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On a theorem of F. Riesz concerning the form
of linear functionals
by .
V. S. Varadarajan (Calcutta)

1. Let X be a loecally compact Hausdorff space and L(X) the space
of continuous functions on X with compact supports. A famous theorem
of functional analysis asserts that the only non-negative linear funection-
als on L(X) are of the form fgdu where p is a regular Borel measure
on X. This theorem was first proved when X = [0, 1] by F. Riesz and the
general case was treated by Kakutani, who used the theory of contents [6]
(also [B], p.216-247). Pettis [10] obtained the same general form by
deducing it from an extension theorem for measures. In all these cases
the measure obtained has as domain the o-ring of Borel subsets of X.
Edwards [4] extended this domain to the minimal o-field containing
all opert subsets of X and proved that regularity still persists for a wide
subfamily.

In this paper we discuss the above theorem (to which we shall refer
as the Riesz theorem in conformity with the accepted usage) from an-
other point of view. Our aim is (i) to obtain the Riesz theorem by
methods structurally more direct than the classical ones and (ii) to in-
vestigate the part played by the assumptions of local compactness
and Hausdorffness in the validity of the theorem.

As far as (i) is concerned, our method of proof can be explained
as follows. In order to integrate a function f, it is enough to know the
values of the integrating measure u on the sets of the form f*(B) where
B is an arbitrary Borel set on the reals not containing the origin. Con-
sequently if u is defined on the minimal ¢-ring containing all such sets
FXB) (with f e L(X) and B arbitrary), x can be used to integrate every
feL(X). Sx is the o-ring of Baire sets of X. Thus the natural form of
the representation theorem should involve only a meagure over Sx.
If we are given a measure over Sx, the problem of extending it regu-
laxly to the o-ring of Borel subsets of X is an entirely different question
and can indeed be solved under general conditions [9]. Another agreeable
feature of Sy is that any measure on Sx which is finite for compact sets
in Sy is regular. Thus, the natural method of proving the Riesz theorem
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:zt least in the compact case is to represent a compact Hausdorff space
In such a way as to simplify its Baire sets structurally. We l‘epresenf;
any compact Haunsdorff space as a continuous image of a cloged subslet
of a l?roduct of two point spaces ([7], p. 166). We identify the Baire setl
of this produet space (proposition 2.3) and obtain the required Ba,ir:
measure by first forming it for finite dimensional subsets and then ex
tending it by the well-known consistency theorem of Kolmogorov ([8], p. 29 !
The 1_(.)ca11y compact case is then deduced from the compact ea’nsp; ’
. (1}) i.s discussed in § 4, where it is shown that the Riesz theo.rem
i valid in general topological spaces without either of the assumptio
of lo.eal compactness and Hausdorffness. This in jtgelf may not be inuc]llls
but it does point out that the elassical restrictions are only to ensur’
(tlhat t{I(X) li)s w;dg el;ough to make the theorem interesting. An interesting
uestion about ideals of the i i
e on anout space of continuous functions on a compact
CF‘hroughout this paper, unless explicitly stated otherwise, X is 5 to
pological space. O(X) is the space of all bounded continum;s function-
on X and L(X) is the space of all continuous functions on X vanishi )
outside compact sets (functions with compact supports). L(X)C O(Xn)g
= (X} if and only if X is compact. All functions considered in thi;
paper are rea%—valued. C(X) and L(X) are vector lattices over the real
with t.he lattice operations max(f, g) and min(f, g). For fyg in C’(Xi
we write f < g to mean f(z) < g(z) for all z ¢ X. 0, when n’o confusio
ansei,f cﬁl}er}otes the function identically zero. : B
Is a vector latti i i i
o linear functional. A line(;,i, :ulilyctli];fa‘r B i e Teels i B,

al on F is called bounded if it m
bounded subsets. of B into hounded sets of reals. (A subset 4 of 1; PS
called bounded if there are elements « o

: : 1, B¢ B such that a < <8 for
:Jvli eac eA.‘) A linear functional .A on F is called NoOn-negative E A\(ug> 0
; b(r)levgl da > 0. A non.-nega,twe linear functional ig bounded. If A/is
. /111.11 St:,l ehh;l;:: (fu)nctxona/ll, there are non-negative linear functionals
s a) A=A%—A, (b)if A= A,—4, # i
linear functionals A,, 4 ’ A e nom ot
Foron 1 Ay then A, —A+ ang Ay—A~ are non-negative.

A*(z) = sup A(y),

I<y<sz

A~(z) = — inf A(y).

» o<y<z
These facts are well known an

| For any topological spac
[l = :s;l}) |f(z)|. When E— C(X
funetional on ¥ ig bounded if g
as a linear functional over th

d also easy to prove ([2), p. 245)
e' X, Q(X) is a Banach space with
) is considered as a vector lattice, a linear

nd only if it is bounded in the usual senge
e Banach space C(X) and therefore con-
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tinuous in the topology of uniform convergence. In this paper, all the
linear functionals considered will be on ¢(X) or on its subsets which
are also vector lattices. If M C C(X) is a linear manifold of ¢(X) which
is closed under the lattice operations, and A a bounded linear functional
on M, A is called o-smooth if the relations f, e M, f,(») | 0 for each v e X
(in symbols: f, § 0) imply A(f,)—0.

ProposSITION 1.1. Let X be any topological space. Then any bounded
linear functional on L(X) is o-smooth.

Proof. It is enough to prove the proposition for non-negative linear
fonetionals. Let {f,} eL(X) and f,} 0. By Dini’s theorem, f,} 0 uni-
formly. Thus if e = sup Fala), e, 0. Since fi* ¢ L(X) and since f, < &5°f",

&€
we have A(f,) gaﬁ[EA(ﬁ’z) —0 as n—>oo. This proves the result.

When X is a locally compact Hausdortf space, Sx denotes the o-ring
generated by the compact G5 of X. Sets of Sy are called the Baire sets
of X. Sx is the smallest o-ring with respect to whieh all funections of
L(X) are measurable. If X is a compact Hausdorff space, X ¢ 8x and Sx
becomes a o-field. A Baire measure is a measure x on Sy which is finite
for the compact G4-5. Any Baire measure p is regular, i. e. u(4) = sup {u(K):
KCA, K eSxand K compact} = inf{u(U): UD A, UeSx and U open}.
These facts are to be found in Halmos’ book on measure theory [5],
p. 217-247. Hereafter, this book will be referred to as H. Regarding
Baire measures, we immediately have a uniqueness proposition.

ProrosiTioN 1.2. If m, m' are two Baire measures such thai fgam
= [gdm’ for all g e L(X) where X is a locally compact Hausdorff space,
then m =m'.

Proof. It is enough to show that m = m’ on the compact Gss of X.
For, if this is shown, then the compact Gy-s forming a lattice (H, p. 25,
ex. 2) and the two measures being finite and equal on this lattice, it will
follow that they will be equal on the o-ring generated by the lattice,
i.e. on Sx (H, p. 188, ex. 3a). This will then show that m = m’.

Now it K is any compact @5, there exists a sequence {f,} in LH(X)
such that f. | yx. Then we have

m(K) = f%Kdm = lim f fndm ZEmIf"dml =fxxdm'== mE) .-

Since K is arbitrary, the result follows. :
We conclude this section with two propositions which are needed
further on.
ProPOSITION 1.3. Let X be a locally compact Hausdorff space and K
a compact subset. Suppose that f is a function defined on K, non-negative and
continuous. Then there exists an f* € L(X) such that f* >0 and f*=fon K.
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If ¢>0 s any continuous function of X such that g=>f on K, * can
be chosen to satisfy the snequality 0 <f*<g.

Proof. Let V be an open set with compact closure containing K
and let X* be the one-point compactification of X. Then K and X*-y
are disjoint closed subsets of X*. The function f, defined on K o (X*~7),
which is f on K and 0 on X*—V, is >0 and continuous; since X* ig
normal it can be extended to a non-negative continuous funetion it
on X* If f* is its restriction to X, *> 0, = f on K. Since *(z) = 0 for
v eX—V, f*eL(X). This proves the first part.

For the second part it is enough to note that min(f* g) is a funetion
of L(X) having the required properties.

ProrostTioN 1.4. Let X be a locally compact Hausdorff space and K
@ compact subset. The Baire sets of the compact Hausdorff space K are
precisely the intersections of the Baire sets of X with K.

Proof. In view of a standard result (H, p. 25) it is enough to prove
that compact G55 of K are precisely the intersections with K of the com-
pact Gss of X. Obviously if K, is a compact G, of X, K,~ K is a com-
pact G5 of K. Suppose now that K, CK is a compact @; of K. There is
then a function /> 0, defined and continucus on the set K, such that
K, = {&: f(z) = 1}. Let /*> 0 and € L(X) be some extension of f. Then
Ky = K} ~ K where K} = {z: f*(x) = 1}. Since obviously K?¥ is a compact
G5 of X, the result follows.

Remarks. 1. If K is itself a compact @ of X, it follows easily that
the Baire sets of the compact Hausdorft space K are precisely those
subsets of K which are Baire sets of X. In symbols, 8 = {4: ACK,
.A € S X}

2. In this case, Sg has a crucial “ideal” property: the relations
4 eSg, BeSx, BC A imply that B eSg.

2, In this section, we discuss the Riesz theorem when X is a com-
pact Hausdorff space. For convenience, we say- that a topological space
has property R if it is a compact Hausdorff space and every non-negative
lipear functional on ((X) has an integral representation with an inte:
grating Baire measure. It follows that if X has property R, any bounded
linear funetional on (/(X) has an integral representation with an ‘inte-
grating signed Baire measure. If @ is a signed Baire measure and A(g)
= xj gdp for ge O(X), A is a non-negative linear functional on C(X)
if and only if ¢ is & measure. This
ularity of ¢, g+ and g,

ProPOSITION 2.1. If X has
i8 a continuous image of X, then

can easily be shown by using the reg-

property R and the Housdorff space ¥
Y has property R.
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Proof. Y is certainly a compact Hausdorff space. Let { be a con-
tinuous map of X onto ¥. For any compact &; K of ¥, ¢™(K) is a com-
pact Gs of X and hence i7(Sy) C 8x. - .
For any function f on Y, f[#] is a function on X and if A is a function
on X expressed as A*{t], where h* i3 a function on ¥, A* is uniquely de-
termined by h (since ¢t maps X onto Y). b e C(X) if and only if a* e C(X).
Define I = {h: h e C(X), = h*t] for A*e C(Y)}. L is a linear manifold

. ¢{X). For a given non-negative linear functional A on C(Y) we set 4*(h)

= A(h*) for all heL. A* is a non-negative linear functional on L and is
even bounded (in the Banach space sense) since I contains constants.

By the Hahn-Banach theorem ([1], p. 27), the bounded @ew
functional A* on L can be extended as a bounded linear funetional
to O(X). Since X has property R, there is an integral representation
for this extension. We thus obtain a signed Baire measure ¢ such that
A*(h) = [ hdp for all heL. _

Since t7(8y) C Sx, t induces a signed measure ¢, on Sy with the
property that gd)=@{{ (4)} for all 4eSp. It ﬂyan follows that
A(R*) = A*h) = [ hdp = [ h*dp, for all h*e¢ C(¥). This sho?vs that -4
has an inftegral representation. Since A is non-negative, ¢; is actually
a measure. This completes the proof that Y has property R.

ProPOSITION 2.2. If X has property B and Y is a closed subspace
of X, then Y hds property R.

Proof. Y is evidently compact Hausdorff space. Let A b«_s a non-
negative linear functional on C(Y). For any fe C(X), its restriction f.y
to Y is in (Y). Define A, by setting A,(f) = A(fr) for fe O(X). 4, is
a non-negative linear functional on €(X). Since X has property R, there
is a Baire measure m such that A,(f) :f]‘dm for all fe C’(}.().

Firstly m (X —Y)= 0. For if m, (X —Y)> 0, there is a Baire subset 4
of X —Y such that m(4) > 0. Since m is regular, we can get a compact
Baire set K C A such m(XK) > 0. Let f be a continnous function on X
such that 0 <f<1, f=0 on Y and 1 on K. Then, ffdm;lildm

= m(K) >0 while
M X —T) = 0.

So Y is a thick subset of the measure space (X, 8x, m) (H, p. 75).
‘We can therefore obtain a measure m, on the class of intersections of Sx
with ¥, which is precisely Sy. We now show that for any fe 0(X),
Jfam= [ frdm,. Since for A eSx, AnY Sy and m(d) = m(4nY),
the relation [gdm = [ gpdm, is valid for all g = y, with 4 e 8x. It is
thus valid for all Sx-measurable step functions, and hence for all.l bounded
Sx-measurable functions by approximation. It is thus valid for all
g€ C(X).

A, (f) = A(fy) = 0. This contradiction shows that
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We thus have [ frdmg= [ fdm = A(f) = A(fy) for all fp. Since
X is a compact Hausdorff space, it is normal and hence any % e C(Y)
is fy for some fe C(X). This shows that A(k)= [ hdm, and completes
the proof that Y has property R.

In the next proposition we discuss the structure of Baire sets of
some gpecial types of compact Hausdorff spaces.

ProrosiTion 2.3. Let X, (ael) be compact Hausdorff spaces and

8,=8x,. Let X= [l X, and 8 be the product o- field generated by the 8,.

ael
Then X is a compact Hausdorff space and S = Sx.

Proof. X is evidently a Hausdorff space. It is compact by a famous
theorem of Tychonoff. Since § is the smallest o-field generated by finite
dimensional cylinder subsets of X with compact Gs-s as bases, SC Sy.
We complete the proof by showing that Sy C 8. It is enough to show
that every compact G5 of X isin 8. Let K be a compact @, of X. We write
K =M @&, where each G, is open in X.

Fix the integer n. For any z ¢ K, z ¢ &, and hence there is a finite
dimensional cylinder open set H, such that z ¢ H, C @,. Since the class
of open Baire subsets of any compact Hausdorff space is a base for its
topology, we can suppose that the base of the cylinder set H, is an open
Baire subset. Thus H,e 8. {Hplpex is a covering of K and since K is
compact, we can find z,,...,2; ¢ K such that K CUH,CG,. Write

Hy= ) H,,. Then H, e (since each Hy, <) and K C H, C G,.
Since K =("G, we must have K =("1H,. It then follows that

. ki
K ¢8 since H,eS for each n. This eompletgs the proof.
Now let X, (a cI) be compact Hausdorff spaces and let S,= Sx .
For any F CI we define Xp= [[ X, and Sz = Sxp. 8F is the product

a-field. generated by {S,: « eF}:dE?‘or any pair F, @ such that FCGC I,
the.re 1.s a map of Sy into Sz that takes A e Sp into the set Age Sé
which is a cylinder subset of X with base 4 in Xp. For two measures m
n respectively defined on Sy and Sy, we write m < n if m(4d) =n(4dg) f017‘
all A € 8r. Suppose now that for each finite # C I, , mp is a Baire measure
on Xp such that mp, < mp, whenever F, and ¥, are two finite sets such
that F, C ¥, C I. The Kolmogorov consistency theorem (cf. H, p. 212 for
a 1.)roof' when each X, is the unit interval [0,1]; the modjfications re-
g;me;i 1;]11 that progf to yield this more general version are easy to see)
m;ei :,sm f:: ;ﬁe; is a unique Baire measure m on X (= X;) such that

PrOPOSITION 2.4. I for each finite F C I

(= X1) has property B » Xp has property R, then X
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Proof. X is the set of all functions » on I such that »(«) ¢ X, for
each aeI. For any J CI we write as «; the restriction of 2 to J. #; is
a point of X;. For any fe C(Xz) we define f= on X by setting fr(z)
= j(zp) for each zeX. fre((X) and if Op= {fr: fe C(Xp)}, Cr I8
2 linear manifold of C(X). Let ¢ = |J Cp. C is dense in C{X) in the

F: F finite
topology of uniform convergence ([3], p. 57).

Now let A4 be a non-negative linear functional on C(X). Defining -
Ap on O(Xg) by setting Ap(f)= A(fr) for all f e C(Xf), we obtain a non-
negative linear functional Ay on C(Xg). Since F is finite, Xz has prop-
erty R and hence there is a Baire measure mp on Xp such that A#(f)
= [ fdmg for all f ¢ C(Xp). This Baire measure mg is uniquely determined
(proposition 1.2) and hence if F, CF,, mp < mp,. By the Kolmogorov
theorem, there is a unique Baire measure m on X such that mg < m for
each finite FCI. Define 4*g) = fgdm for all g e C(X).

It is easily seen that A = A* on (. Since C is dense in C(X) in the
topology of uniform convergence and since .1 and A* are continuous
in this topology, it follows that A = A* on C(X). Thiz proves that A
has the integral representation and hence that X has property R.

TeEoREM (F.Riesz). Any compact Hausdorff space has property R.

Proof. Tt is well known that any compact Hausdorff space is the
continuous image of a closed subset of a product of spaces X, (ael)
where for each a, X, is a space consisting of the two points 0 and 1 with
the discrete topology. In view of propositions 2.1-2.4, it is enough to
prove that Xz has property R for each finite F C I. This is trivial since
Xp is finite.

8. In this section we discuss the Riesz theorem in the locally com-
pact Hausdorff case. Throughout this section, K denotes (with or without
suffixes) non-empty compact G5 of X. For any K, Sg denotes the o-ring
of subsets of K which are Baire sets of X. If K, C K,, then 8z, C Sk,
and |J Sz is a ring. The o-ring generated by this ring is Sx.

K

We derive the integral representation of an arbitrary non-negative
linear functional on L(X) by first forming measures over Sx and then
extending these to Sx. We prove a preliminary proposition.

PROPOSITION 3.1. For each K let mg denote a finite measure on Sk,

" and for K, C K, let mg, = mg, on Sg;,. There exists one and only one Baire

measure m on Sx such that m = mg on Sk.
Proof. Define T =1 J Sg. Tis aring. For 4 ¢ T, define m(4)= mg(d)
B

it A eSg. Tf A is empty, m({4)= 0. If 4 is non-empty and ¢ Sx, and Sx,,
then 4 is a non-empty Baire subset of K, and K,. Consequently, K, K,
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i3 & non-empty compact G5 and A e Sg~x,. This shows that Mg, (4)
= Mg, ngy(Ad) = mg,(4) and proves that m is well defined on T1 If
A,BeT then AeSg, and BeSg, and hence 4, B, AUB all bellon
t0 8z, k,. This shows that m is additive on 7. Lastly let {4,} be a Sf
quence ‘in T such that A, @. 4; ¢Sk, and hence 4, e Sg, for w1
gproposmion 1.4 remark 2). Since mg,(4,)—~>0 and m = mg, on ;S‘/

it follows that m(4,)—0. Thus m is a measure on 7. Tt carll then ?é
uniquely extended to the o-ring generated by T, i.e. to Sy. Since
each compact G; belongs to T and since m is finite on 7, it follows that
m Is a Baire measure.

Remark. If C is a compact set there ig & compact @s K containing ¢
{H, p. 218). For any f ¢ L(X) vanishing outside C we have [ fdm = [ fedmy
K

where fx is the restriction of f to K.

Now let A be an arbitrary non-negative linear functional on L{X)
and K C X For any f> 0 defined and continuous on XK, we can find
a decreasing sequence {f,} in L(X)+ such that

. _(fl@) it zeK,
,E?of”(”)—{ 0 if g¢K.

Define /Iﬂf):ixg/l(fﬂ). Since A(f,) is decreasing, this limit surely

exists and it is perfectly straight-forward to show that this limit is in-
depen@ent of the sequence {f,}. Further, any f defined and continuous
on K Is capable of being written as f,—f, where fi,f. are >0 and
Zontf.nuous on K. D'efine? Ax(f) a8 Ag(fy) —Ag(f.). It is easy to verify that

x 18 & non-negative linear functional on (K). Let mz be the Baire

measure on Sg such that Ag(f) = 1! fdmg for all fe O(K). Our aim now

:15 13(:i sfl;;);v_ that the {mglgcx satisfy the conditions of proposition 3.1.

y definition Ax(fx) = A(f) whenever f e L(X) and vanishes outside XK.
. CI(’?P:—)SEHON 3.2.+ Let K;CK, and f,,f, be two functions such that
1 % fre O and 0 </, <f, on K,. Then Ag(f,) < Axy(f)-

Proof. Let {u,} and {vu} be two decreasing sequences in L(X)*

such that
lim. u,,(m):{fl(w) lf rek,, . i [hi®) i zeX
mee 0 it aexy; Jmee={"0 | 2¢ T,
Then

Amy(f) =lmA(un)  and  Ag(fy) = lim A(v,) .

n-+00
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If w, = MAaX (i, V), then wyeL(X)+ and {w,} is decreasing. Further
lim w0, = lim v,. Oonsequently Ag,(f,) =limA(w,). But since w,< w,
n—>00 00 N>00
for all n, A(4,) <A(wy) for all n.

This proves the result.

ProposTIION 3.3. If K, CK,, then mg, = mg, on Sg,.

Proof. It suffices (proposition 1.2) to show that for any g e C(K,)%,

f gdmg, = ’ gdmg, .
¢}

Ky
Let {g.) be a decreasing sequence in L(X)* such that

. if zeK

lim _9 (2} L 1)

Ime@)=\"0 it w¢K,.

Let ¢, be the restriction of g, to K,. Then, from proposition 3.2 we de-
duce that for all n ) &

J gdmz, < [ gndmz, <A(gn) -
K1 K

AS n—oo, the right extreme term tends to
Arylg) = f gdmzg,
B )

while the middle term tends to

[z, (lm gy dmg, = [ gdmg,
K» n—00 j:63
(monotone convergence theorem). This proves the proposition.

TaeoreM (F. Riesz). Bvery non-negativeli near functional on L(X) has
an integral representation.

Proof. Let A be a non-negative linear functional on L(X). Form
the measures {mg} and using propositions 3.1 and 3.3 we obtain the
unique Baire measure m on Sx. It is then obvious that Alfy= [ fam
for all f eL(X). This completes the proof.

‘4, The purpose of the remarks of this section is to investigate the
effect of the assumption on X in the classical form of the Riesz theorem.
The conclusion reached can be paraphrased to the effect that the theo-
rem is valid without any restriction. Thus it turns out that the restrictions
of Hausdorffness and local compactness are only to have a sufficiently
wide L(X).

Let X be a topological space. A subset L C O(X) is called an ideal
it (i) L is linear, (ii) f e I, g « C(X) and |g] <|f| imply that g e L. If L is
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an ideal and f, ¢ ¢ I, then |f|, max(f, g) and min(f, g) are all in Z. S(L) is

defined as the minimal o-ring with respect to which all functions of L

are measurable. A non-negative linear functional 4 on an ideal I, ig

called an dntegral if there is a unique measure m on & (L) sueh that

A(h) = [ hdm for all heL. For any ideal I, let NL:!Q Z(f) where
€,

Z(f)= {&: f(#) = 0}. Ny is a closed (possibly empty) subset of X. Let Ly
be those functions of C(X) which vanish outside compact subsets of
X ~Ny. Let L denote the closure of L in O/(X).

Proposirron 4.1. Let X be a compact Hausdorff space and L an
ideal of C(X). Then LyCLCL and Ly is dense in L (hence in L.

Proof. We first show that Ly C L. Let feLy. We show that felL.
We can assume f> 0. Let K be a compact subset of X —¥; such that bi
vanishes outside K. For each # ¢ K, since ¢ X —¥, L, there is a ge L+
such that g(z) >0 and hence we can find g, e I+ such that gal@) > f(a).
We can thus find an open set G, containing & such that g,(y) > f(y) for
all y €@, {6r)zcx is a covering of K from which a finite subcovering
{G;} is extracted. If h = MAX(Gy,y ..) )y then h>f on K. Since f= 0
outside K and %> 0, it follows that 0 <f<h. Since heL and [ is an
ideal, feL.

We now show that Ly iz dense in L. In fact, we prove that for any
f 2 0 vanishing on Nz, there is an increasing sequence {f,} in L} such
that f, tf uniformly. Let f>0,=0 on Ny and # be any integer. Now
define Ky = {z: f() >1/n}). K,CX—N; and K, is compact. K, being
2 compact subset of X — Ny, we can have a function g» continuous on
X—Np,=fon K,, vanishing outside a compact subset of X —X. 7 and
0 <gn<j on X~—XNp (proposition 1.3). If we define gn a8 0 on Ng,
gn €Ly and 0 < g, < /. Further, 0 < f(®) —gnlz) < 1n for all x. If we now
define f,= max(g, ..., g,), {f} is an increasing sequence in L3 inereasing
uniformly to f. This completes the proof. :

' CoRroLLARY. We have at once L= {f: fe C(X), = 0 on Ni}. Thus if
L is closed, L consists of all continuous functions vanishing on Nip.
We can now rephrase the Riesz theorem ag follows.

ProrosIIION 4.2. Let X be a com
ideal of C(X)
an integral.

pact Hausdorff space and L' an
- Then any non-negative o-smooth linear functional on I is

Proof. Let 4 be an arbitrary o-smooth non-negative linear fune-
tional on L. 4 is a non-negative linear functional on Ly and hence for
a unique Baire measure m on X—Ny, A(h)= S hdm for all helLy.
‘Sln‘ce Ly is dense in I, the minimal o-rings induced by Ly and L co-
incide and hence m is defined on § (L). We now show that A(h) = [ hdm

icm
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for all B e L. Let h e L. We can suppose that h > 0. There is then a se-

quence {fy} in L3 increasing to h. Since is o-smooth, A(f,) 4 A(h). But

Alfn) = [ fadm for all n. Hence, [ f,dm + A (k). This shows that [hdm< co

and is equal to lim [ fodm. It follows that A(h) = [ hdm and the proof
n—>od

is complete. .
We next show that the restriction of Hausdorffness is unnecessary.
PrOPOSTTION 4.3. Let X be any compact space and L an ideal of C(X).

Then every non-negative o-smooth linear functional on L is am integral.

Proof. For z,y ¢ X, we write w~y if g(2) = ¢(y), for all ge L. ~ is
an equivalence relation and let ¥ be the space of equivalence classes
furnished with the quotient topology. Let ¢ be the canonical map of X
onto Y. t is continuous and hence Y is compact.

For a function f on X which is constant over the equivalence classes
(all functions of L are of this form), there is a unique function f* on ¥
such that f = f*[t]. e C(X) i and only if f* e C(Y). Let L*= {f*: fe L}
and define A* on L* by setting A*f*) = A(f). 4A* is & ¢-smooth non-
negative linear functional on I* and L* is an ideal of C(X).

We note that Y is a Hausdorff space. If y,, 7. ¢ ¥ and ¥y, 5#9,,
t™(y,), and t'(y,) are different equivalence classes of X. Hence there
is a g ¢ I taking different values on t~'(y,) and t~*(y,) and hence g* takes
different values at y, and y,. This proves that ¥ is a Hausdorff space.

By proposition 4.2, there is a unique measure m* on S(L*) such
that A*(f*) = [ f*dm* for all f*eL*.

t maps X onto Y and it is easy to see that t—l(S (L*)) = S(L). There-
fore t and ¢~ considered as set transformations of S(IL) onto 8(L*) and
vice versa preserve countable unions and countable intersections. 'I—lilere-
fore there exists a unique measure m on §(L) such that m*(A)=m{"(4)}
for all A ¢ 8(L*). For such an m, [gdm = fg*dm* for all gL (H, p. 163).

This completes the proof.

THEOREM. Every non-negative linear functional on the space L(.X)
(of comtinuous functions vanishing outside compact subsets of a topological
space X) is an integral.

Proof. All non-negative linear functionals on L(X) are u-smoo?h.
‘We deduce the theorem from proposition 4.3. Let X* be the one-point
compactification of X. Any feL(X) can be continuously extended to
an f* on X* by prescribing for it the value 0 at co. Let I* = {f*: f e L(X)}.
I* is an ideal and S(L)= §(I*). The theorem then follows from pro-
position 4.3 since X* is compaect.

Remarks. Let X be a compact Hausdorff space and L an ideal
of ((X). An interesting question arises: when can we say that all non-
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negative linear functionals on L are o-smooth? Modifying proposition 1.1,
we can say that if feL implies f ¢ L, then L has this property. For
example (by proposition 4.1, corollary) it turns out that all closed ideals L
have this property. What is the general characterization of such ideals?
We are unable to answer this question.
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Sur les types d’ordre distincts dont les n-iémes
puissances sont équivalentes

par
F. Sunyer i Balaguer (Barcelone)

En 1951 W. Sierpinski [5] a posé la question suivante:

L’égalité ¢*= y* pour deux types d’ordre entraine-t-elle toujours
Pégalité ¢ =y ¢

A. C. Davis [1] a répondu négativement a cette question en donnant
deux types d’ordre dénombrables ¢ et p tels que ¢?=y? et p£y. Cet
exemple a été simplifié par W. Sierpitiski. Ultérieurement, dans une
Note commune, A. C. Davis et W. Sierpiniski {3] ont donné trois types
d’ordre distinets a, p et y tels que o= f2= 9% De méme, ils affirment
que pour des types d’ordre a déterminés ’équation &= o se trouve
vérifiée pour plusieurs types d’ordre £ distincts. Dans une Note posté-
rieure A. C. Davis [2] & démontré qu’il existe des types d’ordre a tels
que I'équation £"= o a exactement m solutions différentes, oim = 0,1, 2,
vey Ry, 2%, Néanmoins, en faisant usage de P’axiome du choix, on peut
démontrer que si pm== y*, alors ¢ et y sont des types d’ordre équivalents
(similaires au sens de Fraissé [4]). C’est ce que nous ferons dans eette Note.

Voici d’abord quelques explications sur la terminologie et les nota-
tions que nous utiliserons.

Un type d’ordre B sera dit inférieur ou équivalent & un type d’ordre a
si un ensemble ordonné 4 de type o admet un sous-ensemble B (éven-
tuellement = 4) de type f; on éerira f Lo ou a 3 8.

Deux types a et B seront dits éguivalents (similaires selon Fraisse)
si on simultanément « S f et § < a; on écrira dans ce cas a ~ f.

Par contre, lorsque § < a, sans que P'on ait en méme temps la rela-
tion @ < B, nous dirons que f est inférieur & o et nous écrirons < a

En premier lieu nous démontrerons le lemme suivant:

Lemme 1. 8 af S 98, une au moins des relations a Sy ou B9

est vérifide.
Démonstration. Soit 4, B, ¢ et D des ensembles ordonnés de
types a, 8, ¥ et 8 respectivement. On sait que Pensemble E des couples ba,
15%
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