A note on Kosiński's r-spaces *

by

M. L. Curtis (Athens, Georgia)

Following Kosiński [1] we call a point x in a space X an r-point if x has arbitrarily-small neighborhoods U such that for each $y \in U$ there is a deformation retraction of $\overline{U}-y$ onto $\overline{U}-U$. A space X is an r-space if it is finite dimensional, compact metric and each point is an r-point. Problem 7 of [1] asks if (a,b) being an r-point of $A \times B$ implies that a and b are r-points of A and B respectively. We answer this question in the negative by giving a 4-dimensional finite polyhedron P^4 which is not an r-space but is such that its Cartesian product $P^4 \times S^1$ with a 1-sphere S^1 is an r-space. This example also furnishes a negative answer to Problem 6 of [1]. The polyhedron P^4 is the suspension of a Poincaré space M^3 ; i. e. M^3 is a polyhedral orientable closed 3-manifold such that $H_1(M^3, Z) = 0$ but $\pi_1(M^3) \neq 0$. It is not known if $P^4 \times S^1$ is a topological manifold.

One can readily show that P^4 has the homotopy type of the 4-sphere S^4 . This fact also follows from Lemma 9 of [1]. Let $P^4 = M^3 \lor (a \cup b)$ where a and b are points and \lor denotes the join. Clearly, $P^4 - a$ and $P^4 - b$ are contractible. Since P^4 is locally Euclidean at all other points and has the homotopy type of S^4 , it follows that $P^4 - x$ is contractible for any $x \in P^4$. It follows from Theorem 6 of [1] that P^4 is not an r-space. We will show that $P^4 \times S^1$ is an r-space. We note that $P^4 \times S^1$ is an r-space if and only if the double suspension M^5 of M^3 is an r-space. (Indeed, for any space X we may represent the suspension X' of X as $X \lor (a \cup b)$ and the double suspension X'' as $X' \lor (c \cup d)$ where a, b, c, d are points. Then any point y in $P = (a \cup b) \times S^1$ in $X' \times S^1$ and any point z in $Q = (a \cup b) \lor (c \cup d)$ in X'' have homeomorphic neighborhoods. Similarly any point y in $(X' \times S^1) - P$ and any point z in Z'' - Q have homeomorphic neighborhoods.)

Let $\widetilde{X} = X \vee p$ be the cone over X. Each point of \widetilde{X} can be represented as (x, r) with $x \in X$ and $r \in I$. The representation is unique except for p which can be written as (x, 1) for any $x \in X$.

^{*} Research supported by National Science Foundation Grant NSF-G4211.

LEMMA 1 (1). If X is contractible, then X is a deformation retract of \widetilde{X} .

Proof. Let $\varphi(x,t)$ be a contraction of X to a point x_0 . Let

$$\psiig((x,r),tig) = egin{cases} ig(arphi(x,t),rig) & ext{for} & rac{1}{2}\leqslant r\leqslant 1\,, \ ig(arphi(x,2tr),rig) & ext{for} & 0\leqslant r\leqslant rac{1}{2}\,. \end{cases}$$

Then ψ is constant on X and $\psi(\widetilde{X},1)$ is composed of a set $A\colon (\varphi(x,2r),r),$ $0\leqslant r\leqslant \frac{1}{2}$, and of a segment $B\colon (x_0,r),\,\frac{1}{2}\leqslant r\leqslant 1$. Thus if we follow ψ by the deformation which is the identity on A and deforms B to a point $(x_0,\frac{1}{2})$, the resulting deformation is still constant on X and deforms \widetilde{X} to A. Since A does not contain p it may be deformed to X by a deformation which is constant on X. This proves the lemma.

LEMMA 2. If X is completely regular at a point x_0 in X and $J = \{(x_0, t) \mid 0 < t < 1\} \subset \widetilde{X}$, then for any t_0 such that $0 < t_0 < 1$, there exists a deformation of $\widehat{X} - (x_0, t_0)$ onto $\widehat{X} - J$ which is constant on X.

Proof. Choose a neighborhood U of x_0 and a map $f: \overline{U} \to I$ such that $f(x_0) = 0$ and $f(\overline{U} - U) = 1$. For each $x \in U$ we let

$$t_x = t_0 + f(x) (1 - t_0), \quad t'_x = t_0 - f(x) t_0.$$

We deform each line segment $\langle (x,0),p\rangle$ onto itself by deforming the segment $\langle (x,0),(x,t_x')\rangle$ to (x,0), deforming the segment $\langle (x,t_x),p\rangle$ to p and deforming the open segment $\{(x,t_x'),(x,t_x)\}$ linearly onto $\{(x,0),p\}$. It is clear that this yields the desired deformation.

THEOREM 1. If X is completely regular and has the property that for every $x \in X$, the space X-x is contractible in itself to a point, then the point p in the cone $\widetilde{X} = X \vee p$ over X is an r-point of \widetilde{X} .

Proof. We shall show that for any point (x_0, t_0) with $0 < t_0 < 1$, there is a deformation retraction of $\widetilde{X} - (x_0, t_0)$ onto X. Since p has arbitrarily-small neighborhoods with closures homeomorphic with \widetilde{X} , it will follow that p is an r-point.

By Lemma 2 there is a weak deformation retraction of $\widetilde{X}-(x_0,t_0)$ to $\widetilde{X}-J$. By Lemma 1 there exists a deformation retraction of $(\widetilde{X}-x_0)\vee p$ onto $X-x_0$. The first of these deformations followed by the second gives a deformation retraction of $\widetilde{X}-(x_0,t_0)$ onto X if we simply let the deformations be constant on $(x_0,0)$. This proves the theorem.

Now P^4 fulfils the hypotheses on X in Theorem I, so we get the following result:

THEOREM 2. If P^4 is the suspension of a Poincaré space M^3 and M^5 is the suspension of P^4 , then both M^5 and $P^4 \times S^1$ are r-spaces.

Reference

[1] A. Kosiński, On manifolds and r-spaces, Fund. Math. 43 (1955), p. 111-124.

Reçu par la Rédaction le 27.7.1957

⁽¹⁾ The present form of this lemma was suggested by the referee.