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A theory of extensions of map-systems I

by
W. Slowikowski (Warszawa)

Introduction. The concept of a map-system makes it possible to
find out the common structure of a number of theories similar to Schwartz’s
theory of distributions [7], Mikusinski’s operational caleulus [5], and
Gelfand-Silov generalized functions [2].

This idea was prompted by Sikorski’s approach [9] to the theory
of distributions. Therefore the reader who is already acquainted with
Schwartz distributions and still finds it difficult to fellow our theory
closely or pick up its intuitive background is advised to look into Si-
korski’s brief paper as an example. It should be noted here that Sikorski’s
idea is in fact very similar to one due to Bochner [11.

It is the purpose of this paper to characterize some classes of ex-
tensions of linear map-systems or topological map-systems which are
similar to those of Schwartz, Mikusinski, and Gelfand-Silov respectively,
a8 well as many others important classes. The principal results of this
paper were announced in [10] and [11]

A map-system is a pair Y= (S, X) which consists of an abelian
group X and a semi-group S of homomorphisms 4 ¢S of some sub-
groups G4 C X into X. We asswme that, for each 4, Be S, (AB)z= A(Bwx)
whenever the left side exists.

If X is a linear space, we say that % = (5, X) is a linear map-system
provided all G4 are linear spaces and A4 e S are linear mappings.

The chief problem concerning map-systems is to find all the possible
extensions of an arbitrary map-system to an algebraically closed one,
i. e. such a map-system that the domains of its operators coincide with
the whole underlying space.

In general there are many different ways of extension of a given
mayp-system. If the linear space of a given linear map-system U is a topo-
logical one, we can impose on the extension some additional topo-
logical conditions, for instance we can admit only algebraically closed
extensions of 9 whose spaces are topologized so that all the extended
operators are confinuous-and so is the imbedding of U into its extension.
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Therefore the theory of extensions of map-systems can be divided into
algebraic and topological parts (cf. [12]). Consequently the paper consists
of several parts each of which gives a systematic review of possible
extensions that satisfy some additional conditions.

The notion of ideal is the principal one and is exploited throughout
the paper. In a sense it is a generalization of that used in the theory of
rings. If W = (S, X) is a map-system then an ideal I of Y is a’ certain fune-
tion J(4) that maps S into the family of subgroups of X (or linear sub-
spaces if 9 is linear). If is very natural to introduce some algebraically
closed map-systems %/J = (S, X’) named “quotient map-systems”, where
each value J(4) of an ideal for a fixed 4 can be thought of as the van-
ishing-set of composition of 4 with elements of X. The notion of ideal
of an operator-system goes back to 8. L. Sobolev [16]-{18] who had con-
sidered it in a particular case in functional analysis.

In particular if  is a so called extensor (%), the group (or the linear
space) X can be considered as a subgroup (or a linear subspace) of X',
and we may write W CU/J. This is the subject matter of the Funda-
mental Theorem stated below. Although it has many applications to
distribution-like theories in general functional analysis, the Fundamental
Theorem itself belongs, as a matter of fact, to the abstract group theory.
It describes some extensions of an abstract commutative group by a given
semigroup. The reader who is interested in the purely algebraic theory
would look rather into [14] and [15]. _

The first part of this paper deals only with the algebraic theory
of some special types of map-systems named operator-systems, i. e. map-
systems % = (S, X) with the additional condition that S is commutative
and each 4 ¢ § maps its domain G, onto the whole group X. It is very
convenient to do so, since a lot of important examples of map-systems
satisfy this special condition and a great deal of tiresome considerations
can be avoided or made more clear in this particular case.

I wish to thank doc. dr 8. ojasiewicz and dr W. Zawadowski for
their kind help and many corrections.

1. The notion of map-system [13]. DernrToN 1.1. A map-system
is an ordered pair % = (S, X) where:

2. § is a semigroup written multiplicatively with the unit element I
(the cancellation law is not assumed);

) b. X is a commutative group written additively (in what follows S
will often be denoted by I — left member of U and similarly X will
be denoted by #% — right member of A

.
H

(*} In [10] extensors were named zero-ideals.
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c. with each element A ¢S there is associated a subgroup G, of X
and with each pair A ¢S and # e X there is associated an element y = 4z
(the composition of A and ) in such a way that

1. the mapping y == 4z is a homomorphism of G, into the whole
group X,

2, for every 4, BeS

G43CGp;

and (AB)z = A (Bx) for e X.

If G4=X for each 4 ¢S then U is said to be algebraically closed;
A is said to be a linear map-system if and only if X is a linear space and
the condition x € G4 implies Az ¢ G, and 4 (Az) = A(4x) for every scalar 1;
A is said to be an operator-system [10] if and only if S is cornmutative
and all the homomorphisms 4 ¢ S map their domains G, onto X.

Let A= (S, X) and U = (8, X') be two map-systems (linear map-
systems). A pair § = (H, k) is said to be a homomorphism of U into A’
if and only if H is a homomorphism of S into S, A is a homomorphism
(linear mapping) of X into X', h(G4) C Gpy and

h(Az) = (HA)(ha) AdeSand zeGy;

B(Gap)CGy

(1.1) for

$ is called an dsomorphism if and only if H and h are one-to-one.
We say that § maps U almost onto W or that A’ is an almost image
of % if and only if:

(1.2) «. H(S)= 5",
B. for each x' e X’ there are A;;eS, and a;¢X, i=1,2,..,k,
j=1,2,..,n, such that
k3
o = D HAy(HAy ... (HAs(hay)) ...).
F=1
If A is an operator-system and A’ is algebraically closed, condition
8 can be replaced by a more simple one:

B’. for each z" e X’ there are 4 ¢S and x e X such that
o = (HA)(hz).
Clearly B’ implies B.

If §is a subsemigroup of S' and H4A = A for each 4 ¢S, then the
homomorphism § will be called a simple homomorphism and will be de-
noted by (h).

It homomorphisms § = (H, k), $, = (Hy, h,), and $, = (H,, h,) map
A, into A, A, into A, and U, into A, respectively then we write § = £,
if and only if H= HH, and h = hh,.

17*
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Let A and A’ be two map-systems (linear map-systems) where 19
is a subsemigroup of U’ and s is a subgroup (linear subspace) of 79,
9 is said to be contained in A’': A C A’ if and only if the identical imbed-
ding k of 3 into *A’ induces a simple homomorphizm (k) of A into €A
9 is said to be algebraically dense in ' if and only if (h) maps U almost
onto U,

Let A= (S, X) be an arbitrary map-system (a linear map-system)
and let S’ be a subsemigroup of S. We set

(1.3) SU = (§, X)CA

where the composition in S'U coincides with that in . Similarly, let X’
be a subgroup (a linear subspace) of X. We set

(1.3Y) AX' = (S, X')

where the composition in YX’ coincides with that in 2 and the domain
of A ¢S in YX’ consists of all » e X’ that belong to the domain of A
in % and Bz eX’ for all BeS such that A = CB, for some CeS.

Now we are able to present a certain abstract example of a linear
operator-system (cf. [8], Théordme 1). As its particular cases several
examples can be obtained which are considered later om.

Let 4 be an abstract set where 4 = s, and let (4,) denote the to-
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We denote by G,, p e N%, the set of all # e X such that
Ay (g o (@) )

exixt and are equal for each permutation (i;) of numbers

S V) 7. . .
1o1, ey 1, 2,2, 0y 2y ey ky By, B
”"1 11,.2 Il"/:

where p= (Pus Prys s P
For each xeG, we set

1.5 APy 98 AP AV | (APws) )

( ) 1 2 k

Similarly let

(1.5%) P %t Lin(Lie ... (L) o..)  for  weZ.

By virtue of (1.4), I’z ¢ G, and A”(I”») = x. Therefore the pair
(1.6) A= ({d.},2),

where {4,} denotes the semigroup of all formal operators 4%, p e N%,
with multiplication A*47 = A”%% ig an operator-system.
Basing on this cxample we obtain some more special examples.

Let E* denote the k-dimensional Euclidean space with the Cartesian
coordinate system.

A point 1° € EF is said to be a z-symemetric point of the set £ it and
only if (4, ty, -y t) € £2 implies (t, .oy fimgy A0+ (1=-2)bey Lipry oy ) €2
for each 0 KA1 and i=1,2,..,k.

Let X be an arbitrary sequentially complete linear locally convex
space and let Q2 be a subset of E"*, where 2 C IntQ, with at least one
z-symmetric point . We denote by X" the linear space of all contin-
wous X-valued functions defined on Q. Let ay(t;) be continuous real
positive valued functions such that

t@lity of linear operators 4,, » « 4, that map linear subsets G, of a given
linear space Z into Z. Further let (I,) be a family of commutative endo-
morphisms of Z satisfying the following conditions:

(14) LxeG, and 4,(Lx)=x for each 2e¢Z and ved.
If v #+" and x¢G, then L,z eG, and

A L) = Ly (Ay ).

The first condition asserts that the operator I, plays the special
role of foreing an arbitrary element of X into a domain @Q, of A4,.
) The second asserts that on the domain G,, L, iz a sort of rightside
inverse operator for 4,.
. The third ensures that no IL,. stirs too much the domains of 4,
with »" different from "',
_ If we regard 4, as differential operators, then I, correspond to asso-
ciated integral operators.
We denqte I?y N¥ the weak product of 8¢ copies of the semigroup ¥
OTfh non]-\?;gatlve mt?gers with usnal addition as the semigroup operation.
tioz: N can be .1denmfmd with the semigroup of all N-valuned func- exist and map X into X“ (3). Clearly all the operators (lja); are com-
b‘ p=(p,) defined on 4, each of which vanishes outside a finite © mutative.
su_set of 4, with t-;ue ordinary pointwise group operation. We twrite '
P = (Pyy Puyy -y Pyy) if and only if p vanishes out of (71 Vay oy 7)) C 4.

a(t) “ (ayty), aolty),y ooy Galty))

maps £ into E*. Then the linear operators

t
- l 1 .
(1.1) ('&);I' det { J al"(;) v’l'(tl, ey tf—l) T, t“ 1y vy t]‘;) dT}
i

() As regards integrals in linear spaces see [3], p. 40-45.
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We introduce operators aD, setting

(1.7 aDu %t {ai(ti) lim

ﬁ(tl, ey i,‘_l, t/,_-l— h, t{+1, seey i )
S A ot 2 B B

h—0 h

Gppvandi—poli by pinip) €2

_ Bty ooy bima,y b, Tig1y oery tk))
T

whenever the right-hand limit exists and DLelongs to X° The domain
of aD; is denoted by G;.
It is easy to check that
(1.8) (Ha)ze G; and aDi{(la)a) = x for meX®, i=1,2,.. k;
It %] and seG; then (lJa);z e G; and

aDy((Ua);z) = (la);(aDsa) .
Tl;erefore conditions (1.4) are satisfied and setting 4 = {1,2,.., 8,
Z=X", and 4;= aD; we obtain a linear operator-system
(1.9) Yoo ¥ ({aDy}, X7)

as @ particular case of example (1.6).
Let O, and Q, be two fixed subsets of E¥, ©,0 .0, and let each ©,, 9,

contain at least one z-symmetric point. Then we can introduce a simple
homomorphism (A4 of g, , onto Ag, ,

(1.99 R — vestriction of # to 2,, where e X%,

Such homomorphisms will be needed later. Let

1 %
o[ e, [
lt" a,(7) y ax(ty
3 T
We notice here that the operator-sys S
. . ystems g, and 9 ’
isomorphic. In fact, sefting - o B

H, D% D"
hoe = {ofg(t))  for  2ex*@,

(1.9

we obtain
(HoD®) (hom) = hy( DPm)

clearly if g is one-to-one (®), and 50 is h,.

(*) Example (1.9”) wi ¢ stituti ;
the ot secti;u. (1.9”) with more general substitutions than g will be considered in
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Tn what follows let X denote a linear subspace of X7 which con-

gists of all weX? such that
@by eey by 19y b1y ey b)) = 0

for each i=1,2,..,%, and each (..., ti_1y 8y Lig1y oos 8x) € 2. The
linear map-system
(1.10) Ao 2 Ap o X
is an operator-system, for (la); maps X*° into X°°. Since (I/a)™"
e X for each &reX®, we see that U}, is algebraically dense in UWgg.
Clearly the operator system (1.10) is also a parbicular case of (1.6).

We now introduce another linear subspace of X?. Let X®' consist
of all #¢X? satisfying the condition

2(8, bay oy Bp) == 0 for each (1, o, ... 8) €2,
where 0 is the first coordinate of the point t°. The linear map-system
(1.11) Wh o X Up o X™

is an operator system, for (lja); maps X*! into X™' and sinee X*° is
a linear subspace of X!, we have the inclusion

Wo,u D Woo D Uas -
The last example can also be treated as a particular case of (1.6).
Let X™ denote the greatest linear subspace YCX™ with the
following properties:
1. If reY, then for every continuous pseudonorm | | on X, and
arbitrary veal numbers #;, ¢=1,2, .., k,

dr; < oo,

4

j" |2 ()]
s aT;)

2, If »eY, then (I/a)oss2 €Y, where

|2

(l/a,)w,iy‘lé’{ {CZ/'E;)‘)(M} for y ex™.
_"°° (] (2

Setting in (1.6) Z = X% and A; = aD;, where aD; are defined
by (1.7), we obtain as a particular case of (1.6)

(1.12) Ak, 2 ({aDy), X™)
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It is obvious that

‘)’I;:k,a c QIE",u ”
Clearly 91:}% is not algebraically dense in 2 , but all the operators aD?
are one-to-one in Uz , which does not hold in g .

Similarly, we denote by ka *° the greatest linear subspace ¥ C X**
such that

1. If w Y, then for every continuous pseudonorm |-| on X and
arbitrary real numbers ¢,

tl,
f l2() dr, < oo
. afm) '

(T
2. IfxeY, then (Ja)x 2 €Y,
and again, as a particular case of (1.6) we obtain

(1127 A 2 ({aD 3, XZ).
Clearly
&;a C *ll;ila C ‘AIE,,.,E .

‘ Here is' an example of another kind. Let T* denote the space ob-
?ame(.i_by' identification of points of E* congruent modulo 1 (4). This
%dentxlﬂcat-lon leads to a continuous image of E* which is topologically
identical with the %-dimensional thorus. We denote by X o linear
space of all X-valued continuous functions on T%. Tt is clear that X7
is a linear subspace of x* , where each member of X™ is considered

Qg 1 k 3
as a filngtlon from X* with the same values at congruent points.
We introduce a linear map-system setting

(1.13) QITk,a'ire? %Ek aXTk'

Clearly it is not an operator-system.

Let Q° denote the closed cube <0,1;...;0,15C E*. The space T*
can also be treated as a continuous image of Q",,\\"here. i{he poiiést of oQF
xvihlch are congruent modulo 1 are identified. In the same way as pre-
viously we can imbed X™ into X% and then X™ is also a linear sub-
space of x%, It can easily be verified that o

- %
- ——— + — e . QITk,a B QIQ,C,“X .
%) {tys vy b)) 3= {174 s if ¢ i
it l’k_ W 5= () (mod 1) i and only if l=7; (modl) for each

PRI
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Now let us identify all the points which are on the boundary of Q".
This identification leads to a continuous image of QF, which is topo;
logically equivalent to the k-dimensional sphere S*. We degote b‘y x°
the linear space of all continuous X -valued funetions o% §°. As in the
preceding examples we can consider each member of X as a function
from x? +with the same values at all the points of the boundary of o~

But each funection from Q" with the same value on the boundary
of QF belongs to X™ and hence X% is a linear subspace of X™ while
on the other hand the last one is a linear subspace of x? Clearly x%

T

is also a linear subspace of x= , because x™ is such. Therefore a linear

map-system ean be introduced as follows

3

(1.13") Age 2 Wy X
Clearly

Wy

.S"’,u

QI VI
iy, C Lo
T lg)lﬂk’u .

The construction of (1.13) and (1.13') can be unified in the following
way. Let R and R’ be two topological spaces and let f be a continuous

" mapping of R onto R'. In what follows let X® and X® Dbe the sets of

all continuous X-valued functions on R and R’ respectively. It is easy
to see that, as in the preceding examples, X" can be considered as a lin-
ear subspace of X*. Indeed, the linear mapping

(Uz)(t) = a{f (1), weX™,

is an imbedding of X® into X® and because of this we can consider x*
as a linear subspace of X%,

If S is a semigroup of operators defined on some subspaces of X"
in such a way that the pair (S , X" is a linear map-system, then we
can set
(1.14) (S, X%) = (8, xHx¥

and this is a generalization of (1.12) and (1.13). The example (1.14) will
be needed later for it leads to some map-systems associated clogely with
variétés différentiables.

We now consider some special operator-systems contained in g,
and Q[Tk,a' Tirst we notice that the operators (l/a), are unambiguously

defined in X% for £ = (0,0, ..., 0) since it is a z- symmetric point of Q¥. Let

ot 1 (1
Peoins oy ey 1 1 (1) sty Ly o)
1 1
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and let

Ly ¥ (I Py)(la)z
where we set

2 [ AT ()
g W
and I is the identity operator.
It is easy to verify that
PyL;x) =0, PylLjz) = Li{Psx),
Piz=Pir, P{P;z)=PyPx),
(lDi(LiJU) =, a/Di(Lfy) = L,(G_D,,y)

for 2e X%, yeG; and ¢ 5 j.
Nince P;x = 0 implies Py(L;x) =0, we have

L(x¥F) C x2F
where
XOPE g X9 Pp=0for i=1,2,...,k}.
Hence
= P def 2
(1.15) Q[Qkya:e %[Qk’aXQkP

is a linear operator-system.
If 2eX%? AX™ then L,;aceX"’Jc and hence

LAXTF)CX™F, where XTPUf x@P  xT¢
Therefore
(1.16) A, B X7
is an operator-system. )

It 2eX% then y=LLy..LveX®F anad it ¥ e XPP  then
LiL,..Ly e X™F,
Thus for each zeX%

L. Liw e XTF for each @ X%

and then 97,  is algebraically dense in W o Uge, and Uy
a
An operator D\ D, ... D; is said to be a,n annulator of an element

2eX? if and only if there is a permutation (iy, 4,, ..., i) of numbers
1,2,..., % such that

-DI,(D‘L', e (D,-km) ‘..) =0.

icm
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Let X¥F C x?° denote the least linear set containing all elements
with annulator D;D, ... Dy.
For each zeX? we have

2y= (I—PY(I—Py) ... (I—PuwcX¥F

eP

and 1f 2eX™ then z, e XT P. On the other hand z—m,¢ X% and if

JceX , then also x-—.ztoeX . Therefore

X% = xPPGxPE | xPF A XD = (0)
and
X'ﬂc _ XTk,P @ XT",CP’ XT’ﬂ,P Tk,cP = {0},
where XTP e x0heP |y
The operators aD; are one-to-one in x9F , since, if aD;x = 0 then =
does not depend on the variable #; and

Pix=0 if and only f x=0.

Finally we consider a Hilbert space H. Tet By, j=1,2, ..,k be
selfadjoint operators that map G; C H onto some closed subspaoes of H
in such a way that all the operators (I -+ eiBj)~ ! where ¢= 41 and
j=1,2,..,k are commutative (%).

Since B are selfadjomt we have By(0)L Bj(G;) where B~Y0) are
closed and H= B7'(0)®B;(G;). By our assumptions the projectors P;
of H onto B( ) are (ommutatlve Further B; maps in a one-to-one
manner anH onto H, where B=(I-P)I—-Py)..(I-P)H

Therefore for IL;= B,l the conditions (1.4) are %atlsfled Hence
setting 4 =1, 2, ... k Z = H we obtain a linear operator-system

(1.17) Ay & = ! ((Bs}, H

The linear complement H, of H in H is identical with the least linear
set containing all the elements with an annulator BB, .. By, where

" ByB,... By is an annulator of ¢ H if and ouly if there is a permutation

iy, iyy oy 4 OF the numbers 1,2, ..., k such that By (B, ... (Bj) ...) exists
and is equal to zero. Indeed,

0y = (I —P)(I—Py) ... I-PrweX
and

k .
Lo — & = ZPt?/ieHu
i1

because B;(Pyy;) =0 for 4+=1,2,..,k.

(®) As regards selfadjoint operators on a Hilbert space see [6], p. 307-338,
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2, The notion of ideal of an operator-system [10]. We nov
introdnce a notion of ideal of a map-system. This notion is an important
one, very much like that used in the ring theory.

To this aim, let us consider the identity homomorphism of an al-
gebraically closed map-system U onto itself. It is not difficult to see
that the function J,

I(A) & (52 Az =0}, A,

can De treated as the ‘kernel” of this homomorphism. This suggests
that the ideal of a map-system should be a function defined on 191 with
values in the set of all subgroups (or linear subspaces) of 791. On the
other hand each value J(4) of an “ideal” for fixed A can be thought
of as the null-set of composition of 4 with elements of /3, where A/
denotes the quotient map-system. Therefore, in order to extend a given
map-system, not necessarily algebraically closed, to an algebraically
closed one, we must associate with each A «I9( a subset J(A4) of elements
of % on which A will vanish after the extension is done, i. e. we must
fix a certain ideal of 9.

At first we introduce the notion of ideal for an operator-system
and linear operator-systems only. In the general case it is much more
difficult and will be considered later (see [13], [14], and [15)).

DeriNrTiON 2.1, An ideal of an operator-system (linear operator-
system) A = (S, X) is a mapping J defined on S such that its values 3J(4)
are subgroups (linear subspaces) of X and for 4, B¢ S

(2.1) J(B)CI(4B) and  G.nI(4AB)= AT (I(B)).

For instance if J(4) = X for each 4 ¢S, then I is an ideal.

An ideal J is ealled an extensor (8) if and only if J(I) = {0}, where
{0} is the linear set containing only thé zero element of X. The ideal
J(4) such that J(4) = {0} for all 4 ¢S is also an important one and
is named null-ideal.

Clearly an operator-system 9 admits the null-ideal provided all the
operators A eI are one-to-one. Conversely, if % admits the null-ideal
then all the operators 4 190 are one-to-one.

If 3" and I are ideals, we write ¥C S’ whenever J(A)CT(A) for
every A . We say that S is contained in &'. We denote by 3™ the
minimal ideal, i. e. such an ideal which is contained in any other ideal.

Remark 2.1. It is easy to see that if ' and 5§ ave ideals, then
8o is the function J, where J(4) = J'(4) ~J'(4); the same being true
for an arbitrary family of ideals J,, we infer that there is only one min-

(*} In [10] extensors were named zero-ideals.
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al. it is not identical with null-ideal, because it may
) §

happen for an arbitrary operator-system that the latter does not exist.‘

T¢ 9 is algebraically closed, then the function
I(4) ¥ (w: Ao =0}, AW,

is the minimal ideal of 2.
Indeed, for every ideal I of A we have

F(A)DI4) for Al

TreorEM 2.1 {[10]). If $ = (H, h) is @ homomorphism of W into A’
and ' is an ideal of W, then the formula

(2.2) F(A) = {e: hreJ(HA), AeS,

defines an ideal of A denoted by 3.
Proof. Clearly J(4) are subgroups (linear subspaces) of X. Further:

G.~S(AB) =[x Gy ha eI (H(AB))
=[reGy: hue (HA)™'('(HB))}
= {2 eG4 (HA)(hz) e I'(HB)}
= {reGy: h(dx) I (HB)}
— A7 My: hy eI'(HB)} = A7(I(B)) -

Since J(4B)DJ(B), the theorem follows.
If A DA then we write

SIX(}_:et (h)—lsl

where (k) is the identical imbedding of ‘l[ into.‘JI’ and 1311011 we have
(R)'J(4) = J'(4) ~n X, and J' is an arbitrary 1(}0@1 of A'. ot

Tet 9% = (S, X) be an operator-system (a linear operator-sys ,em})(.
We say that an element 4 ¢S iy an anaulator (7) of an element w]e ¢
if an(i only if there exist elements A, Ay, oy Ape S such  that
A=A Ay Ay and A(4, .. (4;2)..) = 0. _

An element x ¢ X belongs to SM(4) it and only if there :u'e'elements
BeS, 1y, iy, .o, ¥ € X, where AB is an annulator of all @y, with

o= B(ry+ Pyt e %)

THEOREM 2.2. The function I = (IM(A)} ds the minimal ideal
of A ([11]).

() The notion of annulator corresponds to that of “rank of an element’ in [11].
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Proof. Each SM(A), where 4 ¢S, is a subgroup (2 linear subspace)
of X. In fact, let =,y ¢ 3M(A). Then there are B, C ¢ S, 1y, u,, ey Um e X
and vy, Vs, ..., ?p e X such that

=Byttt tttm), Y= C0:+0+...+0),
where AB and AC are annulators of u; and v; respectively. There are
ut, vi, 4y 0 € X with .
wy=Ouj, ;= Buj,
x=RBCu', y=BC,

where 2=1,2, ...,m, j=1,2,...,n If we get

det
Upgr =0 — (Ui s+ o+ Un)
def
Vg1 =0 — (D1 + 05+ ... +0y),
then

7 B(Cupy1)= C(Brpy1) =0,
2+y =BCU +uz+ ... i+ g+ 01 F 00+ 0 00a)

. 3 . 3 7 ? I "
where ABC is an annulator of uf, us, ..., Um, Ume1s D5, 05y ceey Vs Upyre
Hence
AL
r+yeI(4).

IfM.z'esM(A), then obviously —weI™(4) (and Az e 3¥(4)) and hence
J"(A) is a subgroup (a linear subspace) of X.
Tet e Y™ (AB) and zeG,. We have
= 0@+ o+ ... +ax),

where ABC is an annulator of z, 2, ..,a;. Let Ae= ACv and let

Tgy1=V—(Ty+ &+ ... +a%). Then A4(Cwy,)= 0 and ABC is an annul-
ator of @y, 2, ..., %, Zx.1. Since

A= (AC) (2, + 2+ ... 4+ T+ Lppq) y
we have Axe3¥(B).
Conversely, let AxeJI™(B). This means that
Ar = Cuy+uy+...+uy),
where BC is an annulator of uy, u,, ..., u;. There are riyy,2 e X with

t=Au;, Az=(A0)y, and z= C7, where i=1,2, ...,k and let

def def
To=2=Yy B =Y— (B + 2+ )
< 9 T e dp) o
We have

A(Cry) = O(Aa'k+1) =0
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and
&= C(@+ &+ ..o + T+ Trs1)
where ABC is an annulator of @ (4= 10,1,2,..,%, k-+1). Therefore
re3"(4B).
Clearly S™(4) CI™(AB) for each A, B eS. Now let J be an arbi-
trary ideal and let & e 3M(A). There are (e S and @y, &a, ..., & ¢ X with
annulator 4C such that

2= 0T+ 2+ ...+ 2x) .

It is easy to see that ayeJ(40) (i=1,2,.., k). In fact, if for in-
gtance 40 = BB, ... B, and

B, (B2 o (Bpity) ) =0,
then

By(By o (Baw) ) €31}, Balo (Buty) ) € 3(Bu)y ovy Butts € 3(ByBa v Buoa)y

and #; e 3(B; By ... By) = J(A0). Since J(AC) is a group (a linear space),
it follows that ’
oy iy .. + 2, € F(AC)
and then
@ = C(x+as+ ... +ap) e J(4) .

Hence Y CS and the theorem holds.

Now we are going to show a certain property of the minimal ideal.
Let % = (S, X) be an operator-system (a linear operator-system) and
let S, and §; be a decomposition of S into the simple product of sub-
semigroups, i. e. each element of § can be decomposed in exactly one
way into the product of elements from S, and S;.

THEOREM 2.3. If each A ¢S, is one-to-one in W, and if
(%) Co(Cyz) = O Cy), for Oy e Sy, Oy e Sy whenever the right side exists,

then
: IMA) =3M(cd) for AeS,

where IV and I are the minimal ideals of W and S, A respectively, and
cd is the component of A from 8;.

Proof. The inclusion IY(4)D IM(4) is -obvious. In fact: I¥(4)
DM(cd) D 3P (cA).

Let 2 « 3¥(4). Then @ = B(x,+ 2+ ... +a) where AB is an annul-
ator of a;, @y, ..., ;. By virtue of (x) the annulator AB admits decom-
positions

AB = 0% .. 0304 O ... Oy,
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where
0% €Sy, CijeSi, o‘;,-(...og,(oi,-...(o,iﬂmj)l..)...)=0 for j=1,2,.. k.

" Sinee CY are one-to-ome, we have
1 1
17 (... (Okﬂ.%']) ...) =0.

Tet A= 4,4,, B= B,B;, where 4,, ByeS;, and 4,, B, «S,. By
virtue of the uniqueness of decomposition, Ci; ... Ck; = 4, B,. Therefore
A,B=A,B,B, is an annulator of wy, m, ..,z and then zeJV(4)),
which completes the proof.

DerpinrTioN 2.2, U is said to be a proper operator-system if and
only if:

Whenever
AliAg,‘...Ak‘.iz A, Aij,A EIQ[

and
Ui def -Ali (A.gi (Akiiif"i) ) 3 &Iie rf

exist for 1=1,2,...,1, then & + 2+ ...+ 2= 0 implies ¥, + 9.+ ... + 9, =0
(ct. Theorem 3.2).

THEOREM 2.4. A is a proper operator-system if and owly if the wmini-
mal ideal of A is an extensor (cf. Theorem 3.1).

Proof. Let us suppose that A is proper and let y= B(z, + 2.+ ... + 1),
where B is an annulator of x,,2,,...,%. We put z, o R B8
80 that @g+ 2+ ... +2;=0. Since B is an annulator of ay,w,, ..., 2y, there
are ByeS (i=1,2,...,k, j=1,2,..,1) such that

B = By;By;... By; and  y; = By (By... (Beay)..) = 0.

Hence y = y,+¥,+...+¥, where y,= — Bz, and since A is proper,
we have y = 0.

Now conversely, let us suppose that the minimal ideal of % is & zero-
ideal. Tet Ay Ao ... dgy=4 for i =1,2,...,1 and let

Yi= Ali (Ag,' o AJ{{;J"I' )

exist., Setting y;== 4% we see that A is an annulator of r; —&; and

4 ((JCI =) A (2~ D) + .o + (f”i‘“i’l)) =0.
Hence

A(@t ot t@)=Ab+AS+ . AL =Y+ Yot Y1y

but this is exactly what we have to show, because A maps zero onto zero.

icm

The theory of extensions of map-systems I 259

Now we are going to show some ideals for a number of concrete
operator-systems. At first let us consider the linear operator-system (1.6).
We denote G0 % (z: A, = 0}.

LemMa 2.1. (Cf. [8], Proposition 2.) Each element x e Z of the rank
not greater than AP, where p = Py, Duay ooy D)y 18 0f the form

k
(2.3) =D 3 Iiay),

i=1  0<i<p, -1

where 2y € Gfi for i=1,2,.,k 0<j<p,—1 and k is an arbitrary
natural number.

Proof. If p= (0,0, ...,0) then it is all right. Let us assume that
the lemma is valid for p, + Dot + Py <0 and we will try to show
that it is also valid for Du, + Py, o+ Py =n+1. Let

(4y, (Ay @) . )= 0.

Setting y = A,inﬂr- we see that (p,,l,...,p,,in_l,p,in—l,p,in“, sy D) 18 AN
annulator of y and hence by our assumption

Ay [ Ay, - -

in mlioj if ’1:0 > 1 ]
A ; S LJ’ X, (B4 2R —3 °
¥ ’fow Lond / vy FiT + \7\19%0

=1ty =15+ 10l Ogjgpﬂ—l 0 it 'io =1 ,

where 2 ¢ Gf’. for each ¢ and j. For @i, we set xy= L, @ € G?i. Thus
0
) L’Z‘om{"j if i >1,
L"io(A”io .{6) = Z 2 th -17{7 + l<j€p”n—1
i=liensiy—Ligt Lol 07y, ~1 0 if tg=1.

But @ = :c—I,i [(Az) € @, and hence
0 0

&= Z Z LZﬂ»’n"y‘ +R,

i=Lnfy=LigtLnl 07, ~1
where
7‘ . .
L,,in.fri“,- if i >1
R =1 o<i<p,—1
Zig it d,=1,

and so the proof is completed.

From the lemma we immediately obtain

COoROLLARY 2.1. The set of all elements of the form (2.3) is the least
linear set containing all the elements of a rank not greater than AP.
Fundamenta Mathematicae, T, XLVI, 18
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And hence we have A
TagorEM 2.5. If M denotes the minimal ideal of the operator-sys-
tem (1.6), then
n N
24y A ={aq ) N Iyl wy<Gy, geNse,
B i=1 0<7'<1),.1.+q,,,5—1

b

Now we apply the result of Theorem 2.5 to an arbitrary linear oper-
ator-system Ug,qY contained in the operator-system (1.9), where Y is
a linear snbspace of X? such that (fa); Y CY for i=1,2, .., k. The
relation aD;r = 0 shows that z ¥ does not depend on variable ¢; and
e (tfaia = Waz = {Mayt)a(t)}
where @a(r) =1 and @i, = (a)y;™a;, 1. e.

i 3 2
May(t;) = JA Zt,Tl't—aJ ( J Ei(lr;)_ (tJ EJI?J dn) dr, ) dr,, .

g 1
Thus by (2.4) the minimal ideal of Np,.Y has the form
(2.5) SY HaD") = {aDq(Z Z (ﬂa,:xﬁ): 7Y does not depend
. =1 0<i<p;ta—-1
) on variable t;, g e N¥¢}.
In case ¥ = X7 we set
(2.5") N, ¥ xo.
The ideal (2.5) is an extensor. This can easily be shown by means
of the funetionals: ’
pf)((l)al(tl)x Day(ty)y «ey (l)ak(tk))
(1) @alts) .. onltic)
where |p| = p,+Ps+...+ P and & is an infinitely derivable scalar-valued
function defined on E* and such that there is a compact subset 2'C Q
outside of which &(Wa(ty), ..., Wax(ts)) vanishes. ' ‘
The proof is quite easy and is based on the following properties
of the functionals (2.6)
%(aDpy aD'e) = ‘ps(a'Dp+qy z) 5
gaD®" gy =0 for each & implies x=0.

- (D
(2.6) qlaD? x)= (-1)“"} ( o (t) di

(2.6")

We do not quote the whole proof because it will be given in a more
general case in another section.
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It is well known that in some particular cases the operators aD?
in (2.5) can be omitted, i. e. we can set ¢ = (0, ..., 0). For instance when
Y coincides with the whole space X? this follows from the result of
Konig (8) [4] and (1.9"). But in general it is not true, and this is shown
by the following example. Let, in (1.9), k=3, Q=E3, $1=0, i =1,2,3,
and all a(t;) = 1. The space Y is generated by the functions w,, @9y,
Tpmn, Where 0 <p, n <+o0, 1 <m <-+oco and

Boro(t) = LW (t) —W (1), @uolt) = W (8,) + W (ty)
where W(r) is a Weierstrass non-derivable function.
Further
Ty = Wr0 + Thro
ﬁop,m-H,n = Zamgonrm. y -7723+1,m,n = llmgmﬂ- ) mg:,m,n-l—l = lzmzonnn 3
Tpmtta = lsTpmn s Fpsrmn = L@ » Tpmntr = W pmn

where we write shortly I instead of (I/a);, as it was in (1.7).
It can easily be verified that

Bpmn = & (3"”i Dy (3 )—lg_(’"-”W(t ))
plm! ¥l 3]s

Bpmn = & (t_g"_ O (1) 4 2 -0y {t )) ’
plim! Y pl »]

8
where OW (s) = W(s) and "W (s) = [ "W (v)dr.
1}
Clearly :
J— 0,0 0 1
®o = Dyl @10 + loor0 +1,0)

where D%, = D,ua0 = 0 and hence Ly € Sf;‘,f,,,y(DlDz). But a,(t) = W(t,)+

+W(t,) cannot be obtained as the sum of elements Y1, Y2 €Y where

Dy, = Dy, = 0. Therefore in this case aD? cannot be omitted in (2.5).

The operator aD, is one-to-one in Wp, (see (1.11)), and hence in

virtue of Theorem 2.3 we obtain the minimal ideal of (1.11) in the form
E

@7 Ofepn={Y 3 o

Wi 24 € X** does not depend
1=2 0<f<<p;—1

on the variable t;}.
Clearly (2.7) is not a null-ideal but

(a0 = (o0}

(*) This was noticed by 8. Eojasiewicz.

18*
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for each non-negative integer p,. Mhis can immediately be verified by
the use of the functionals (2.6).

Thus
(2.8) DL, C St X
Indeed, setting
(2.9) g LW W, ey,

where & = 0 is a fixed element of X, we obtain

¥ e Sg’la(ap(z,l),....ﬂ)) X!),l
and since & # 0,
z* ¢ (1)3?{“({61)(2,0,...,0)) .

In the case of ‘l[‘},,a we see that all the operators aD? are one-to-one, and
hence the minimal ideal of Ql?m is the null-ideal. Since

2t e (1)Sgla ( aD(o,z,n,...,o)) Xn,o ,
it follows that

(2.10) O, C UG X

where O3, is the minimal ideal of Wpar -
We note that in the case of the operator-systems given by (1.12)
and (1.12°), where
m;‘,a c QI;;’,; C %Ek,a )
we have

(2.11) A

EF,c0
E¥,q .

) M %, I

S =S X = Jge X,

Here “35  denotes the minimal ideal of A, whieh, in this case,

is the null-ideal. Similarly **J) is the minimal ideal of ‘2[:;2 It is
not the null-ideal.

3. The Fundamental Theorem. In this section we are going to
prove a theorem similar to that concerning division of a ring by an ideal
in the theory of commutative rings. This theorem, named the Funda-
mental Theorem, is divided into two parts. The first part concerns the
construction of a quotient operator-system /I and its connexion with
the operator-system . The second part gives the necessary and suffi-
cient conditions of reducing given homomorphism § of %A’ into A" to
a homomorphism $* of 9/’ into A’/ where I and I are ideals
of A" and A’ respectively. Although the Fundamental Theorem will be
proved later for arbitrary map-systems, we will show it now only for
operator-systems; it is much more simple in this case. The reader is
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advised to follow the theorem very closely for it will be needed troughout
the whole theory of map-systems and will be used later in the topological
part of the theory as well. We should also note, that Theorems 1 and 2
of [8] are among most important particular cases of the Fundamental
Theorem.

FUNDAMENTAL THEOREM [10]. To every operator-system (linear operator
system) U= (S, X) and cvery ideal I of W there corespond an algebraically
closed operator-system (linear operator-system )} I == (8, X*) named o quo-
tient operator-system and a simple homomorphism (k) of U almost onto A3
named o natural homomorphism such thai

i) I= (h)"IS*M where M iz the minimal ideal of AT,

(ii) Let U and W' be two operator-syscems (linear operator-sysiems),
let ' and I be two tdeals of W and W' respectively, let AT’ and W”'[J"
denote the quotient operator-systems (linear operator-sysiems) and (h'), (R”)
the corresponding natural homomorphisms.

If $= (H, k) is a homomorphism of ' into W', then there is a homo-
morphism §* = (H, b*) of W/[I’ into N"'|I" such that

(%) HHR) = (A" D
if and only if
(%) ICHIT.

The homomorphism $* is uniquely determined by £, ('), and (h").
The homomorphism $* is simple if and only if $ is simple; B* is an iso-
morphism if and only if
(%) H$IF =
If $ maps almost onto W', then H* maps onto ' [J".

The second part of the Fundamental Theorem can easily be repre-
sented by the following commutative diagram:

a5

oy | NS
QII/SI.E)Q[II/SII
where $* exists if and only if F'C$H™ I
Remark 3.1. If 9 is algebraically closed and S™ is the minimal

ideal of 2, then the natural homomorphism maps isomorphically /T
onto 9A.

In fact, by virtue of condition (i) we have

M = (b)),
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where ™ is the minimal ideal of %/3J™. On the other hand we have This situation can be illustrated by the following commutative diagram
SM(A)———{merQI: Az =0}, a€
* 0 f
IMAY = {TerW[I: A% =0}. ) N
(3 (h.) "
Hence {#: hz =0} = {v: ha e M(I)} = ((h)‘ls‘M) (H=3"MI) = {0}, and N A",
thus h is one-to-one. 1
where h*h’ = h'", B "R = h'. .
Any two pairs, no matter in what way they are given, are considered
to be identical if and only if they are equivalent, in the sense just defined.
Now that this convention is made, each pair %, (k) is uniquely determined

CoRrOLLARY 3.1. Let U be an operator-system (a linear operator-system)
and 3 an ideal of . Let U* be an algebraically closed operator-system (a lin-
ear operator-system) and let § be a homomorphism of U almost onto A+

such that - o
“ 5-13* ¥ by the kernel of the homomorphism (h), (h)"'3™, where 3™ i the minimal
) ideal of 91. This is a simple consequence of Corollary 3.1.
where "M is the minimal ideal of A*. COROLLARY 3.2. If A’ and W' are arbitrary operator-systems (linear
Then there is the uniquely determined homomorphism %* of A[I onto A* operator-systems) and $ is a homomorphism of ' into A", then there is
such that . , a homomorphism $* of WS into A[I" such that
' W) =9,
where (h') is the natural homomorphism of X into A/I; h* is an isomorphism H*p) = (K)H
if and only if ) .
M = 3. where (k') and (B'') are the natural homomorphisms of W' almost onto W |J !

and A" almost onto W' [F™.

Proof. This corollary also follows directly from the second part of
the Fundamental Theorem.

DeFiNitioN 3.1, U/ is named an estension of U if and only if the

natural homomorphism (k) of % into A[T is an isomorphism. We often
identify hx and x considering ACU/J.

Proof of Corollary 3.1. If we set A = A, W' = A*, the existence
of h* follows from the second part of the Fundamental Theorem.

Remark 3.2. This is a generalization of the first isomorphism theo-
rem for groups. Namely, let %, A* be such operator-systems that I = I1A*
congists only of one element, the identity. In this case Corollary 3.1 states
that if X* = r%* is a homomorphic image of X = %, then the groups

X/R7Y(0) and X* are isomorphic. Hence, in the general case, if A* is TaEorEM 3.1. /T is an ewtension of W if and only if F is an extensor.
a .homomorphic almost image of A (k): QI"]m‘ft,"““m*, and if 3™ is the Proof. According to the first pant of the Fundamental Theorem,
minimal ideal of %, then it is natural to call the ideal (k)Y the kernel hz = 0 is equivalent to ¢ J(I); the rest is evident.

of the homomorphism (k).

Thus, the following formula holds (up to an isomorphism) THEOREM 3.2. An operator-system (a linear operator-system J A ad-

mits an extension to algebraically closed operator-system (linear operator-

A/(R)TISM =+, . system) if and only if A 4s proper.
where kb is assumed to be a simple homomorphism of % almost onto %*. Proof. If % is proper, then in virtue of Theorem 2.4 the minimal
Let %, be a fixed operator-system. We consider the pairs (¥, (b)) ideal of % is an extensor and then 2/I™ is an extension of % to an alge-
that consist of an algebraically closed operator-system % and a simple braically closed operator-system (linear operator-system).
homomorphism (k) of %%, almost onto 9. We say that two such pairs Conversely, if % admits an extension to an algebraically closed oper-
are equivalent, ', (k)~%", (k’), it and only if there is a simple isomor- ator-system (linear operator-system) the condition stated in Defini-
phism (h*) of A’ onto A’ such that tion 2.2 holds in the extension of % and hence also in .

The connexion of the Fundamental Theorem with the theory of

ij. LA—— rr ~
) h*h' = h'" . commutative rings shows the following two examples: Let R be an ar-
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bitrary commutative ring and let S be a multiplicative semigroup of
elements of R which have inverses in R. We set

o (S, R)

where the composition of @ ¢S and b ¢ R is the usual multiplication.
It is easy to see that if I is an ideal of R, then 3, where J(a)=1
for every aeS, is an ideal of U and we have

WS = (S, RII).

If, as above, R is a commutative ring and 8 is a multiplicative
semigroup which consists of elements of R which are not divisors of zero,
then we can set

A (5, R)

where the compositional product of a ¢S’ and b ¢ R is b/a whenever it
exists. It is easy to see that the funetion J'(a) = {0} for a ¢ §' is an ideal
of Y. The operator-system

A = (S, R*)

consists of the same semigroup S’ and the additive group R* which is
the least extension of the additive group of the ring R containing all
the inverses of the elements of S’. It is well known that R* is also a ring
with the multiplication extended from R.

Now we give some applications of the Fundamental Theorem to the
linear operator-systems (1.9), (1.10), (1.11), (1.12), (1.12'), (1.15), and
(1.16) and their ideals (2.5"), (2.7), (2.8), (2.10). We have

Uga D e D pyo

and we see that U, s algebraically dense in' Uy, and so is AP g in Wpq.
Hence in virtue of the Fundamental Theorem we obtain

(3.1) Uo,a/ Voo = Moo/ Faia X = Up,of 3 X",
(3.2) Wiy o/ O30 = Uy o/ "o XM

If we denote by (h{), (h%), and (h}) the extended identical imbeddings
of Abe almost onto Ag,, D, almost onto Ab,, and AL, almost onto
Ag,. respectively, then (h¥) = (Af)(h}) and we have the commutative
diagram

(n
3.3 2.0l "0l ’)919,,/(‘)39,“
(3.3) ("s)\ ¥ (%)
' QI!).a/nga

where all the mappings are onto.
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Clearly each h identifies some points for

- O, C X, O, COSHX
and then )
O, CSELXM (see (2.8), (2.10))

In the case of operator-systems (1.12) and (1.12'), in virtue of (2.11)
and the second part the Fundamental Theorem

(3.4) W /S C Uit/ S, C W [T,

Now we consider the linear operator-systems QIZ;;'“ (see (1.18)) and
*lll;k’a (see (1.16)). Since operators aD; are one-to-one in these operator-
systems, the minimal ideals are null-ideals. Clearly the ideal Séﬁ,aXQ]"P
is not minimal in ‘l[gka. Indeed, the function

=T —P){I—Py) .. I—Pr)o*,
where o* is defined in (2.9), belongs to % [(aD®o ¥ and does

%, p

not vanish identically. Similarly the ideal Sei'uX is not minimal,

because
LL, ... Lot ¢S (aD®0) X™F,

and does not vanish identically.
Now let us examine the case of inclusion

Wrs , C W, C Ue,

where SM g 0 X TP s the null-ideal (®). Then, in virtue of the Fundamental
Theorem, the extension of identical imbedding of A , into ‘IIEk is one-
to-one. Therefore, there is an intrinsic extension of Ak /PSTku
‘lIEk’a/Sglk’a and we can set

(3.5) ext QITk,a 4t algebraic closure of Mmk,a in QIEk’a/Sf;,’a.

Since gk, X TP is the null-ideal, extyy, is the minimal extension
of the hnear space of periodic functions to that of distributions.

Now we must establish correspondence between the classical theories
and our results. At first we translate the distribution theory into the
operator-system language.

(*) On the basis of the result of Konig [4] . Lojasiewicz proved that this is also
true in the general case.
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Let D, be the space of %-dimensional distributions of finite order,
From Schwartz’ point of view D consists of all the functionals

Tpal8) = (—1)? [ (D7 &) (x)2(v) v,

D= (P1; Pay -y Pi)s |p|= Pyt Pet ... +Drs

where £ runs over the space of infinitely derivable functions with com-
pact carriers. The operation

(*) DTyn = Tpiqn

leads to an algebraically closed linear operator-system D, that consists
of the semigroup {D;} of differential operators D” and the linear space of
distributions D; with composition given by (x). Let X be the complex

plane and let @ t) be the functions of real argument which are equal
to 1 identically, a{t)=1 for all ¢ and 7 <k. Let as in (1.9)

U EU = (D, X7).

The transformation h(D"z)= T,,, where D”mer(QIEkISﬁ), induces
a simple homomorphism of ‘)IE,,/sz‘fc onto Dy. By virtue of a result of
Kénig [4] the kernel of (k) is the minimal-ideal of QIEk/Sﬁ and thus (k)
is an isomorphism. Therefore we can identify %[Ek/i‘fﬁ with Dy and we

shall name each of the operator-systems QIQ,aISffa, where X is an ar-
bitrary linear space, a distributional operator-system.

Asg the next step we show that, if X is the complex plane, then for
a(t)=1 and k=1, r(Ag/"I%) (we omit the index a, see (1.12)) has
a non-void common part with the field of operators of Mikusirski [5].
This common part consists of all the operators of the form a/h,I"*, where
a is an arbitrary complex valued continuous funétion on <0, +oo),
I= {1}, i. e, | is the function which is equal to 1 identically, and

for t>=1,

1
ht=[
A1) 10 for t<i.

The quotient a/h, can be interpreted as a translation of a, i. e. the

function
bt) = { 0 for
a(t+2) for

t<—1,
t>—2.
Let D™ be the linear space that consists of all the quotients of the form b/l,

where b is a continuous function on (—oco, +oc0) with a carrier bounded
from the left.
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We denote by € the algebraically closed linear map-system that
consists of the whole field of Mikusingki’s operators considered as a linear
space C and the semigroup of all the operators of the form 1/I" ¢ C. The
usnal multiplication in C, i. e. that generated by the convolution, is taken
as the composition. :

Let

h(z/l") = D"x

be a mapping where x is a continuous function with a carrier bounded
from the left, and x/l" e D™. This mapping induces a simple isomorphism
of €D into AF/7I. Since /Iy DU/~ , Mikusinski’s operators of
the form b/I", where the carrier of b is bounded from the left, can be treated
as one-dimensional distributions with carriers bounded from the lefs.
The chief difference between the linear space of Schwartz distributions
and the field of Mikusiniski’s operators is that the operator-system de-
termined by the latter has a one-to-one composition, whereas the former
generates an operator-system with the composition which is of the many-
to-one type. Therefore, in the general case, the operator-systems ‘II%,,,/‘"’S%,;
and at;,a/msﬁkﬂ are called operational (see (3.1)-{3.4)).

The operational operator-systems Ay /“3%  and A /“Tp  are
very similar. However they are quite different in relation to QIEk’u/Sﬁ’kﬂ.
In fact, the simple homomorphism (ki) defined in (3.3) does not imbed
sl[ozk,a/(o)sf;k,a into A ma/sfk’a isomorphically, while on the other hand
%[Ek’alﬁgﬁ’u contains ‘)I;‘}c’a/wﬁzk,a as a proper subsystem. The periodic
distributions can be obtained in the way determined by (3.5) for a;(f) = 1.
The extension (3.5) is the minimal extension and, as will be shown later
on in the section on general map-systems, the operator-system yielded
by (3.5) can be obtained as a quotient map-system of ¥Urk, and its min-
imal ideal.

Now let us consider the operator-systems p,q/"J5r and gt/ I -
It can easily be seen that the elements of »(Upq/"Iha) as well as
r(‘!I”:L/“"SfZ,‘ﬂ.a) are either like Schwartz distributions or like Mikusivski’s
operators, according to the variable chosen. That is why we shall calk
them briefly the mixzed operator-systems.

Proof of the Fundamental Theorem. We notice at first that
every linear operator system can be considered as an ordinary operator-
system with an extended semigroup of operators by joining the oper-
ators of multiplication by scalars different from zero. The Fundamental
Theorem proved for such an operator-system can immediately be trans-
posed on the corresponding linear operator-system.

Hence it ig sufficient to prove the Fundamental Theorem only for
an ordinary operator-system.
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Let A = (S, X) be an operator-system and I an ideal of AU We
introduce in the set-theoretical product Sx X a relation of equivalence
as follows:

(4,2) = (B, y)

if and only if there are 4', B’ e S and u,? ¢ X such that
s=A'v, y=Bv, 0(¥A44'=BR,
u—2veJ(0).

Let (4, ) = (B:y) and (B, y) = (C, 2). Then there are 4’, B’, B”, ("¢ S
and %, v,w, seX such that

z=Aw, y=Bv, D% 44 = BB,

%w—2veJ(D)
and
y=B'w, 2=0Cs, E¥BB =0C,
w—seJ(H).
Let
=(4'Byw, y=(B"Dw,
y=(B'E)v', =z=(CD)s.
Then
ABu — u)=10, Eu' —ueJ(A)CI(D),
B'(Ev' — )= 0, Ev' —veJ(B') CI(D),
B(Dw —w)=0, cndbhence  p <I(B")CI(H),
C'(Ds — s)=10, Ds' — 53 (0') CI(E),
and further
B(u' —v)—(u—v) eI (D), D(w' =8&)~(w—s)eI(H).
Thus
. w'—v" eJ(ED), w —s' eJ(ED)
and hence

(' —8') + (' —v') e S(ED).

Since (B"D)w' = (B'E)v and B"D= B'E= BB'B”, we have
BB'B"”(w'—v") =0 and w'—v' ¢ J(BB'B"')CI(ED).
Therefore we obtain
w'—s" eIJ(ED).
Since
2= (4'E)u’ and 2= (0'D)s
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and 4(A’'B)= ((0'D)= ED, we finally have
(4,2) =(C,2).

And so the relation = is transitive. Clearly it is also reflexive and
symmetric.

Temma. 1. If (C, @) = (0, @) and (¢,y) = (C,y") then (C x4 1)
= (0, &' +9').

2. If (C,2+a) = (C,24y), then (C,2)=(0,¥).

Proof. 1. There are ¢, ¢, D", D" eS8 and w,%,v,v" X such
that

= C"u, AT Qo =00",

@ = 0", u—u' eJI(4),
y=D"v, B¥ ¢p'=0D",
y' =D"v, v—v" eJ(B).
We seb ’
@ = (BC"")w, y=(4D")s,
2 = (BC'"w', y' =(4D")s".
Then

0" (Bw—u)=0, 0"'(Bw' —u'}=0,
DII(Aqu,) — 0 , DI”(AS’ _ vl) — 0 ,
and thus

Bw —u «3(C”) CI(4),
Bw' —u' «3(0")CI(A),
As —v 3(D") CI(B),
As'—v' eI(D") CI(B),

which yields
Bw—w)—(u—u")eI(4d),
A(s — 8)—(v—v)eI(B).

Since w—u' ¢ J(4) and v—2" e J(B), it follows thab

w—w' eI(AB), s—s' eI(AB).
Hence
wts—(w +8)eI(4AB).

U EE B =AD" and B ¥ BC'"" =AD" then

oty =Bw+s),
o +y = E@w -+,
and (w+8)—(w' +s') ¢ J(4B) where AB= EC = E'C'. Hence (0, x-+y)
=(0, 2" +¥).
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2. It (0,2+2)=(C,2+y), then there are 4,BeS and w,veX
such that .
) e+z=Au, D¥ A0=BC,
24y =By, u—veJ(D).

Let Au= Du’ and Bo = Dv'. Then A(x—Cw')=0 and B(v— (') = 0,
which implies

u—-Cu' e3J(A)CI (D) and v— O eI (B)CT(D).
Hence u—v— C(u'—2') e 3(D) and since %—v e J(D), it follows that
Clw—2)eI(D) and o —v' eJ(CD).

Since z+z = Du’ and 2+ y = Dv', it follows that z—y = D (v’ —v")
and hence z—y ¢ I(C), which is equivalent to (C, 2) = (C, y). And thus
the proof of the lemma is completed.

Let X* denote the set of classes of SxX modulo =. We denote
by Az the class containing the element (A,z)eSxX. We introduce
in X* the operation of addition as follows. Let Az, Bw < X*. There are
CeS and u,veX such that Az = Cu and By = Cv. We set

Az + Ay = Clu+0).

By the first part of the lemma this definition is unambignous. Clearly
it is commutative and associative. We prove that the cancellation law
holds. Let

Az +Cz= By +C.
We choose D e S and %,v, w e X in such a way that 4z = Du, By = Dv
and Oz = Dw. Then

Clu+w) = C(v+w)

and by the second part of the lemma we obtain Ou = Cv or Az = By.

The equation A4x+%Z= By has a solution for each Az, ByeX*.
In fact, there are C¢S and u,v e X such that Az = Ou and By = On.
Then Z= C(v—u). Hence X* is a group.

We introduce in /I % (S, X*) the operation of composition as
follows:

Az = (AB)x
where 4 € S and Z = Bz ¢ X* and 2 < X. This definition is unambiguous,
and
A7+ 7)) = 47,1+ A%,
(AB)%Z, = A(Bz) for A,BeS and Zy % e X* .

Hence /I is an algebraically closed operator-system.
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The natural homomorphism of % into %/J is defined as follows:
hx=1Ir for zeX.
The function 3 where S™(4) = {: A% = 0} is the minimal ideal
of /T
§7Y = {o: b eIV (A)} = {o: To e IV(A)} = {or 2 eI(W}=TJ(4).

Thus the first part of the Fundamental Theorem is proved. Non _We
are going to prove the second part. Let us assume that the condition
of the second part of the Fundamental Theorem is fulfilled, i. e. that

\'C -—1311. If
S AR @)= Bk )

for A,Bef and 2,y erW, then
(ABYh'(u—2) =0
shere 2 = Bu, y = Av, and u —v e J'(4B)C($7'I)(4AB). Hence
h(u—7) e3"(H(AB))

or

H(AB)(h“h(‘u—'D)) =0.

Thus (HA)(HB)(h"hu) = (HA) (HB)(h''hv)

and since » = Bu and y = Av,
(HA)(h"'ha) = (HB)(h"'hy) .
Then we can define A as follows:
h*z = (HA)(h"'ha) [T, where Z= A(h'2)erW'[T.

Since k' is almost onto, k* is defined on the whole »3l'/Y. Tf 2, % e 1A'/’
then there are C I and &, &, ¢ A’ such that

5= CMa) and Z=C0(h'z)
and then . )
R*(Z, + %) = (HO)(h"hay) + (HC) (R hay) = h*z, + h*2, .

Thus k* is a homomorphism. We set
o+ 2 (HY B)

where H*4 % HA for AeS'. ,
Clearly $*is simple if and only if § is simple. If 4 ¢ Z(i['/S’)_= [2i¢ (’“)
and z e r(A/Y’), then there are B ¢IW' and <7’ such that z= Bh's.

() In the sequel we will~always write 12’ instead of UA /'),
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Hence
h*(4Z) = H(AB)(h"hz) = (HA)(HB)(h''hx)

— (H*A)(HB) (h"'ha)= (H*4)(h*2) .

Therefore $* is a homomorphism of WY into WA'[I".

Clearly $* satisties condition (k). ‘ .

Conversely, let $§* be an arbitrary homomorphism of A'/J’ into
A" satisfying the condifion (xx) of the second part of the Funda-

mental Theorem. ,
Clearly H*4A = HA for each A & 0. If zeJ'(A), then A(h'z)=0.

Hence
0 = h*A(h's) = (H*4)(h*h'z) = (HA) (h*h'z) = (HA)(h''hx)
and then
hreS(HA) or  2e($7I)(4).

And thus () holds. . .
Now let $* = (H, h*) and $f = (H, ki) be homomorphisms which
both satisfy the condition (xx). Then for arbitrary e:?[’ we have
h*h'x = hth'z.
Since for each % e'/Y there are A W’ and x €7 such that
Z= A(h'z), we have
1*Z = h*A (h'z) = (HA) (h*h'z) = (HA) (Rih'z) = hiA (h'z) = hiZ.

Hence $* = H7.
If § maps almost onto, then $* maps A'/I’ onto A”'/F". In fact let

7= .A.”(h”flf”

be an arbitrary element of A'/3”. If § maps almost onto A’’, then there
are A", B’ 1 and y' 7Y’ such that 4" = HA' and

o' = (HB')(hy').
Then -
z = (HA')h"((HB')(hy") = (H(A'B)) (W"hy')
= (H(4'B")) (Wh'y'y = h*((H(4'B")) (h'y"))

and so $* is a mapping onto.

Finally, we notice that I'C $7°%” if and only if h* is one-to-one.
In fact, let Zer’/T’. Then there are A4 I’ and x e such that
z= A(h'z).
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h*z= 0 i3 equivalent to (HA)(h*h'z)=0 or (HA)(h''hz)= 0, or
ha eS(HA), or z¢($'3')(4). On the other hand
Z=0 if and only if xe3J'(4).

Therefore h*z = 0 implies Z= 0 if and only if e ($7'I")(4) implies
2 e (4) or, which is equivalent, if and only if ($7F'")(4) C I (4).
This completes the proof of the Fundamental Theorem.
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