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On successive settings of an arc on the circumference
of a circle
by

S. Swierczkowski (Warszawa)

Summary of results. Let (g, ¢) be a system of polar coordinates
on the plane and p = p, the equation of a circle ¢. We consider an ar-
bitrary natural N and such an angle v that all points p,= (g, 2y), where
xz=0,1,.., N, are different. Let us suppose that ¢ is a directed circle,
say in the counter-clock-wise sense. Thus each two points p,, p, € O define
an arc with the initial point p, and the endpoint p,. We shall denote
this (open) arc by <&, ¥>. For 1 < &, y < N let us say that p, immediately
Jollows pg if p, ¢ <z, y> for 1 <2< N. Let p, be the point which im-
mediately follows py and p,, that immediately followed by p,.

TEEOREM. The difference y—uw, where p, immediately follows p,,
takes the values ar, —ay, ay—ay (the last one only in the case N < a,+a—1).

This theorem is a conjecture of H. Steinhaus. Let us denote by (z, y)
the length of <z, y>.

CoROLLARY 1. The lengths (@, y), where p, immediately follows p,, take
the values (ap, 0), (0, a.), (ax,a,) and the last value s attained only for
N <ap+ap—1.

This corollary eagily follows from the above theorem. We shall de-
duce from it the following corollary, conjectured by J. Oderfeld:

CoROLLARY 2. If the length of € is 1, (0,1) = 2= 4(y5—1) and fn
18 the greatest Fibonacci number (1) which does not exceed N, then zm, zm—1, gm—~2
are the possible values of (v, y), where p, immediately follows ..

In the proof of our theorem we shall apply some ideas due to
P. Erdds and V. 365 Turdn, who have proved it independently. Another
proof (based on the theory of continued fractions) has been obtained
by P. Sziisz. These proofs, however, have not been published.

1. In this section we shall prove our theorem. For convenience let
us write [z, y] instead of “p, immediately follows p,” and [z, z,y] for
Dz l®, Y.

M hA=f=1and f,=F _ +f,_, for n=3,4, ...
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We denote by a,, @,, ... the finite increasing sequence of such num-
bers n <N that [0,2z,7n] holds for 0 <2< n or [0,n,2] holds for
0 < z < n. The numbers a; such that [0, 2, a;] holds for 0 <z < a; will
be said to be of the first kind, the others — of the second kind.

Lemwma. If a;, a; are of different kinds, &y < ay, ar+a; < N and no
a, < ay satisfies '

(a) [ar, ay, af] if a; is of the first kind,

(b) [, ag, a5] if a; is of the second kind,
then

Q1=+ 0.

Proof of the Lemma. Suppose that a; is of the first kind. Then
[0, a;, @; — a;] holds, which obviously implies [a&;, @;+ a;, a;]. Thus a,
< tg+a;. Suppose that ay.,< a;+ a;. Then it follows that [@r, @pp1, a0+ ]
or [+ a1, @11, 6;]. Consequently [0, @i, —ay, a¢] or [ag, @141 —ay, 0]. But
by @—a <@y G1—a;< @ both obtained relations contradict the
definition of a;, a.

If a; is of the second kind then the proof is analogous.

Proof of the Theorem. Suppose first that a; < a,. Let n =0, 1, ...,
a,—1. Then n 4 a,—a; < N but for some # < az we also have n+a, < N.
‘We now take all those n < a; for which #-+a, < N holds. (If N> a,+a;—1
then those are all n < a;.) Let us prove that for those » we have [n, n + a,].
Indeed, suppose that a certain 7 satisfies [#,1, n+a,]. If n <1 then from
{n,1) < (n, n+a,) follows (0,1—mn)<(0,a,), which is evidently a contra-
diction. Now if I < n, then (I, n.+a,) < (n, n+a,) and thus (0, n+a,—1)
< (0, &). This is also impossible.

We consider now the remaining #'s, i. e. those for which # < a;
and ¥ <7+ a, holds. We assert that they satisty [n, n + a, —a;]. Indeed,
suppose that [n,l,n+4a,—a;] for a certain 1. Tf n <1, then (n, 1)
<(n,n+a,—a) implies (0,1—n) < (0, a,—a;). Now let a, be the greatest
number of the second kind that satisfies a, < a,. a, exists since @, =1
is a number of both kinds and 4, < az < a,. From our Lemma follows
@y = Gg+ay. Thus (0,7—n) < (0, a,) which implies {—#» = a@,. This con-
tradiets n+-a->N. If 1 <n, then (I,n+a,—a) < (0, a,—ay) implies
(0yn—I+a,—az) < (0, a). It follows as previously that » —1+ a,—a;, = a,,
which contradicts n < ay.

Now let 7= ap, a;,+1,..., N. We ghall prove [n,n-—a;]. Indeed,

-suppose that [n, I, n—a;] for a certain L. Thus n < I implies (I—n+ a, 0)
<{a%,0) and ! <= implies (n—1,0) < (4, 0). These inequalities con-
tradict the definition of a.

Thus we have proved that it a; < a,, then [#, n+a,] or [, +a, —ax]

(only in the case ¥ < a,+az—1) or [nyn—az] for n < N. If a, < ax,
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then we obtain by considerations quite similar to the above that [n + ez, 2]
or [n+ox—a,, n] or [n—a,,n] for n < N. Our theorem follows.

2. In order to prove Corollary 2 let us observe the formula

fat12—fn=(=1)"2*

(which can be obtained by induction). Since now (0, z) = xz(mod1),
the above formula implies

(*)

o (fa, 0) i n is even,
(0, fn)  if nis odd,

Let us prove by induction that @, = f,+:. This equality can easily
be verified for n=1,2. We assume a,= fri1, Gn_,= fn fOr some n.
Then from (x) it follows that a,_;, a, are of different kinds. Thus our
Lemma (section 1) implies @,.,= a,+ a,_;. It remains to observe that
fore = fus1+fn-

It is evident that f, is the greater of the numbers a;, a, and the
other is fpe1. If fn= a,, then m is odd by (x) and thus (0, a,)= (0, fn) = 2™,
{05 0) = (fm1, 0) = 271, (@, @y) = 2™2% If f, = az, then m is even and
(0, 0) = (fmy0) =2, (0,8,)=(0,fn_1)=2""1, (ap,a)=2""2% I remains
to apply Corollary 1.
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