A connected subset of the plane

by

M. E. Rudin (Rochester)

A subset of a topological space is said to be connected if it is not the union of two non-empty disjoint sets, neither of which contains a limit point of the other. A connected set is degenerate if it consists of a single point. The object of this paper is the construction of a connected set which has, in a certain sense, few connected subsets:

Theorem. If the continuum hypothesis is true, then there exists a non-degenerate connected subset M of the plane with the following property: if N is a non-degenerate connected subset of M, then $M - N$ is at most countable.

This disproves a conjecture made by Erdős ([1], p. 443). It might be of interest to note that the result cannot be strengthened, since every non-degenerate connected set M contains a non-degenerate connected subset N, such that $M - N$ is infinite ([1], p. 443).

We shall first construct a certain indecomposable continuum I in the plane, discuss some of its properties, and then construct M as a subset of I, by means of a transfinite induction process; M will contain at most one point on any component of I.

1. The indecomposable continuum I

1.1. A 2-cell is a homeomorphic image of a closed square in the plane. A chain I is a collection of 2-cells $L_1, ..., L_n$ such that (1) L_i intersects L_j if and only if $|i - j| \leq 1$; (2) $L_m \cap L_{m+1}$ is an arc, for $m = 1, ..., n-1$. The sets L_i will be called the links of I; L_1 and L_n are the end-links, $L_2, ..., L_{n-1}$ are middle links. The union of the links of I will be denoted by I.

1.2. Fix three points a, b, c in the plane. A chain I is of type $[a, b, c]$ if each of its end-links contains one of the points a and c in its interior and if b is in the interior of some middle link. Let (I^n_m) be a sequence of chains with the following properties:

1. I_1 is of type (a_1, b_1, c_1), I_2 is of type (b_2, c_2, a_2), I_3 is of type (c_3, a_3, b_3), I_4 is of type (a_4, b_4, c_4), and so on, permuting the letters a, b, c cyclically.

2. I^n_m lies in the interior of I^{n-1}_m.
(3) Each link of Γ_n lies in some link of Γ_{n-1}.
(4) If L is a link of Γ_{n-1} which does not contain a, b, or c, and if L_a and L_b ($i < j$) are links of Γ_n which lie in L, then either L_a lies in the interior of L for all $L_a \in \Gamma_n$ such that $i < k < j$, or one such L_a contains one of the points a, b, or c.
(5) The diameter of each link of Γ_n is less than $1/n$.

Put
$$I = \bigcap_{n=1}^{\infty} \Gamma_n.\]

1.3. It is evident that I is compact and connected (i.e., I is a continuum). To see that I is indecomposable, suppose I is the union of two continua H_1 and H_2, neither of which is equal to I. Then $I - H_1$ and $I - H_2$ are open (relative to I), and there is a chain Γ_n of type (a, b, c) which contains two links L_a and L_b such that $I \cap L_a \cap H_2 = 0$ and $I \cap L_b \cap H_1 = 0$. The connectedness of H_1 and H_2 now implies that a and c do not belong to the same set H_i. But the same argument applies to the pairs (a, b) and (b, c), and a contradiction is reached.

1.4. We now introduce some additional terminology.

(a) Let L_1, \ldots, L_n be the links of one of the above-mentioned chains Γ_n. Choose i, j such that $1 < i < j$, and such that none of the links L_m ($i \leq m \leq j$) contains a, b, or c. Let G be the interior of $L_1 \cup \cdots \cup L_j$. If $U = I - G$, we call U a section of I.

(b) Observe that for any section U of I, the closure of U is homeomorphic to the plane set E described as follows: let K be a Cantor set on the z-axis, and let E be the set of all points (x, y, z) such that $x \in K$ and $0 \leq y < 1$. The section U itself corresponds to the subset of E with $0 < y < 1$. The points of I which, under the above homeomorphism of U onto E map into points with $y = 0$, form one end of U; the points of I which correspond to the points of E with $y = 1$ form the other end of U.

(c) If U is a section, formed as above by means of the links L_1, \ldots, L_j, and if $i \leq p < q \leq j$, the section V formed by means of L_p, \ldots, L_q will be called a block of U.

(d) By a subsection of a section U we mean any section which is a subset of U. A strip of U is a subsection of U whose ends are subsets of the ends of U.

(e) A closed subset S of I is a separating set if $I-S$ is not connected. If S is a separating set, $G(S)$ is the collection of all sections U such that S does not intersect the ends of U and $U-S = A \cup B$, where $A \cap B = 0$, A and B are open (relative to I), A contains one end of U, and B contains the other end of U.

1.5. The following properties of the concepts just introduced will be needed in the sequel.

(a) If S is a separating set, then $G(S)$ is not empty.
(b) The intersection of a component C and a section U is the union of countably many of the arc segments (i.e., area minus end points) which are the components of U (compare 1.4 (b)).

Proof. Since C is dense in I ([2], p. 147), C intersects infinitely many components of U. If S is a component of U such that $S \cap C \neq \emptyset$, then there is a proper subcontinuum X of I such that $X \subseteq C$ and $X \cap S \neq \emptyset$. Since I is indecomposable and S is an arc, $X \cup S$ is also a proper subcontinuum of I. Consequently, $S \subseteq C$.

It is known ([2], p. 147) that C is the union of countably many proper subcontinua of I. Hence the proof will be complete if we show that every proper non-degenerate subcontinuum of I is an arc.

Let X be a proper non-degenerate subcontinuum of I. For each positive integer n, let $\Gamma_n(X)$ denote the subchain of Γ_n consisting of those links of Γ_n which intersect X. Let $\Gamma_n(a)$, $\Gamma_n(b)$, and $\Gamma_n(c)$ denote the links of Γ_n which contain a, b, or c, respectively.

If X contains none of the points a, b, or c, then, for some n, none of the links $\Gamma_n(a)$, $\Gamma_n(b)$, $\Gamma_n(c)$ belong to $\Gamma_n(X)$. Hence X is a subset of a section, and 1.4 (b) shows that X is an arc.

So suppose $a \in X$. For some k, the chain Γ_k is of type (a, b, c) and $\Gamma_k(X) \neq \Gamma_k$, so that $a \notin X$. Similarly, $b \notin X$. Hence there is an integer n (held fixed during the rest of this proof), such that $\Gamma_n(b) \notin \Gamma_n(X)$ and $\Gamma_n(c) \notin \Gamma_n(X)$. The following three statements are then true:

1. If $i < n$, $\Gamma_i(a)$ is an end-link of $\Gamma_i(X)$.
2. If $j > i < n$, if $Q \in \Gamma_j(X)$ and $Q \subseteq \Gamma_i(a)$, then every link of Γ_i between Q and $\Gamma_i(a)$ is a subset of $\Gamma_i(a)$.
3. If $j > i > n$, $L \in \Gamma_j(X)$, $H \in \Gamma_i(X)$, $K \in \Gamma_j(X)$, and $H \cap K \subseteq L$, then every link of $\Gamma_j(X)$ between H and K is a subset of L.

From (3) it is evident that X is an arc.

If (1) is false, then $\Gamma_i(a)$ lies between two links A and B of $\Gamma_i(X)$, and Γ_i is of type (a, b, c). One of A and B, say A, is between $\Gamma_i(a)$ and $\Gamma_i(b)$ in Γ_i. But $\Gamma_i(c)$ is of type (a, b, c) and $\Gamma_i(c) \notin \Gamma_i(a)$; by 1.2 (4) this implies that X intersects no link of Γ_i between $\Gamma_i(a)$ and $\Gamma_i(c)$, so that $X \cap A = \emptyset$, a contradiction.

Fundamenta Mathematicae. T. XLVI.
If (2) is false, 1.2 (4) implies that some link of Γ_1 between Q and $\Gamma_2(a)$ lies in either $\Gamma_1(b)$ or $\Gamma_2(c)$. Since Q and $\Gamma_2(a)$ belong to $\Gamma_2(X)$ and X is connected, this is impossible.

If (3) is false, 1.2 (4) and our choice of n imply that there is a link $Q \in \Gamma_2(X)$ between H and K, such that $Q \not\subset \Gamma_2(a)$. By (5), every link of $\Gamma_2(X)$ between Q and $\Gamma_2(a)$ lies in $\Gamma_2(a)$. Since $\Gamma_2(a)$ is an end-link of Γ_2, either H or K, say K, lies in $\Gamma_2(a)$. But $K \subset L$. Hence $L = \Gamma_2(a)$, $H \subset \Gamma_2(a)$, and by (2) every link of $\Gamma_2(X)$ between H and $\Gamma_2(a)$ lies in $\Gamma_2(a)$.

This completes the proof.

(c) If a section U belongs to some $G(S)$, then every strip of U belongs to $G(S)$, and if U is a block of a section V, then V belongs to $G(S')$, where $S' = S \cup U$.

(Since S does not intersect the ends of U, S' is closed, so that $G(S')$ is defined.)

(d) If U and V are sections, then V has disjoint strips V_1, \ldots, V_n with the following properties:

(1) $V_1 \cup \cdots \cup V_n = U \cup V$;

(2) if $1 \leq m \leq n$, if Y is a strip of V_m, if Z is a strip of U, and if every strip of Z intersects Y, then $Z \cap V_m = Z \cap Y$.

Proof. By 1.4 (a), there are chains I_1 and I_2 and sets G and H, such that G is the interior of the union of some links of I_2, H is the interior of the union of some links of I_2, and such that $U = I \cap G$, $V = I \cap H$. Let H_1, \ldots, H_n be the components of $I_2 \cap H$, and put $V_m = H_m \cap I$ ($1 \leq m \leq n$). These sets V_m have the desired properties.

Note that if $k \leq h$, then $H \cap I_k$, so that $n = 1$ and $V_1 = Y$. If $k > h$, then the sets H_m are the “straight pieces” which I_2 cuts out of H.

2. Preparatory lemmas

LEMMA 1. Let S be a separating set and let K be a countable collection of subsets of I with the following property: If $K \subset K$, then either (1) K is a component of I, or (2) every section $U \subset G(S)$ contains a section $V \subset G(S)$ such that $S \cap V \cap K = 0$.

Then S contains a point which belongs to no member of K.

Proof. Fix a section $W \subset G(S)$, and replace each component $K \subset K$ by the countable collection of arc-segments whose union is $K \cap W$. Since we will operate entirely within W, we may therefore assume without loss of generality that K is a sequence (K_n) ($n = 1, 2, \ldots$), each of whose members satisfies (2) (each arc-segment clearly satisfies (2)). Using (3), we can construct a sequence (U_n) such that $W \supset U_n \supset U_{n-1} \supset \cdots \supset U_0 \subset G(S)$, and $S \cap U_n \cap K_{n-1} = 0$. Any point of the non-empty set $S \cap \bigcap U_n$ has the desired property.

LEMMA 2. Suppose S is a separating set, K is a subset of a section V, and every strip X of V has a strip Y such that $S \cap X \cap Y = 0$. Then if $U \subset G(S)$, U contains a section $W \subset G(S)$ such that $S \cap W \cap K = 0$.

Proof. We can assume without loss of generality that $S \subset U$, and that every strip W of U intersects K, hence S. Choose strips V_1, \ldots, V_n as in 1.5 (d), and select corresponding members W_1, \ldots, W_n of $G(S)$ as follows:

Put $W_1 = U$. If W_1 has been selected, let X be a strip of V_1 such that every strip of X intersects W_1. (If no such X exists, put $W_{n+1} = W_1$.) Then there exists a strip Y of X such that $S \cap K \cap Y = 0$, and there is a strip Z of W_1, every strip of which intersects Y. Let $W_{n+1} = Z$. Then

$W_{n+1} \cap V_1 = W_{n+1} \cap Y$

and we see that $W_{n+1} \cap V_1 \cap K = 0$.

The section $W = W_{n+1}$ then has the desired property.

LEMMA 3. Hypothesis. (1) A and B are disjoint subsets of I, no component of I intersects both A and B, $A \cup B$ is at most countable, and $B - (A \cup B - c) \neq \emptyset$.

(2) If W is a section which intersects B, there is a strip X of W and a separating set S such that $S \cap X = 0$, $X \subset G(S)$, and every term of $G(S)$ intersects B.

Conclusion. There is a separating set T such that $T \cap A = 0$, and the following property holds: If S is a separating set such that $S \cap B = 0$, then every section $U \subset G(S)$ contains a section $V \subset G(S)$ such that $V \cap S \cap T = 0$.

Proof. Order the points of $A \cup B$ in a simple countable sequence. We will say a section U has property λ, if there is a separating set S such that $S \cap A = 0$, $U \subset G(S)$, and every term of $G(S)$ intersects B. Note that, if U has property λ, every strip U of U has property λ.

For each U such that $A \cap U = 0$, let $Y(U)$ denote U.

For each U having property λ such that $A \cap U \neq 0$, there is a first point p of A in U and we will associate with U a section $Y(U)$ such that (i) $Y(U)$ is a subsequence of U having property λ, (ii) $p \in \overline{Y(U)}$, (iiii) p is in the closure of the strip of U having $Y(U)$ as a block. That such a section exists can be shown from the definition of property λ as follows.

Assume that U is a section having property λ. If S is a separating set such that $U \subset G(S)$ and $S \cap A = 0$, there is a section V such that $p \in V$ if $p \in U$, $V \cap B = 0$, and $V \cap C$. So if Z is the strip of U having V as a block, one of the (at most two) blocks of Z which is maximal with respect to the property of not intersecting V, must belong to $G(S)$ and hence satisfy the conditions desired for $Y(U)$. 2
With each section \(U \) which intersects \(B_i \), associate sections \(P(U) \) and \(Q(U) \) such that \((i) \) \(P(U) \) is a strip of \(U \) having property \(\lambda \), \((ii) \) \(Q(U) \) is a subset of \(U \) containing the first point of \(B \) in \(U \), \((iii) \) the diameter of \(Q(U) \) is less than half the diameter of \(U \), \((iv) \) \(Q(U) \cap P(U) = 0 \). For each positive integer \(i \), define sections \(P_i(U) \) and \(Q_i(U) \) intersecting \(B \) as follows. Let \(P_1(U) = P(U) \) and \(Q_1(U) = Q(U) \). If \(Q_{i-1}(U) \) has been defined, then \(P_i(U) = P(Q_{i-1}(U)) \) and \(Q_i(U) = Q(Q_{i-1}(U)) \). Observe that any open set which contains the first point of \(B \) in \(U \) also contains \(P_i(U) \) for some \(i \).

Now choose a fixed section \(V \) having property \(\lambda \) and arrange the strips of \(V \) in a sequence \(V_1, V_2, \ldots \). By induction, we define for each positive integer \(n \) a collection \(F_n \) of subsectors of \(V \) with the following properties:

(a) No component of \(V \) intersects two members of \(F_n \).
(b) Every strip of \(V \) intersects some member of \(F_n \).
(c) If \(U \in F_n \), then \(U \) has property \(\lambda \).

Let \(F_0 \) consist of the single section \(V \).

Suppose \(F_{n-1} \) is defined and \(n \) is even. Let \(F_n \) be the collection of all subsectors \(W \) of \(V \) such that

(i) \(W \subset V \) or \(W \subset V - V_n \);
(ii) for some \(U \in F_{n-1} \), \(W \) is a strip of \(Y(U) \) or \(W \) is a strip of \(U \) which does not intersect \(Y(U) \);
(iii) \(W \) is maximal with respect to properties (i) and (ii).

Suppose \(F_{n-1} \) is defined and \(n \) is odd. Let \(F_n \) be the collection of all subsectors \(W \) of \(V \) such that

(i) \(W \subset V \) or \(W \subset V - V_n \);
(ii) for some \(U \in F_{n-1} \), \(W \) is a strip of \(P_i(U) \) for some \(i \), or \(W \) is a strip of \(U \) which intersect no one \(P_i(U) \).
(iii) \(W \) is maximal with respect to properties (i) and (ii).

Since \(V \) is a section, there is a chain \(I_1 \) whose links are \(L_1, \ldots, L_n \) such that \(V \) is the intersection of \(I \) with the interior of \(L_1 \cup \cdots \cup L_n \), where \(1 \leq i \leq j < n \) (compare 1.4 (a)). Let \(B_1 \) and \(B_2 \) be the intersection of \(I \) with the interiors of \(L_1 \cup \cdots \cup L_{n-1} \) and \(L_{n+1} \cup \cdots \cup L_n \), respectively. Let \(D \) be the union of \(B_1 \) and of all sections \(E \) which intersect \(R_i \) and which, for some \(n \), intersect no member of \(F_n \).

Finally, define

\[T = I \cap (D - D) \]

We will now show that \(T \) has the desired properties.
First \(D \) is open with respect to \(I \), and the fact that every strip of \(V \) intersects some member of \(F_n \) (for every \(n \)) implies that \(D \cap B_1 = 0 \), and hence \(T \) is a separating set.

Secondly, let us prove that \(T \cap A = 0 \). If \(J \) is one of the arc segments which are the components of \(V \); then, for each \(n \), either \(J \) contains a point of \(B \) or \(J \) intersects some member of \(F_n \). This follows from the following facts: (1) every strip of \(V \) intersects some member of \(F_n \), (2) \(F_1 = (V) \), (3) for \(n \) even, each term of \(F_{n-1} \) contains only a finite number of terms of \(F_n \), (4) for \(n \) odd, the terms of \(F_n \) lying in any one term \(W \) of \(F_{n-1} \) intersect every arc-segment-component of \(W \) except the one containing the first point of \(B \) in \(W \), (5) no component of \(V \) intersects two members of \(F_n \), and (6) every term of \(F_n \), for \(n > 1 \), is a subset of some term of \(F_{n-1} \).

Suppose there is a point \(p \in T \cap A \). Since no point of \(B \) is on the component containing \(p \) (since \(p \in A \)), for each \(n \) there is a term \(W_n \) of \(F_n \) such that \(p \in W_n \). Let \(p_n \) be the first point of \(A \) in \(W_n \). The definition of \(F_n \) for \(n \) even shows that \(W_n \) is either a strip of \(Y(W_{n-1}) \) or \(W_n \) is a strip of \(W_{n-1} \) which does not intersect \(Y(W_{n-1}) \). So by the definition of \(Y(U) \), \(p_{n-1} \notin W_n \) if \(n \) is even. Consequently, \(p = p_n \) for some \(n \); but then \(p \notin W_{n+1} \), and this contradiction shows that \(T \cap A = 0 \).

Thirdly, let \(S \) be a separating set such that \(S \cap B = 0 \); the proof will be completed by an appeal to Lemma 2 with \(T \) in place of \(X \). If \(X \) is a strip of \(V \), then \(X = V_n \) for some \(n \); let \(p \) be the first point of \(B \) which lies in some member \(W \) of \(F_n \) such that \(W \subset V_n \); since \(p \in S \), there is an open set \(G \) such that \(p \in G \) and \(G \cap S = 0 \). The definition of \(P_i(W) \) shows that \(P_i(W) \subset G \) for some \(i \). If \(m > n + 1 \) the definition of \(F_n \) for \(n \) odd shows that \(F_n \) contains a section \(Z \) which lies in \(P_i(W) \) and hence in \(G \). Hence \(Z \cap S = 0 \), and if \(Y \) is the strip of \(X \) which has \(Z \) as a block, \(Y \cap S = T = 0 \). This shows that the hypothesis of Lemma 2 is satisfied; consequently the conclusion of Lemma 2 holds and the proof of Lemma 3 is complete.

Lemma 4. There is a collection \(S \) of separating sets such that (1) if \(R \) is a separating set, some subset of \(R \) belongs to \(S \) and (2) if \(S \in S \), \(I \in S \) is the union of two mutually separated sets \(D \) and \(E \) such that, if \(U \) is a section and \(U \cap D = 0 \), then \(D \cap U = 0 \) and \(E \cap U = 0 \).

Proof. For each separating set \(R \), \(I \) in \(R \) is the union of two separated sets \(D \) and \(E \). Order all sections in a simple countable sequence and, for each positive integer \(n \), define mutually separated sets \(D_n \) and \(E_n \) as follows. Let \(D_0 = D' \) and \(E_0 = E' \). If \(D_{n-1} \) and \(E_{n-1} \) are defined, consider the \(n \)-th section \(U \). If \(U \cap D_{n-1} = 0 \), let \(D_n = D_{n-1} \) and \(E_n = E_{n-1} \cap U \). If \(U \cap D_{n-1} \neq 0 \) but \(U \cap E_{n-1} = 0 \), let \(D_n = D_{n-1} \cup U \) and \(E_n = E_{n-1} \). Otherwise, let \(D_n = D_{n-1} \) and \(E_n = E_{n-1} \). Then let \(D = \bigcup_{n=1}^{\infty} D_n \) and \(E = \bigcup_{n=1}^{\infty} E_n \) and \(S = I \cup (D \cup E) \). Then \(D \) and \(E \) are connected subsets of the plane.
mutually separated and S is a subset of R such that, if U is a section and $U \cap S \neq \emptyset$, then $B \cap U \neq \emptyset$ and $E \cap U \neq \emptyset$. Hence if S is the set of all \tilde{S} derived from separating sets \tilde{E} in the manner described, S has the desired properties.

3. The construction of the set M

Let B be the collection of all countable subsets of I which have at most one point on any component. Choose S as in Lemma 4. Both B and S have the power of the continuum. Hence, if the continuum hypothesis is true, there is a function f defined on the set Ω of all countable ordinals, such that $f(a) \in B \cup S$ for each $a \in \Omega$, and that every member of $B \cup S$ is $f(a)$ for some $a \in \Omega$.

For each $a \in \Omega$, we will define subsets A_a and Z_a of I (M will be the union of the sets A_a) and a collection K_a of subsets of I.

Let $A_a = 0$, let $Z_a = C(a) \cup C(b) \cup C(c)$ (compare 1.4 (ii)), and let K_a be the collection whose elements are $C(a), C(b)$, and $C(c)$.

Let $\beta \in \Omega$, and suppose that, for each $a \prec \beta$, the following induction hypotheses are satisfied:

H_1: $A_0 \cap Z_0 = 0$, $A_0 \subseteq C_0$, $Z_0 \subseteq Z_0$ if $a < \alpha$.

H_2: If $a \in A_0$, then $C(p) - (p) \subseteq Z_0$.

H_3: K_0 is at most countable.

H_4: K_0 is at most countable, and Z_0 is a subset of the union of the members of K_0.

H_5: At least one of the following three statements is true for every choice of $S \subseteq S$ and $K \subseteq K_0$:

(a) $S \cap A_0 \neq 0$.

(b) K is a component of I.

(c) Every section $U \subseteq G(S)$ contains a section $V \subseteq G(S)$ such that $S \cap V \cap K = 0$.

If β is a limit ordinal, we put

$$A_\beta = \bigcup_{a < \beta} A_a, \quad Z_\beta = \bigcup_{a < \beta} Z_a, \quad K_\beta = \bigcup_{a < \beta} K_a,$$

and the induction hypotheses clearly hold with β in place of a.

If β is not a limit ordinal, we choose a such that $\beta = a + 1$, and consider two cases.

Case 1. Suppose $f(a) = S \cap S$.

We assert that $S \cap Z_0 \neq 0$. By H_1, $A_0 \subseteq I - Z_0$, and if H_5 (a) holds, the assertion is evident. If H_5 (b) or H_5 (c) hold, then Lemma 1 shows that S contains a point which does not lie in any $K \subseteq K_0$, and our assertion follows from H_4.

Hence there is a point $p \in S - Z_0$, and we put

$$A_p = A_p \cup \{p\}, \quad Z_p = Z_p \cup \{C(p) - (p)\}, \quad K_p = K_p \cup \{C(p)\},$$

so that the induction hypotheses again hold, with β in place of a.

Case 2. Suppose $f(a) = B$.

Let $B = f(a) - Z_0$ and $A = A_a - f(a)$. We consider two situations which cover all possibilities.

Case 2 (i). Suppose $B \neq 0$, and that, if W is a section which intersects B, there is a strip X of W and a separating set S such that $X \subseteq G(S)$, $S \cap A = 0$, and every term of $G(S)$ intersects B.

In this case the hypothesis of Lemma 3 is satisfied (since $Z \cap (a \cup c) = 0$).

Choose T as in the conclusion of Lemma 3. Put

$$A_0 = A_a \cup B, \quad Z_0 = Z_a \cup \bigcup_{p \in B} \{C(p) - (p)\} \cup \{T - B\},$$

$$K_0 = K_a \cup \bigcup_{p \in B} \{C(p)\} \cup \{T\}.$$

From the properties of T the induction hypotheses may easily be proved with β in place of a.

Case 2 (ii). Suppose either:

(a) $B = 0$,

or there exists a section W such that $W \cap B = 0$ and that

(b) if X is any strip of W and S is any separating set such that $X \subseteq G(S)$ and $S \cap A = 0$, then there is a term of $G(S)$ not intersecting B.

Put $A_p = A_p$, $Z_p = Z_p \cup \{W \cap B\} - \{A_p\}$, $K_p = K_p \cup \{W \cap B\}$.

It should be noticed that, if X is a section and $X \cap B = 0$, then $X \cap B = 0$.

The induction hypotheses certainly fail if $B = 0$; so we can assume case 2 (ii) (b).

Clearly H_1 to H_4 hold with β in place of a. To prove that H_5 also holds, suppose $K = W \cap B$, $S \subseteq S$, and $S \cap A = 0$. We will prove that H_5 (c) holds. For $U \subseteq G(S)$ we can assume without loss of generality that $S \subseteq U$. Clearly H_5 (c) follows from Lemma 2 if every strip X of W has a strip Y such that $Y \cap S \cap K = 0$.

By Lemma 4, since $S \subseteq S$, $I - S$ is the union of mutually separated sets D and E such that every section intersecting S intersects both D and E. Since $X \cap S \neq 0$ and $U \subseteq S$, some subsection of $X \cap U$ intersects S; hence there is a section L such that $L \subseteq X \cap U \cap D$. Let Y be the strip of W having L as a block. Similarly $Y \cap U \cap S = 0$, and there is a section N such that $N \subseteq Y \cap U \cap E$. Let Z be the strip of W having N as a block and let Q be the minimal block of Z containing N and $Z \cap L$.
Notice that $Q \subseteq U$ since the ends of Q are in U. Since $L \subset D$, and $N \subset E$, $Q \in G(S)$ and $Z \in G(S \cap Q)$. But since Z is a strip of W and $Z \in G(S \cap Q)$ and $S \cap A = 0$, and if (ii) (b) is the case, there is a term J of $G(S \cap Q)$ such that $J \cap B = 0$ (and hence $J \cap B = 0$).

At least one of the sets which is maximal with respect to being a section contained in $J \cap B$ must belong to $G(S)$; let V be such a section. Then $V \in G(S)$, $V \subseteq Q \subseteq U$, and $V \cap E \subset V \cap B \cap J \cap B = 0$. So V has the desired properties to give us $H(S)(c)$.

Let $M = \bigcup_{a \in A} A_a$.

4. Proof that M is connected and that, if N is a non-degenerate connected subset of M, then $M \cap N$ is at most countable

To see that M is connected, we observe that M intersects every separating set. If R is a separating set, by the description of S in Lemma 4, there is an $S \in S$ such that $R \subset S$. For some $a, S = f(a)$, and, by Case 1, A_{a+1}, and hence M, contains a point of S.

From the definition of M and H_1, we see that, for $a \in Q$, $M \cap Z_a = 0$, and, by H_2, M has at most one point on any component.

Let B be a countable dense subset of the set of points of M such that $B \subset M \cap N$. If $M \cap N$ is uncountable, then $B \cap (M \cap N)$ is uncountable and if W is open with respect to I and $B \cap W \neq 0$, then $B \cap (M \cap N) \cap W$ is uncountable.

For some a, $f(a) = B$. So consider Case 2 with $\beta = \alpha + 1$. Either (i) $Z_0 \cup (T-B)$, where T is a separating set, or (ii) $Z_0 \cap (W \cap B) - A_0$, where W is open with respect to I and $W \cap B \neq 0$ (since $B \neq 0$) and A_0 is countable.

If (i), then $N \subset I-T$ and hence, since I is indecomposable, N is a subset of one component of I. But one component of I intersects M in at most one point; this contradicts the non-degeneracy of N.

If (ii), then $(B \cap W \cap (M-N)) - A_0 \neq 0$ since A_0 is countable. But then $(M-N) \cap Z_0 \neq 0$ and this impossible since $M \cap Z_0 = 0$.

References

A note on Kosiński's r-spaces

by

M. L. Curtis (Athens, Georgia)

Following Kosiński [1] we call a point x in a space X an r-point if x has arbitrarily-small neighborhoods U such that for each $y \in U$ there is a deformation retract of $U - y$ onto $U - T$. A space X is an r-space if it is finite dimensional, compact metric and each point is an r-point. Problem 7 of [1] asks if (a, b) being an r-point of $A \times B$ implies that a and b are r-points of A and B respectively. We answer this question in the negative by giving a 4-dimensional finite polyhedron P^4 which is not an r-space but is such that its Cartesian product $P^4 \times S^k$ with a 1-sphere S^k is an r-space. This example also furnishes a negative answer to Problem 6 of [1]: The polyhedron P^4 is the suspension of a Poicaré space M^4; i.e., M^4 is a polyhedral orientable closed 3-manifold such that $\pi_1(M^4, x) = 0$ but $\pi_1(M^4 \times S^k) \neq 0$. It is not known if $P^4 \times S^k$ is a topological manifold.

One can readily show that P^4 has the homotopy type of the 4-sphere S^4. This fact also follows from Lemma 9 of [1]. Let $P^4 = M^4 \cup (a \cup b)$ where a and b are points and \cup denotes the join. Clearly, $P^4 - a$ and $P^4 - b$ are contractible. Since P^4 is locally Euclidean at all other points and has the homotopy type of S^4, it follows that $P^4 - x$ is contractible for any $x \in P^4$. It follows from Theorem 6 of [1] that P^4 is not an r-space. We will show that $P^4 \times S^k$ is an r-space. We note that $P^4 \times S^k$ is an r-space if and only if the double suspension M^4 of M^4 is an r-space. (Indeed, for any space X we may represent the suspension X' of X as $X' \vee (a \cup b)$ and the double suspension X'' as $X'' \vee (a \cup d)$ where a, b, d, l are points. Then any point y in $P = (a \cup b) \cup (a \cup d)$ in X'' have homomorphic neighborhoods. Similarly any point y in $(X' \times S^k) - P$ and any point x in $X' - Q$ have homomorphic neighborhoods.)

Let $X = X' \cup P$ be the cone over X. Each point of X can be represented as (x, r) with $x \in X$ and $r \in I$. The representation is unique except for P which can be written as $(x, 1)$ for any $x \in X$.

* Research supported by National Science Foundation Grant NSF-6431.