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R. Montague asked us in conversation to explain the exact relation
between Theorem 5, p. 109, and the argument of [12], p. 48. Since the
details may be of interest to other readers we think it useful to publish
them here. Though it is necessary to use Herbrand’s theorem to get an
arithmetic formalization of the relative consistency proof, the intuitive
idea of [12], p. 48, is simply this: we start with an arithmetic model of
set theory (8,) without class variables, and get a model of a set theory (8)
with class variables as follows. The models of the sets of (§) and of the
non-logical constants common to (8) and (§;) are the same as in the
given model for (8,), and the models for other mnon-logical constants
of (8) are defined arithmetically from the model for (8;): this applies
particularly’ to the functions introduced which make the axiom of do-
main existence (and extengionality) of (8) quantifier-free. The models
of the classes of (8) are the first order predicates definable in terms of
(the models of) these non-logical constants. At first sight it appears
that this is not sufficient to deal with the axiom of replacement and
substitution for the set theories considered in Theorem 5 because not
all non-logical constants of (8§) appear in (§,).

Though argument (2) below takes care of all the predlcatwe ex-
tensions of set theory considered in the present paper and in [12], it is
more natural to deal separately with the cases where (§;) is general set
theory and where (S,) is ZF.

Consider the axiom of substitution. Let F be a class constant which
represents a function and let A be a class constant which represents
a set (of the model of (8))). We wish to show that F*4 is also a set.

(1) In the case of general set theory (p. 48 of [12]), the model of (8,)
consists of finite sets. So since F' represents a function, F*“4 is a finite
collection of finite sets, and so it is a set of the model of (8,) too.

) * This is an addition to our paper Applications of formalized consistency proofs
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(2y By Gédel’s theory of constructible sets () there is a formula
A(n, m) of ZF with the following property: in arithmetic (even pri~
mitive recursive arithmetic) one can prove that if ZF is consistent so
is ZF* obtained by adding to ZF the proposition: %(n, m) defines a func-
tion from non-empty sets to a member of the set, 4. e.

W(n, m)—=>m en .
() (2)(Em)[p e n—A(n, m)] & (n)(m)(p)[A(n, m) & Aln, p)—>m = p].

So, on the agsumption of Con(ZF) we get a model in arithmetic
of ZF*, With the help of the choice predicate there are explicit defini-
tions of the function symbols introduced to make the axioms of NB
quantifier-free, in terms of the notation of ZF, and so we get a consist-
ency proof for B on the assumption of Con(ZF) by the method of [12].

We take this opportunity to draw the reader’s attention to the
following convention: when counting quantifiers, we count the number
of distinct symbols and not the number of occurrences; alse we do not
use distinct symbols unless one quantifier is within the scope of the
other, ¢. g. we write (z)[A(x)—>(Fz)B(»)] instead of (x)[ A (z)—~(By)B(y)].
The truth definition applies under this eonventnon which is used through-
out the paper.

(*) This theory was developed by Géodel for ¥B. The modifications necessary
for applying the theory to ZF are obvious.
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