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Note on ordered groups and rings
by
L. Fuchs (Budapest)

Several criteria are known vwhich ensure the existence of a linear
order in groups and rings, in particular in abelian groups, in skewfields
and fields (1). It is also known when a partial order of a group can be
represented as conjunction of linear orders. But neither the same ques-
tion for rings has as yet been answered nor a general criterion seems
to have been stated explicitly under which a given partial order of a group
or a ring can be extended to a linear one. Of course, it is not bard to
formulate such conditions by standard methods of the theory of ordered
groups and rings. The method which we follow below — although it con-
tains no essentially new ideas — is simpler than the known ones, runs
entirely parallel in groups and rings, and has the advantage that a great
variety of previously known results may be derived from it in a quite
simple manner (%).

) § 1. Groups. Let G be a group whose operation is written as multi-
plication. A partial order > in G is a reflexive, antisymmetric and transi-
tive relation defined for certain pairs a, b of elements of & such that ¢ =5
implies cad > ¢bd for all ¢,de@. a (e G) is called positive if a > e for

the group identity e, is strictly positive if a > ¢. The set of all positive
elements of @ is an invariant semigronp P in G (l.e. ae P and beP.
imply ab ¢ P, and a € P, ge @ imply g-'ag ¢ P) which contains ¢ but no
other element along with its inverse. The set P completely determines
the partial order, for a > b if and only if ab™' e P; thus we may denote
a partial order > and the set of positive elements under > by the same
symbol P. A partial order @ is said to be an extension of Pif QD P (%)

If @, is & set of extensions of P such that their meet is P, then we call P
the conjunction of the @,. If for every a ¢ G either a or a~! belongs to P,

then P defines a linear order in @ in the sense that for any two elements

(1) See the References at the end of this note. (Numbers in brackets refer to it.)

(*) Tt is not difficult to see that our method can be applied to other algebraic
systems too,

(%) The sign 2 denotes inclusion, while 5 is used to mean proper inclusion.
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‘@,b in @ either ¢ >b or b >a holds. Finally, we introduce the notation
8(ayy ..y an) (@y, ..., ay € @) for the invariant semigroup in @ generated
by the elements ay, ..., @y, and we put 84ay, ..., ¢n) = S(ay, ..., a;) Ue.
Clearly, S'(ay, ..., an) = 8'(ay) ... 8"(ay).

Our main result is the following theorem.

TeEEOREM 1. A pariial order P of a group G can be extended to a lineqr
order of @ if and only if it has the following property:

(*) For any finite set of elements ay, ..., ay in @ (a4; % ¢), one may choose
&1y «ry & (g5=1 or —1) such that (%)

PnS(ad, ..., a0 = A .

If P can be extended to a linear order L, then choose ¢; such that
af < e in L. In this case all the elements of & (agy ..., asm) are strictly
negative in I, and therefore the meet under consideration is indeed void.

For the proof of the converse we need the important

Lemuma 1. If P has property (x), then for any a €@ one of PS'(a)
and P8'(a=) defines o partial order P’ in G, again satisfying (x).

Suppose that there are elements Qyy ey Gy Dyy oy By (5% €) such that
for every choice of signs &, 7; one has :

Pn8a,a,..,dm)# A and P~S(a70n, ..., bim) £ A L

1%

Then the meet of P and §(a’, a;*,...,af:', o, ... ,07m) is mever void,
contrary to (x). Thus either # — & or a-! (or both) must be such that
for any a,,..,a, in @ (a; % e) the meet Pnl(z, a, ..., ar) = A for
suitably chosen signs e;=+ 1. If o happens to have this property then
put P’ = P8'(a—1), while if a— hasg it, then put P’ = P§'(a), and if both
have it, put either one. For example, considering the first possibility,
it is evident that P’ is an invariant semigroup with e, which moreover
satisties (x), for if py (peP, y € §'(a~1)) belongs to S(a, ...; "), then
p e8(a, a?, ..., a’), which is impossible. Property (x) implies that P’ does
not confain any element b ¢ along with its inverse (P'ASB)= A
for e=1 or —1.)

. Resuming the proof of the theorem, let Z be a maximal element
In the set of all partial orders of @ which are extensions of P and sétisfy (%);
such an I exists, for (x) is satisfied by the union of an agcending chair.:
of .pa.rtial QIders provided it is satisfied by all members of the chain,
This L defines & linear order in @, for otherwise there would exist an

@€ @ such that &, a~1¢ I, but then b Lemma 1
tended. Q. e. d, ’ ? Yy ma 1 L could further be ex-

(‘) By the symbol A we denote the void set.
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If P consists of the group identity alone, from Theorem 1 we obtain
the well known

CoroLLARY 1. (Lorenzen [9](5).) 4 group G admits a linear order
if and only if, given ay, ..., &, in @ with a;% e, one has ¢¢ S(ad, ..., a)
for at least one choice of signs e; =4 1.

The following result has been obtained by Ohnishi [12].

COROLLARY 2. All partial orders of a group can be extended to linear
ones if and only if the group satisfies the following conditions:

(i) #f b, ceS(a) then 8(b)~ S(c) s not void;

(ii) @+ e implies e¢ S(a).

For the necessity take into account that (ii) is a special case of the
condition in Corollary 1, while if b, ¢ € S(a) but 8(b)~S(c) is void then
P = 8'(b)8’(¢1) is ap invariant semigroup containing no element other
than e together with ifs inverse, so that P defines a partial order; this
however cannot be extended to a linear one L, for b >e¢ and ¢ <e in L
and these imply a > e and a < e, respectively.

In order to establish the sufficiency, let P be any partial order and
suppose that it fails to satisfy (), i. e. that there are elements a, ..., a,
in & (a;%¢) such that P~ 8(a} ..., a") is never empty. We show
that the same holds for a,..., ,, too. For, if not, then for any fixed
&1,y En—y there are elements p,, p, e P such that p, =18, p;=1,8, with
t, e 8'(ad, ..., 1), 8 €8(an), € S8(an?). Clearly, by (ii), s; # e; further
8,8 lie in 8(a,) and therefore by (i) there is an element b common
to S(s;) and S(s3h), ’

-1 -1 -1 ~1 ~1_—1
b= 8@ a; 812 =Y1 Sz Y1.--Y1 2 41 (@i, Y;¢G).

Either ¢, ¢ or i, ¢, for otherwise we should get b ¢ P and b’ e P,
whence b = ¢ contrary to (ii). Now an easy calculation leads us to the
conclusion that

BT D1 By o B P BT DY YT Patir € Pn S (agy oy Gid) .

Consequently, we may assume » = 0, which is impossible.

CororrARY 3. (Lorenzen [8]; see also Everett [3].) All partial orders
of an abelian group can be emtended to linear orders if and only if the group
is torsion free.

Considering that ¢ ¢ S(a) if and only if @ is of infinite order when-
ever the group is commutative, the necessity is obvious. In an abelian

(°) Cf. also X.0§ [10] and Ohnishi [13]. Lorenzen’s original theorem has also a some-
what stronger form.
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group, condition (i) of Corollary 2 is satisfied, for if b,0 € 8(a) then
b=g ¢c=a" (n,m>0) and a™eS(b)~S(c). Corollary 2 completes
the proof.

CororrAry 4. (Levi [7].) An abelian group admits a linear order if
and only if it is torsion free.

This is evident in view of Corollaries 1 and 3.

CoroLLARY 5. (Lorenzen [9].) 4 partial order P of a group G is a con-
junction of linear orders if and only if P~ S (ay a3,y ..., ar) £ A for some
Uy ooy Gn€ G (a; 7€) and for all choices of signs &= -+ 1 implies a e P.

This condition is necessary, for if a ¢ P and P is a conjunction of
linear orders L,, then a ¢ L, for some », i. e. a~1 ¢ I, and so PS'(a~1) can
be extended to a linear order IL,. Lemma 1 implies that PS'(a~1)~
A 8(al, ..., a7) = A, that is to say, Pn 8{a, a7, ..., a2 = A for a suit-
able choice of the ¢;, whence the necessity follows. Tﬁe sufficiency may
be verified again by using Lemma 1: if the stated condition is fulfilled
and a ¢ P, then P8‘(a-1) possesses property (x), so that it has a linear
extension L. Now a~!eL implies a ¢ I and thus the meet of all linear
extensions of P does not contain any element that is not in P.

‘COROLLARY 6. A partial order P of an abelian group is a conjunction
of linear orders if and only if ave P for some positive integer n implies aeP.

As in the proof of Corollary 2 it follows that under (i) the condition
of Corollary 5 reduces to the condition: P~ § (a) %= A\ implies a e P.
In case when @ is abelian, this is exactly the statement.

. § 2. Rirgs. Let R be an arbitrary ring (%). A partial order > in R
Is a reflexive, antisymmetric and transitive binary relation satisfying
the condition: ¢ b implies a+c2b-+cforall ceR and ad> bd da} db
fgr al% a( ; 0) in R. The set P of all positive elements (# = 0) ié a semi-
ring (i. e. it is closed under addition and multiplication) containing 0 but
no other element along with its negative. Again, the partial order is
completely determined by P, because a4 > b if and only if a—b e P. We
shall use the same notations as in case of groups. H(ay, ..., a,) Wi]:]. de-
note the semiring generated by the elements a,, ey Gy, s;,nd,O.n

i THEORE’M 2, A part?al order P of a ring R can be emtended to a linear
order of R if and only if P possesses the following property:

(#*)  For any two finite sets of elements ay, ..., a, and by iy by in R one
may choose &y, ..., ey, u;, oy T (855 5= 1) such that

H(P, eay, ..., enay) A=H by, oy b)) = 0 .

(%) Thus R need be neither asgociative nor commutative,
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The condition is necessary, for if L is a linear extension of P, then
choosing &;, n; such that &a; > 0 and #;b; > 0 in L, we see that the meet
in question consists of 0 alone.

We begin the proof of the converse with

Lemma 2. If a partial order P of B has property (sx), then for any
a ¢ R either H(P, a) or H(P, —a) defines a partial order P’, which again
satisfies (k).

If both H(P, a) and H(P, —a) violate (x%), then there are elements
Gyy ooy Ony Uiy ooy Oy Giyoeey @y b1, ..y B such that for every choice of
signs &, g, &, 7t We have

H(P,a, 101, .y en0p) ~—H by, ooy tubp) D0
and

H(P, —a, e101, ..., erpap) ~ —H (g1b1y .oy i) D 0.
But then always

H(P, ety &10yy cooy Enlny Eillyy ooy ELOE) A
A—H (mbyy ooy by 7101y ooy 910 D0 (e =+1),

contrary to the fact that P satisfies (x+). Now put P'= H(P,a) or
H(P, —a) according as H(P, a) or H(P, —a) possesses (+*). Then P’ is
a semiring in R which contains 0 and (%) guarantees that P’ contains
no other element along with its negative (H (P')~—H(eb)= 0 implies
ebe P').

Now taking a maximal partial order L in the set of all extensions
of P satistying (), we infer that, for any a ¢ R, L contains either @
or —a. This concludes the proof of Theorem 2.

‘We turn our attention to the corollaries of this result.

CoroLLARY 7. (Podderyugin [14].) An arbitrary ring R can be linearly
ordered if and only if for any ag, .., a, tn R it is possible to select signs
g=1 or —1 such that no sum of non-zero products of & @, ..., entn MayY
vanish.

In fact, if we set P = 0 in Theorem 2, then (#*) expresses the same
thing as is stated in this corollary.

CoROLLARY 8. A necessary and sufficient condition for a partial order P
of a ring R without divisors of zero to be extensible to a linear order of R
18 the following: for any finite set of elements ay, ..., 0, of R, a;5% 0, no
sum of products containing each a; an even number of limes and eventually

" (an arbitrary number of times) elements %0 of P as factors may vanish.

If @, ..., z, are products of the stated kind, built up from elements
@y ..., ay 0f B, and @, +..+as= 0, then H(P, gay, ..., &nln) Containg
for any choice of ¢ the elements @, (40) and @+ ...+, = — @y, 50 that
Fundamenta Mathematicae, T. XLVL 12
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the meet of H(P, £,ay, ..., £.8,) With H(ex;) is never 0. By virtue of
Theorem 2, the condition is necessary.

Conversely, assume that the condition holds in the ring R containing
no divisors of zero. If for some sets a, ..., @, and b, ..., b,, in R we al-
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COROLLARY 13. For a partial order P of an arbitrary ring R to be
a conjunction of linear orders it is necessary and sufficient that it satisfies
the following condition: if for some @y, ..., Gny by, ...y by in B

ways have . (1), H(P, —a, & @y ey tn@a) n—H by, ooy b)) D0
H(P, &1y, .., entn) n—H(nybyy ooy b)) D 0, ) holds for any. choice of signs &, 7, then a ¢ P. o
then take b= —hy5£0 (b € H(P, 18y, ...y £08n)y hy € H(nyby, ..., 1 b)) for - Agsume that P is a conjunction of linear orders. Then a¢ P implies
every choice of ¢; and ;. The product s of all these h, + h, ig zero; it may the existence of a linear extension I of P such that a ¢ L. Hence —a ¢ L
be written in the form s= s,+s, where s, (s,) is the sum of terms con- and, by Theorem 2, H(P, —a) has property (s). Thus (1) does not al-
taining a, an even (odd) number of times; evidently s, or s, exists. Since s ways hold.
remains zero under any choice of signs e;, 7; of a;, b;, by the transition " If the condition concerning P ig fulfilled and a¢ P, then H (P, —a)
a,—~—a; we obfain s;—s;= 0, whence 2s5,= 0. Now starting with (7) has property (), so that it can be extended to a linear order L. This L
28, rather than s and following the same procedure with a,, etc. we obtain contains —a, thus it does not contain a; consequently, the meet of al
successively non-zero terms with zero sum until we arrive at a sum where linear extensions of P contains no element that is not in P. )
each term contains each of a;, ..., @y, by, ..., b, an even number of times. Note that if P satisfies the condition of Corollary 18, then it contains
This contradicts the hypothesis, and therefore, owing to Theorem 2, all sums of products whose factors ocecur an even number of times. In
P is extensible to a linear order. ' fact, if  is.such a sum and @y, ..., @, are the factors ocecurring in #,’ then
From the statement just proved follows at once: the meet of H(P, —z) with —H(gay, ..., e,0,) always contains —u,
CororLArY 9. (Johnson [6], Podderyugin [14].) 4 ring without divisors whence z e P. » vu
of zero can be linearly ordered if and only if no sum of products containing - CoROLLARY 14. A partial order P of a ring R without divisors of zero
each factor a; (£0) an even number of times vanishes. - : %8 @ conjunciion of linear orders if and only if, for any a <R, a¢ P, no
COROLLARY 10. Let P be a partial order of o skewfield F'. P has a linear sum of products whose factors are —a, non-zero elements 6f ‘P and an even
etension in F if and only if mo sum of terms of the form b%.. B or number of times non-zero elements of R may vanish. | . —
Pb3 .. b (DeP, bieF; p, b, = 0) vanishes. The proof is on the same lines as in Corollary 8, making use of Co-
By the associative law, the existence of inverses, and nsing the fule rollary 13 rather than Theorem 2: :
aba = (b7’ (ba)® we may write each term indicated in Corollary 8 in - CoroLLARY 15. A partial order P of o skewfield F is representable

the form 8] ... b5 or pb? ... p2.
If F is commutative, i. e. if it is a field, then the terms may be
brought to the form 2, pb?, and we obtain the theorem of Serre [16].
CoroLLARY 11. (Szele [18].) 4 skewfield F can be linearly ordered of

as a conjunction of linear orders if and only if

(a) the non-zero elements of P form a mulliplicative group;
(b) P contains all sums of products of squares.

I P is so representable, then o = ¢-1p (p, q ¢ P, g = 0) implies that

and only if —1 cannot be represented as @ sum of products a; ... an ¢(—a)-1*+p-1?* vanishes, and from the preceding corollary we get a ¢ P,
(@ e F, a;70). whence (a) holds. (b) is an immediate consequence of the remark made
Take P =0 in the preceding corollary and observe that if after the proof of Corollary 13. Conversely, if (a) and (b) hold, then the

sums in Corollary 14 may be brought to the form ¢(—a)+p (p,geP);

2 2 2 2
G @t b bnt =0 (a0, b#£0, )y consequently the condition suffices, as asserted.

then :
b o b(an ) o (@7 = —1 .
COROLLARY 12. (Artin-Schrei A4 i its a linear ; '
{ eier [1]). A field admits a linear order if [1] E. Artin und O. Schreier, Algebraische Konstruktion reeller Korper, Abh.

and only -if it is formally real in the sense that —1 is mo swm of squares. Math. Sem, Hamburg. Univ. 5 (1926), p. 83-115.

(") It s, fails to exist, then we proeéed with 52, ‘ 46[5217,§. H. Clifford, Partially ordered abelian groups, Aunals of Math. 41 (1940),
. D. -473.
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Sur le prolongement des homéomorphies

par
R. Duda (Wroclaw)

1. A. Kirkor a montré que 4 et B étant des ensembles compacts,
homéomorphes, de dimension nulle et situés sur des sphéres a n>1
dimensions, toute homéomorphie entre leurs compléments 4 ces sphéres
se laisse prolonger aux sphéres tout entiéres. Sa démonstration (non pub-
lide) fait un emploi essentiel des propriétés de polyédres. 11 a posé done le
probléme de la validité du théoréme en question pour les espaces plus
généraux que les sphéres.

11 sera démontré ici que ce théoréme se laisse généraliser aux con-
tinus localement connexes arbitraires X et ¥ qui ne sont pas coupés
localement (au sens qui sera précisé plus loin) par leurs sous-ensembles
A et B compacts de dimension nulle (voir le théoréme 3). L’hypothése
que A et B ne coupent localement X et Y respectivement est si forte
que celle de 'homéomorphie entre 4 et B devient superflue: elle résulte
de la démonstration. Cependant, cette hypothdse n’est quune condition
suffisante pour D'existence du prolongement k*(X)= Y dune homéo-
morphie h(X—4)= Y—B quelconque. En effet, A = B étant composé
&un seul point p qui coupe un segment rectiligne X — Y, lidentité
{de méme que toute homéomorphie) entre X—A et Y—B se laisse pro-
longer & celle entre X et Y.

Le probléeme d’une condition & la fois suffisante et nécessaire est
done ouvert, de méme que celui des généralisations aux espaces qui ne
sont pas des continus localement connexes.

11 est toutefois & observer que I'hypothése de la dimension nulle
de A et B est essentielle, méme en admettant que ces ensembles sont
homéomorphes et non-denses dans X et ¥ respectivement. Soient en
effet X le solide de révolution du cercle (x—1)2-+%* <1 autour de I'axe
des y, A le segment 0 < » <1 de l'axe de @, ¥ la gphére massive #*+ y*
+22 <1 et B le segment —1 <y < 1 de I’axe des y. Alors X—4 et Y-B
sont homéomorphes, de méme que A et B, ni 4 n’est une coupure locale
(voir plus loin, p. 179) de X, ni B de ¥, et on & X4 = X, de méme que
Y—B = Y. Cependant, X n’est pas homéomorphe & ¥. A plus forte rai-
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