(0w w’).

(14) ﬂwﬁstu%ﬁ—Wﬁamﬁfy
It is not difficult to verify that

(15) o SP = 0,87 — @, 8P — 9P
A 18 now defined by

(16) Awm"gp = Qsﬂwm'sp

and (4) follows easily from (15) and (16). This ends the proof of Lemma 2.

COROLTARY 1. The mjection n,: C(8.)>0(8) induces an ws0morphism
(onto) n,, of the homology groups Hy(8.; &) and Hy(8; @) and an iso-
morphism (onto) n% of the cohomology  groups H(S; @) and H?(8,; @)

4. ANR-s for metrizable Spaces can be defined as neighborhood
retracts of convex sets of real normed vector Spaces. The equivalence
of this definition and the usual one follows from the results of M. Wojdy-
stawski ([19], 7, p. 186) and J. Dugundji ({71, p. 363). In the sequel A4
will always denote an ANR, imbedded in s convex set K of a vector
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space L, N will denote a neighborhood of retraction of 4 in K and #:
N—A the retraction map.

Special open coverings o’ of 4, designated for brevity as “convexl”
coverings, will play an important role in the subsequent proofs. cu'. is
a “convex’ covering if its members are of the form U= 4 ~A W, W b«.emg
a conveX (in L) open subset of N. The family of all “convex” coverings
of A will be denoted by £’ in distinction from the family £ of all open

i of A.
covel]i.lfn%; ig a subset of 4 and { M] denotes the convex hull of M (in L),
then we have

LemMA 3. Every open covering o = {U;} e 2 of 4 admits a “co.m)em”
refinement w' = {Uj} e 2’ such that for every set M C A, ztnsom.bed m o',
the convex hull [M] is contained in N and 9[M] is inscribed in o.

Proof. Let {W;} be a refinement of the open eoveIting ﬁ“l(w)
= 7Y(U)} of N, W, being open spheroids (¢) of K contm]?ed in N
Clearly, o'= {A~W;} belongs to £’. For every A ~W; e_af there is
a U;ew such that W;Co(U). Thus A~W;C 4~ fUi) = U?,
showing that o < o’. If the set M is inscribed in o', for mstance‘ if
MCA~W;, then [MICW,;CN and thus #[M]CHW;) CU;, showing
that #[M] is inscribed in . :

5. In this section we define several chain transformations and estab-
lish some of their properties to be used in section 6. .

a. Let X be an arbitrary topological space and w an open covering
of X. The following relation defines a chain mapping u, of 8, into the
Vietoris complex V,,:

1) : HoSP = (‘P(eo)’ ) ‘P(ep)) ’

$P = (0%, @), 0P = (€g, ..., ). . )

b. If o’ e Q' is-a “convex” covering of 4, we de‘fine‘ 2 chain mapping
Aot C(V,)—C(S8) as follows. Let o be a Vietoris simplex from.V,,,f.
Choose U'= A~W ew' so that Jor|CT". Let.[m’] ‘denote the linear
singular simplex spanned (*) by o?. [v¥] is contained in W C N so that
#[v?] is a well determined singular simplex of A. We now put

(2) Ao 0P = BH[vP] .

(*) A spheroid of K is a set W consisting of all » ¢ K with |5—u,] < & o ¢ K;

W is obviously a convex set. '
() If o i (@9, -+ 5 @,) i an ordered Vietoris simplex and o® = (g, ..., ¢,) an ordered

Euclidean simplex, [v] is defined as (o, a), where
» ? 2
a(nZtie‘)zgft‘.a‘., %tizl, t>0.
3%


Artur


36 8. Mardegié
Clearly
(3) Mt = Ae® .

¢. Bvery o ¢ admits a refinement o' ¢’ such that
(4) Po Ew;‘m’ = Nw'e

To prove this assertion we choose o' in accordance with Lemma 3.
If v belongs to ¥V, then 1,92 = ¢[v?] is inscribed in o, for the carrier
of [¢*] obviously coincides with the convex hull of [v?]. (4) now follows
from Lemma 2, (2). .

d. We shall now define, for every o’ e’, a chain transformation
Dyt C(8,)—C(8) such that

(8) 9D +Drd = A g — s -

It s2 = (0%, @) € 8., consider the linear singular simplex [u, s?] spanned
by p.rs?. Let

(6) [k $P] = (07, a),
a: [o?]—N and let
(1) o7 CU = AW e o',

W being a convex set of N. If v e [o?], t € I, p(7) +{a(r) —¢(7)) is a point
of W C N, so that

(8) @ (7, 1) = 0p(v) +t{a() —p(7)))

is a well determined mapping of [o?|xI into A. For o? = (egy ..., 6)
denote by o? X1 the Euclidean chain

D .
(—1)(6pX 0, vy X 0, 6,X1, ...y, X 1),
i=0

i

which obviously verifies

(9) Ao?XI)=(0?X1)— (6P X 0)—(d0?) X I.
Finally, set
(10) : Dysp = (a2 xI,D).

From (10), (9), (8), (6), the definition of 1,, and the properties of ¢ it
is easy to infer that (5) holds good.

Combining (5), (3.10) and (3.12) we obtain
(11) (Dot — Awr) + (Do 6r — Do) 0 = Aoy Yy 0 — 1.
proving the important chain homotopy

(12) Zm’/‘w’ g2 1,
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Denoting generally, for a chain mapping z, by 7,(r*) the induced
homomorphisms between the homology (cohomology) groups, we can
summarize the results of this section in the following

LEMMA 4. For every o €2 we have

(13) &g Myw = Nyw s = 1,
(13 ente = Tucs=1.

For every pair o < o', w e, o' ¢, we have
(14) P Exs = Togws’en Mg’ Exeen’ 3
(14" € Miy == Euy Uiy Tt -

For every o e there ewislts an o' €', v < o', such that

(15) . /u*me*m}**w’ = Tyo'w 3

(157) Ko e il = Mo -
For every o’ Q' we have

(16) : Ao’ e’ == N 3

(16") e Ny = 1y

Proof. (13) and (13") follow from (3.2) and (3.3). Applying u, t0
(3.11) and using the obvious relation  Morwfe = Holflwe We get (14)
and (14’). (15) and (15') are’ consequences of (4), while (16) and (16")
follow from (b).

6. Proof of Theorem 1. For reasons of brevity we denote in this
section the groups Hy(d; G;8), Hu(4; V), HyV.; @), H(4;G;8),
HY(A; & V) and H?(V,; @) simply by Hg, Hy, Ha, H° H" and H"
respectively.

a. Proof of (1.1). According to (5.14) the homomorphisms . Exw’
Hy—H,, o€, induce a well-determined homomorphism »,: Hg—Hy
=Ii(I_Ile, defined by

(1) V*h’ = {,‘lf*w etmh} I}

he Hy, while {tyatsuh} s a “thread” of Hy. If

(2) Vb = {ftyisExa} = 0,

then

&) PrwExal =0y

for all o' e, hence also for o' e2’. In this case (3) implies

(4) ).*m;‘u*w/e*wzh =0.
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On the other hand, (16) and (13) ImpLYy Asw fhso txo’ = Mo’ Exe’ = 1, so
that (4) goes info h= 0, proving the vanishing of the kernel of »,. To
show that

(5) v*(HS) = -HV 3

take an arbitrary ‘thread” {h,} e Hy, hyeHy,y @ e . For each o' e’
congider the class

(6)

Any two “convex” coverings admit a common “convex’ refinement
(Lemma 3) and I o' < o”, o 2, o €8y Iy = Ay Therefore,
all o €& lead to the same element he Hg. To prove that »h = {h,}
we have to show that
(M
for all wef. According to Lemma 4 for any w £ there is an o’ e
such that (5.15) holds; (6) also holds good for this o' Hence, according
to (15) and to the definition of a thread, gyl = Hoogoo Ex0 o Pt
= Tyur0 e = My, Proving (7) and the isomorphy Hg~Hy.

b. Proof of (1.2). &u* is a homomorphism of H® into HS. Ac-

cording to (5.14’), to all A" e H” belonging to the “pundle” {k°} ¢ H”
=11£1H“’, the same element

(8)

is assigned. For an arbitrary & ¢ H® take an arbitrary w'.e.Q'. A%k will
be a well-defined element of H*, PFor the ,bundle”. {lz‘,/h}eHV we
have by (8)

(9) YRR = &l Ak,

while from (5.16) and (5.13') we infer that el ul A = elni = 1. Thus
(9) goes over into

b= Ao her € Hg.

HsoCxo h=h,

h— {1} = ebush® < BS

(10) v {Aih}=h,

proving

(11) ’V*(HV) - HS .
Finally let '

(12) O} = et pth® = 0.

. Choose an o’ ¢ 2’ such that (5.15) holds. Then (12) implies
(13) ' 0= A% et uth® = mh,h”,

showing that {4} = 0. This proves the isomorphy H ~ H".
. Itlls not difficult to verify that the homomorphisms », and »* are
natural.
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Remark 2. Theorem 1 is not valid when the Jech homology and
cohomology is based on finite open coverings. A well-known counter-
example furnished by C. H. Dowker ([4], Theorem 9.6, p. 230) ig the
gpace C of real numbers. HY(C;J; 8) = 0, but the corresponding. Cech
group based on finite coverings is a group of power 2% (J is the group
of integers). A reason for this fact consists in that finite open convex
coverings fail to form 2 cofinal set in the set of all finite open coverings.

'§ 2. Application to unicoherence

1. Let S, denote the unit circumference |#|=1 in the plane of com-
plex numbers. In the sequel (in accordance with [9], D- 63) we say for
a space X that it has the property (b) if and only if every mapping f:
X8, is of the form

1)

¢ denoting a real single-valued mapping of X.

Tn 1936 S. Eilenberg found ({91, Theorem 3, p. 70) that for metri-
zable connected and locally connected spaces the property (b) is equiv-
alent to unicoherence. Actually, his proof that unicoherence implies (b)
is valid for arbitrary connected and locally connected spaces (no assump-
tions on metrizability). The proof of the other part of the equivalence
({91, Theorem 2, p. 69) can easily be modified (using the lemma of Urysohn)
in order to become valid for connected normal spaces (Do gssumptions
concerning separation of points is needed). The equivalence of wunicoherence
and the property (b) for connected locally econnected normal T spaces
follows also from a more recent result of A. H. Stone concerning the
degree of multicoherence ([17], Theorem 5, P. 472).

TEvymA 5. Let X be a topological ‘space. The mapping f: X8 8
homotopic to the constant 1 if amd only if f ds of the form (1).

Proof. If (1) holds, then
@) F(a, 1) = 6@

gives a continuous deformation of f(z) = F(z,1) into the constant 1,
proving the sufficiency of the condition.
Suppose now that f{x) is bomotopic to the constant 1, i. e. that

there is a mapping F(z,t): XXI -8, with
3) Flz,00=1, Fl@,1)=7F@).

flo) = eio@, xeX,

For two non-diametral points 2,2, €8y we denote (following [9],
p. 63) by [2, %] the length of the shorter of the two arcs leadiug
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m 1 2y o
f] 0 2, to 2 pI 0V lded Wl tlh bhe right s1gn. If fOI bhl ee
g g points

(4)

they.belong to a half-circumference and thué

diam {2, 2,, 23} < 1,

(8) [21) 2] = [215 2] +[22, ).
Notice also the relation
(6) eilznze] — N

Resuming the proof, consider for a fixed ¢ eX the mapping 7 (1)
¢

=F(¢,1) as a functi : X
Sequen,e X ion of tel. I being compact, we can find a finite

(M

such that
8' .

(8) i=0,1,2,..,n—~1.

Let U; be an open set of X x I containi i
and such that i all potuts (£,

(9) diamF(U;) <1.
Finally let U, be an open set.of X, ¢ e U;, such that

0=t <t <...<t, =1

dia’mFE([ti: ti+1]) < 17

with ? € [t;, £74,]

(10) U
eX[ts, 50,0 C U,
and. thus 7 7+1]_ 7
(11) diam P (U X [t;, tpa]) <1.

We now define a real transformation D U XI->0 by setting
-1

Be(w, t) = 1=2 [F (&, 1), F (&, t14)]+ LB (£, 1), Flo, 1)],
for @ e Uy, t€[ty, tyrq].
To prove that (12) is a sin i
- gle-valued function
uniqueness of the definition for ¢ — ipy 1. 8. to shov‘;7 etlllla?: f o show the

(13)

(12)

LE(Es t-1), B (2, t)] = [F (¢, tpy), F (£, W)+ (€, 1), F (@, t,)]

Since (£,1,-,), (£,1,) and (
A z,1p) belong to U,_,, (9) yields diam {F
1.]_:(051:e :;),t]f;f:p t,z)}<) 1, and thus (13) fo]lows’from (5) Furth{erfic’utgli)‘é
s(x,1) is a mapping of U.x1I, b i ,
: ¢ X1, because it is contin i
he closed subsets U, x [fs; tp+1]- Applying (6) we see also that e

(14)  oiogton — ( ﬁ mﬁf : tv’;)l? )
j=0 I

Lo _Foy_ g
t - 2
for 2eU,, tel. G EE ,
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Finally,
(1B) Dz, 0) = [F (£, 1), F(z, 0)]=[1,1]=0.

We shall show now that, for o ¢ Uy nUy, §,§" ¢ X,

(16) Dy, 1) = Per(, 1) -
Indeed, by (14),

(1) e @h = F (z, 1) = 6% /@h
go that

(18) Py —PeN =1,

Since I, = {(z,?)|t eI} is connected and & +— @y I8 continuous on Iy,
there is a constant k such that

(19) @ulw, 1) — Dy, 1) = 2o .

It follows from (15) that & = 0, proving thus (16).

We now define a (single-valued) transformation @(z,t): XXI->C
by relation :
(20) O(w, 1) = Dulw, 1) .
According to (16), $(x, t) coincides with the continuous transformation
®yx,t) in the open set UgXI, s0 that @ is continuous at every point
(&,1) « X x I. Moreover, we infer from (14) and (15) that

(21) goeh=F(@,1),
(22) &(z,0)=0.
The real mapping .

(23) plz)=D(x,1)

obviously satisfies (1) and the proof of Lemma 5 is completed.
Remark 3. For metrizable X, Lemma 5 has already been proved

by 8. Rilenberg ([9], Theorem 1, p. 68); the present author is indebted

to Professor A. H. Stone for calling his attention (in a letter) o the fact

that Lemma 5 is valid for all X.

Pinally, it follows from a theorem of C. H. Dowker ([4], Theorem 8.1,
p. 226) that a paracompact normal space X admits a mapping f: X—8,,
not homotopic to 1, if and only if HY(X;J; ) # 0, J being the group
of integers.

Combining all these results we obtain

TaEoREM 2. Let X be a mormal paracompact connected and locally
conmected space. In order that X be wmicoherent it 8 mecessary and suffi-
cient that
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In particular; the theorem can be applied to all connected locally
connected metrizable spaces.

2, In the case of connected ANR-s the assumption of local con-
nectedness is always fulfilled. Moreover, Theorem 1 enables us to replace
HiyX;J; {) in Theorem 2 by HYX;J;S).

Finally, singular complexes belong to closure-finite coraplexes, which
enables us to express cohomology groups over arbitrary coefficient groups
in terms of integral homology groups. Specializing a general formula
due to S. Eilenberg and S. MacLane ([10], p. 813; see also [11], p. 161)
to dimension 1 we obtain (8) for arcwise connected spaces

1)

Thus for ANR-s Theorem 2 goes over into

HY(X;J; 8) ~ Hom (H(X; J; 8), J) .

THEEOREM 3. In order that a connected absolute meighborhood retract A
be -umicoherent it is necessary and sufficient that

@) HY(4;J; 8) ~ Hom (Hy(4; J; 8),J) = 0.

In connection with this theorem there naturally arises the question
of characterizing the Abelian groups G admitting non-trivial homomozr-
phisms into J.

LEMMA 6. An Abelian group G admits non-trivial homomorphisms
into J tf and only if J is a direci summand of &

Proof. The sufficiency of the condition is obvious. To prove the
necessity suppose that h: G¢—J is a non-trivial homomorphism. We may
suppose (without loss of generality) that k(@) = J, because all subgroups
of J, excepting {0}, are isomorphic to J. Now choose g € G so that h(g) = 1.
Let 4 be the subgroup of @ generated by g and let B be the kernel of h:
G—J. It i3 easy to verify that G = A@ B and that 4~d.

We compare now the criterion of Theorem 3 with the classical cri-
terion of K. Borsuk ([1], Korollar 1, p. 230) and E. Cech ([8], Theorem A,

P. 232 and Theorem B, p. 233) asserting (in equivalent formulation) that
a Peano continuum X is unicoherent if and only if

3) H(X; R; ) =0,

R denoting the group of rationals.
For connected ANR-s (3) is equivalent to

(4) Hy(A; R; 8) =0

(") Relation (1) can easily be proved directly. Hom (4, B) denotes the group
of all homomorphisms of 4 into B.
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and implies (2). Indeed, in the contrary case Lemma 6 would yield a de-
composition. in a direet sum of the form

(5) H(4;J; )~JDB.

On the other hand, specializing another universal coefficient formula
([11], p. 161) to dimension 1, we obtain for arcwise connected spaces X
and arbitrary coefficient group G the relation

(6) Hy(X; 65 8)~ Hy(X;J38) @ G
Thus, for & = R we would have
(" Hy4; B; 8)~ Hy(4;J;8) @ Re RO(B® B) #0,

in contradiction with (4). So (3) implies the unicoherence of connected
ANR-s. That the converse is not true can be shown on a connected 1oqaﬂy
finite (2-dimensional) polyhedron II, having the property

(8) D) ~R#0.

The existence of such a polyhedron (which is an ANR) fo].lows from
a result of J. H.C. Whitehead ({18], Theorem on p.261). Since m(1I)
~H (I} J; 8) (7, is here Abelian), (8) implies

(9) H(I;J;S)~ K.
Obviously '
(10) Hom(R,J)="0

and IT is unicoherent (Theorem 3). Nevertheless, (6) yields
(11) HI(H;R;S)mHJU;J;S)@RwR@RwR#O,
so that the Borsuk-Cech coendition (3) is not fulfilled.

Remark 4. If C denotes the group of reals and P the group of
reals modl, then

(12) HyII; P; Oy~ Hy(IT; P; 8) m BT T3 8) @ P R@ P C/R+#0.
On the other hand

(13) HIT; J; )~ BIT; 75 8) ~ Hom (BT 75 8), J)~ Hom(R,J)=0.
So HYX;J; ) =0 does not always imply Hy(X;P;0)=0().

consider function spaces <X, Sm> of all ma}pp‘-
m-sphere Sy, provided
(see for instance {163,

8. In this section we .
ings f of the (metrizable) compactum X into the
with the usual topology of uniform convergence

() It can be shown that HY(X; P; ) = 0 always implies Hy(X;J; &) = 0.
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P. 171).+1<X ’ﬁ'ﬁ? is a .neighborhood retract of the real normed space
f(X ,‘E"; >y E[16] denoting the (m4-1)-dimensional Euclidean space (see
or instance , Theorem 2’, p.173). Therefore, (X i
(#00 § 1, 4) (), ) ) L y <X, 8n> is an ANR
We assume further that dimX =% < m. This & i
= . ssumption secures
the ilomlestedness of the space (X, 8> (any two mappings fe<(X, 8>
are homotopic under these conditions and thus e
e o S an be connected by
The question of unicoherence of these spaces is answered by
y kTHEOREM ; Let X be a (metrizable) compactum, AmX =k < m
<m—1, <X, 8,> is unicoherent. If bk = m—1 ) ) :
i o oo i m f m—1,<X, 8y is unicoherent

1)

i. e if and only if HYX;J; () does not admit J as a direct summand.

Proof. The present author has shown ([
16], Theorem 23, p. 238
and Lemma 9, p. 230 or [15], Theorem 5, p. 221(;) that P

Hom (B X; J; 0),J) =0,

(2) Hy((X, 8m>;J;8) =0, for O<p<m—Fk,
(3) Hy(KX, 8>3 I3 8) m HYX; ;5 C),  for p=m—k.
Specializing to p =1 we get

(4) H((X, Bu); J38) =0, for Fk<m-—1,

(8) Hy({X,8u);J; 8)~m HYX; I3 (), for k=m—1.

Theo;*em 4 now follows from Theorem 3 and Lemma 6
n the particular case when X = 8 .
=8, m= 2, we have H(S;J; () ~sJ
jgd gn;sisHﬁg}o (H‘(.Sl;h, J; 0),J)~ Hom(J, J) ~J 5 0. Thereforel,yth’e s)pace
1y Ss unicoherent. This a:
Brobln 3, p. 8T (i, nswers a problem of K. Borsuk ([2],
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Added remark. In a letter of August 12, 1057, Professor T. Ganea kindly
pointed out to the author another method of proof for theorem 4, based on his results
concerning the degree of multicoherence of a locally connected space [12], a8 well as
.on the fact that for locally simply connected spaces the group of covering maps co-
incides with the fundamental group m and fipally on the result of J. C. Moore
(Fund. Math. 43 (1956), P. 196), according to which @;(<X, §,)) ~ H (X, 8,) for
0 i< m—Fk. It follows in addition that the degree of multicoherence of (X, §,> can
be only 0 or 1, so that theorem 4 actually determines also the degree of multicoherence

of <X, 8,
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