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Some consequences of the Vietoris Mapping Theorem
by

J. W. Jaworowski (Warszawa)

1. We know several generalizations of theorems concerning contin-
uous mappings in the case of multi-valued mappings, <. ¢, of mappings
which take each point of a space X info a non-empty closed subset of
a space ¥. The continuity of a multi-valued mapping F: X—Y is de-
fined as the upper semi-continuity of the mapping # regarded as a single-
valued mapping of X into the space 2% of non-empty closed subsets of ¥.
For ingtance, S. Rilenberg and D. Montgomery have extended in this
way the Lefschetz formula concerning fixed points of mappings (see [3]);
in [4] a similar generalization of Borsuk’s theorem on antipodes is given.
The Vietoris Mapping Theorem is an important tool in such generaliza-
tions. It ensures that a multi-valued continuous mapping F from X to Y,
such that the sets F(x) are acyclie, induces a homomorphism of homo-
logy groups of X into those of ¥.

W. L. Strother studied in [7] the multi-valued mappings which are
continuons as mappings from X to 2¥, The author introduced the notion
of multi-valued homotopy of such mappings. However, the identity
mapping of the sphere S, is “multi-homotopic” to zero in this sense,
g0 that the “multi-homotopy groups” based on this notion of homotopy
are trivial. We consider in this paper a similar notion of homotopy for
multi-valued mappings F': X—»Y which are continuous in the previous
sense (i. e., wpper semi-continuous). We show (Theorem 3) that if two
multi-valued mappings P, G: XY are homotopic and if during such
a multi-valued homotopy @: X xI—Y the sets ®(w, v) are acyclic, then
I and @ induee the same homomorphism of homology groups. It follows,
in particular, that there exists no acyclic homotopy joining the identity
mapping of the sphere with the constant mapping. Moreover, this theo-
rem and the above montioned formula of Lefschetz for multi-valued
mappings yield a gencralization of the classical theorem of Poincaré-
Brouwer coneerning vector fields on the sphere.

2. Let X be a compact metric space and let & > 0. By a k-dimen-
sional ¢-simplex of X we understand a seb {pq, D1y .os Pi} of & points
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of X of diameter < s. The oriented g-simplex with the vertices Po, Puy «wvs P
will be denoted by (Do, Puy o5 Pr)- 1D the known way we introduce the
notion of e-chains of X over a group & of coefficients. The boundary
of & chain % of X will be denoted by . Let us point out that by the
boundary of & 0-dimengional simplex consisting of a gingle point of X
we understand the number 1, so that 0-dimensional cycles are only
those in which the sum of coefficients is zero; the elements of the group ®
may be considering as (—1)-dimensional cycles. Two k-dimensional
e-cyeles ¥ and »¥ are said to be »-homologous in X (in notation iy ¥
in X), if there exists in X & (k- 1)-dimensional #-chain #6t1 gueh that
o =y

A k-dimensional true chain is a sequence x = {»;} of k-dimensional
¢;-cycles x: of X such that g-»0. A true chain y = {yg} is called a true
cycle if 9y = {9y} = 0. A true cycle {ys} of X is said to be convergent
provided that for every 7> 0 there exists an index ¢, such that, for
every i >dig, yiyyipr i X.

We shall denote by Hy(X, ®) the Vietoris homology groups of X
" over 6 based on convergent cycles (1). Only the cases in which & is the
field of rational numbers or a group J,, of integers modulo m, with m = 2,
will be considered. The homology groups of X over the field of rational
numbers will be denoted simply by Hg(X).

The space X is called n-acyclic (resp. acyclic), if Hy(X) =0, for
every —1 < k < n (resp. for every k). Thus X is (—1)-acyclie if and
only if it is not empty; it is 0-acyclic if and only if it is & continuum.

Let f be a continuous mapping of & compact space X into another
compact space Y. The homomorphism Hy(X, 6)~~Hi (Y, B) induced by f
will be denoted by f.

ViEroris MArpiNg TeHEOREM. Let [ be @ conbinuous mapping of
o compact space X into ¥ such that Hk(f'l(y), ®) = 0, for every —1 < E<n
and y € Y. Then | induces an isomorphism Fo: Hd X, G)~HYY, ®), for
every k < n (see [8] or [2]).

COROLLARY. Let p: X—A be a retraction of a compact space X onto
o closed set A CX such that Hyg=), G) =10, for every —l<h<n
and y e A, and let i A—~X be the injection mapping. Then T i the
identity automorphism e of the group Hy(X, ®).

Proof. Since gi(z) = x for every o ¢ 4, Pz 15 the identity on Hi(4, ®).
By the Vietoris theorem, @, is an isomorphism onto, whence

ke = B Pibidr = P Px= C-

() Hence H,(X, ®) denotes the ‘“‘reduced” homology group.
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8. Let X and Y be compact spaces and let F: X—~¥ be a mulii-
valued mapping from X to ¥, i. e, for every » e X, F(z) is & subset of Y.
The set

W=FyeF@CIxY
] [CXD)]

is called the graph of F. The multi-valued mapping F is said to be con-
tinuous it the graph of I is eloged in X' X ¥. The continuity of F implies
that the sets F(a) are compaect. A continuous multi-valued mapping
7': X->Y may be regarded as an upper gemi-continnous mapping of X
into the space 2% of non-empty closed subsets of ¥. If F: X—Y is
gingle-valued, 4. e., if every set K (x) congists of a single point f(x), then
the continuity of # means the ordinary continuity of the single-valued
mapping f. ’

A single-valued continuous mapping f: X —Y is said to be a cross-
seetion of & multi-valued mapping F: X—Y if the graph of F contains
the graph of f, 4. e., if f(x) e I'(») for every we X. If the identity mapping
of X is 4 cross section of a muiti-valued continuous mapping F: X%,
i. ¢., it @ e F'(x) for every @ « X, then F is said to be a multi-valued identity.

A multi-valued continuous mapping F: X —7Y is said to be - aeyclic
(rewp. acyelic) provided that the sets F(x) are n-acyclic (resp. acyclie),
for every xeX. )

Tet F: XY he a multi-valued continnous w-acyclic mapping of
a compact space X and let W be the graph of F. Let #: WX, s5: WY
be the projections defined by

1) Py y) =2, s, =Y

Tence * and ¢ are continuous and the sets »~!(x) are homeomorphie
to F(x). It follows that r—*(z) is n-acyclic, for every @ X, and, by the
Vietoris theorem, 7, is an isomorphism onto, for every k< n, Let us
consider the homomorphism

(2) Fro=57" 1 HX)>Hu(Y)

which s defined for every k < n. The homomorphism Fy, is said to be
induced by the multi-valued mapping F.

Obvionsly, it F i3 single-valned, then 7 is a homeomorphism and
F == sr-1, Heneo the homomorphism defined above is a generalization
of the notion of a homomorphism induced by a continuons single-valued
mapping.

TrmoreM 1. Let X be a compact space and let the multi-valued con-
tinuous n-acyclic mapping F: X —Y admit a cross-section f: X Y.
Then Frp=FJ, for every k<m.
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Proof. Let W be the graph of F and V — the graph of f. Let
r: WX, s: W—Y be the projections defined by (1). Let i: VW
be the injection mapping and let ¢ = 7|V, b= s[V. Hence ¢ is a homeo-
morphism such thab

(3) hgt = f
and _
(4) ho=si.

Let @: WV be the mapping defined by p(z, y) == {, f(@)). Then
@ is a retraction of W onto V and ¢(, y) = (», f(#)) == ¢~@) = g~ (x, y),
for every (#,y) e W. Hence

) p=yir.

Moreover, for every v = (w, f(m)) ¢V, the set g=*(v) is homeomorphic
to F'(w), whence n-acyclic. By the corollary of Nr 2, 4y is an identity,
for every k << n. Therefore by (2), (3), (4) and (3) we have

F = SKTR P = EIJ‘]SE’CFIG_ t= EIc%':kghT lykﬁ'.- P gk:zlcgk_ Y zkg; o ? -

CorOXLARY. If F: XY is a constant multi-valued n - acyclic mapping,
i e, for every me X, F(x) is a fized closed n-acyclic subset of Y, then
Fi.=0 for every k < n.

For such a mapping admits & constant cross-section.

Let X, ¥,Z be compact spaces. Let f: X—¥ be a single-valued
continuous mapping and F: ¥ -+Z% — a multi-valued continuous mapping.
Then the mapping G¢: X7 defined by G(x)= F(f(x)) is continuous;
it will be denoted by Ff. Obviowsly, if F is m-acyclie, then so is G

TaworeM 2. Let X, Y, Z be compact spaces. Let [+ X—Y be a single-
valued continuous mapping, ond F: Y —Z — a multi-valued continuous
n-agyclic mapping, and let G = Ff: X—Z. Then Gy = Frfy, for every I < n.

Proof. Let W be the graph of F and V — the graph of . Let
r: W—Y, s: W—Z be the projections defined by
(6) Yy, 2=y, sy =2
and t: VX, u: V->Z — the projections defined by -

(7) . oy o) =m, (s, 2)=2=z.
Hence 7, and #; are isomorphisms for 7 < n, and

8) o=,

9 ' = 5"

The (single-valued) mapping ¢ defined by g(z,#)= (f (a:),z) for
every (z,2)eV, is continuous and maps V into W. Moreover, by (6)
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and (7), ft(%,2) = f(o) = 7g(z, %), and sg(z,2) = 5(f(a),2) = 2 = u(z,2)
for every (z,2) ¢ V. Hence ft = rg and w = sg. It follows that fo= il
and %y = &fr. Therefore, by (8) and (9),

Frfye= 8% Tulide = Wi = G-

4. Let F, G be two multi-valued continuons n-acyclic mappings
from X into ¥ and let I be the interval 0 < v < 1. The mapypings 7
and G arve said to be n-acyclically homotopic it there exists a multi-valued
continuous n-acyelic mapping @: X xI-»Y, called a (multi-valued) komo-
topy, such that ®(z, 0) = F(x) and P(x, 1) = G (z) for every x € X; if the
homotopy @ is acyclic, then F and @ are said to be acyclically homotopic.

TurorEM 3. Let X and Y be compact spaces and let B and @ be two
madti-valued continuous n-acyelic mappings of X into X. If F and G are
n-acyclically homotopic, then Fro= Gy, for every k< n.

Proof. Let @: X xI—XY be an n-acyclic homotopy joining # and G.
Tet us congider the homomorphism @y : Hy(X X I)—~H{Y) induced by &.
Let i,§: XX xI be the injection mappings i(z) = (z,0), j(z) = (2, 1).
Thus we have

(10) i =i

Moreover, ®i= ¥ and ®j = 6. Hence by theorem 2 and by (10),
Fyy= Oy, = Py = G«

5. Let X and W be compact spaces and let r: WX, s: W—X
be two continuous mappings. Let us assume that the set r—1(z) is acyclic
tor every @ e X. Then, by the Vietoris theorem, 7y: H(W)—~Hi(X) is
an isomorphism onto and hence the endomorphism Fn s H(X)—>Hy(X)
is defined for every k.

Now let X be an ANR-space (i. e., an absolute neighbourhood re-
tract). Then the groups Hi(X) have a tinite system of generators and
are trivial for sufficiently large k. It follows that the trace of (5i7%") is
defined. The number

Als,r) =1 —]—Z(—ﬂ.)"trace(ﬁ,ﬁ;l)
k=0
is defined in [3] as the Lefschetz number of (s,). 8. Rilenberg and
D. Montgomery have proved in [3] the following generalization of the
fixed point theorem: _
(1) Let X be an ANR, W — a compact space andr: WX, 3: WX —
two continuous mappings such that r—Yz) is acyclic for every weX. If
A(s,7)7 0, then there exisis a point we W such that r(w) = s{w).
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Tet F be a multi-valued continuous acyclic mapping of an ANR-
space X into itself. Let W be the graph of Fandlet r: W—X,s8: WX
be the projections defined by (1). Let A(F) denote the Lefschetz number
A(s, 7). Since F,=57%, then

A(P) =1+ (=1) trace (Fy) .
k=0
It A(F)s£0, then, by theorem (I), there exists a point (u,, ¥,) € W such
that z,= y,. Hence @, e F(m,). A point like this is called a fiwed point
of the multi-valued mapping F. Hence we have

(IL) Let F be a multi-valued continuons acyelic mapping of « compact
ANR-space X into itself. If A(F)#0, then F has o fized point (see [3],
p. 217).

Theorem 3 of No 4 implies

CoROLLARY 1. If two multi-valued continuous acyclic mappings B, G
of & compact ANR-space X are acyclically homotopic, then A(F) = A(AF).

T F is a multi-valued acyclic constant mapping, then A(F)=1.
Hence we have ‘

COROLTARY 2. Bvery multi-valued comiinuous acyclic mapping of an
ANR-space into itself which is acyclically homotopic to & (multi-valued )
constant mapping has o fived poind.

The Lefschetz number of the identity mapping i equal to the Huler-
Poincaré characteristic

#(X) = 14 ) (~1)'pl X)
o)
(p(X) denotes the kth Betti number of X). Ience theorem 1 yields
COROLLARY 3. If the Euler-Poincaré characteristic of a compact ANR-
space X is different from zero, then every multi-valued continuous acyclic

mapping of X into itself which is acyclically] homotopic to a mulbi-valued
identity has a fized point.

6. Let 8, denote the »-dimensional unit sphere in the (m--1)-di-
mengional Euclidean space F,,,. We shall denote by a(z) the antipodo
of a point # € §,. The following lemma may be proved in the same way
as the corresponding one concerning single-valued mappings into the
sphere: )

LeymA, Let F: X8, be a mulli-valued continuous acyclic mapping
of & compact space X into S, and let f: X8, be a single-valued contin-
wous mapping. If, for every x ¢ X, the set F(z) does net contain the antip-
ode of f(x), then F is acyclically homotopic to f.
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p

Proof. Tet @ e X and 0 < 7 < 1. Since, for every y ¢ F(z), off (2)) # ¥,

then the points f(x) and y determine uniquely the smaller arc f/(T)Q/ with
end-points f(#) and y of the great circle passing through these points.
Let us denote by @ (2, ) the set of points 2 ¢ 8, which divide the arc m,
with y ¢ I'(x), at the ratio (1—7): =. Then, for every v < 1, the set ®(z, 7)
is homeomorphic to F(x), and ®(x,1)= f(») for every x e X. Hence
the sets @(x, v) are acyelic, Tt iy evident that @ is a continuous multi-
valued mapping of X %I into &,. Therefore @ is a multi-valued acyclic
homotopy joining F and f.

Hince, for oven m, x(8,) =2, this lemma and corollary 3 of No 5
yield

TrooreM 4. Lot n be even and let Fi Sp—8, be o mulii-valued con-
tinuous aeyclic mapping such that the set F(x) does not contain the antipode
of © for every ®e8y. Then T has a fized point. ’

Remark. This theorem may also be deduced immediately from the
theorem of Eilenberg and Montgomery of No 5, without using the no-
tion of homotopy of multi-valued mappings, as follows:

Tet W be the graph of ' and lat #: W~>8y, s: W8, be the pro-
jections defined by (1). Since, for every w e W, we have alr(w)) = s(w),
then the single-valued mappings = and s are homotopic (in the usual
ienge). Hence the homomorphism Fp== 575" is an identity. It follows

hat A(F) == x(%,) == 2, and, consequently, I has a fixed point.

7. The following theorem is a generalization of the theorem of
2oincaré-Browwer: ’

TumoREM 5. Let n be even. Then there exisls no multi-valued con-
tinuous acyclic function T which assigns fo every point o e 8, a set F(x)
of wnit vectors tamgent to Sy at .

Proof. Lot F(x) denote the set of end-points of the vectors be-
longing to F () and P () — the - dimensional hyperplane passing through
the centre ¢ of 8, and orthogonal to the vector cz. Let @ (z) be the orthogo-
nal projection of the set F(z) on P (). Then the set G(x) is acyclic and

(11) @) C Sp— {2} — {a(2)} .

Tence @ is  multi-valued acyclic mapping and (11) yields a contra-
diction to theorem 4.

8. Tt P, be an n-dimensional projective space considered as the
get of all wnordered pairs {p, a(p)}, with p e S,. The distance between
two points ¢ == {py, a(p)} and gs = {Ps, a(py)} of Py, we define by

(12) 0(qi, g2) = min[g(pl, Pa)s 9(?17 a(pz))} .
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Let = be the mapping of §, onto P, defined by m(p)= {p, a(p)}
for every peS,. Let us observe that, by (12), » maps 1-chains in §,
onto 1-chaing in P, and the cyecles 1-homologous to zero in §, onto
cycles 1-homologous to zero in P,.

The following theorem will be used in the sequel:

THEOREM 6 (2). Let m be an integer =2, X — a continuum such thai
Hy(X,Jdn) =0 aond f— a continuous mapping of X into P,. Then there
ewists a continuous mapping ¢ of X into 8, such that f= my.

The proof of this theorem is based on the following

Levma. Let % be a 1-dimensional 1-chain modulo m in S, such
that 9x = (p)—{a(p)) for some p e 8,. Then the L-eycle m(x) 48 not 1-ho-
mologous to zero in Py.

Proof. Let A denote the 1-dimensional chain on 8, obtained by
dividing a great circle arc joining the points p and a(p) on ares of di-
ameter <1, such that 94=(p)—(a(p)). Hence =(4) iy an 1-cyecle in P,.
It is known that

(13) @(4) is not 1-homologous to zero in P, .

In fact, m(4) represents a generator of Hy(Py, Jy)-

In the case n =1, it is evident that m(»)yde-n(i) in P,, where
¢ is odd.

If »>1, then »—4 is an 1-dimensional 1-cycle in 8,, and, con-
sequently, x— Ay 0 in 8,. It follows that @ (x—2) = @ (x)—x()y 0 in Py,
Hence, in this case, (x)y (1) in P,.

We conclude by (13) that in both cases m(x) is not 1-homologous
to zero in P,. '

Proof of the theorem. Let ¢ be a point of X. Then f(a)

= {Po, a(po)} Where p, € 8,. Let g(a) be an arbitrary point of {p,, a(p,)}
Let & be a positive number such that

(14) e(a,2”) <e implies off(#'),/(2")) <1 forevery weX.

It follows from the assumptions of the theorems that there exists
a positive number % < ¢ such that

(15)  every 1-dimensional u-cycle in X is e-homologous to zero in X.

Indeed, if (15) does not hold, then putting n=1/j (j=1,2, ...)
we obtain a sequence {y;} of 1-dimensional (1/f)-cycles in X such that
¥; is not e-homologous to zero in X. Since m > 2, the sequence {y;}

(*) A similar theorem (for arcwise connected X and m = 0) has been proved by
K. Moszyhiski and is published in [5] without proof.
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containg a convergent cycle (see [1], p. 180), which is not homologous
to zero in X. However, this is impossible, since H,(X,Jy,)= 0.
Tet x ¢ X. Since X is connected, there exists a finite sequence of
points of X
O == Lgy Byy eeey Tp== T
guch that

(16) 0By, ) <n, for i=1,2,..,k.
We shall construct a sequence of points p; e S,

9{(a) = Doy P1y s Pu=1D
such that
w(py) = flw), for 1=0,1,..,%,
(17) T,
o(Piy, pi) <1, for i=1,2,..,k.
It follows that

Q(”(pi—l): “(pi)) <1, for d=1,2,.,k.

Let us suppose that pg, is already defined. By (16) and (14),
olf(ai-1), f(m@-)) < 1. Therefore there exists a unique point in the set f(x;)
(congidered as a pair {p’, a(p’)}) which is the nearest one to pi.. e f(@i1);
we shall denote it by ;.

Let

=YYy i=2T

be an another sequence of points of X such that o(Yi—r, %) <7 and let

g(a) = Go, thy -y 1=14¢

constructed as above. Then

m(g) = f(y), for i=0,1,..,1,
(18) )
o(Gi1, q) <1, for i=1,2,..,1.

We assert that p = ¢. . '
Tet us suppose that pztg. Then g == a(p). Let us consider the 1-di-
mengional 7-cycle in X
) ]

y = Z(w‘t—h @) '—Z‘ (Yimrs Y1)

Foma’l dem]
and the 1-dimensional 1-chain in 8,

13 1

” = 2 (Pi-1, 191:)—2(,%-1, q:) .

Te=1 i=1
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By (15), ¥~ 0 in X, whence hy (14), f{p)+ 0 in P,. Since dx = (p)—
—(a(p)), then, by lemma, m(x) is not 1-homologous to zero in P,
But, by (17) and (18), =(x) = f(y) and therefore we have got a con-
tradiction.

Tet us put ¢(x) = p. We have shown that the definition of g(az) is

independent of the choice of the sequence &, Ly <., Tr. Hence g is
a mapping of X into P, such that f= mg. Tet us observe that, if
ole', ") <, then olgla’), g(a”)) = olf (@), f(a). Tt follows that g is
continuous. Hence theorem 6 is proved.

ExampLE. Tet X (k) be the van Danzig solenoid in the 3-space J,
obtained as the intersection of an infinite sequence {7} of solid tori,
where T, lies in the interior of T;_;, runs k times around the interior
and hag a cross section of diameter <1/¢. Tt is known that H,(X (%), &)
is isomorphic with a subgroup of & composed of those elements of &
which are divisible by an arbitrary power of % (for k = 2, this is proved
in[6]). Hence H,(X(2),Js) =0 and H,(X(3),Js) =Js-

Tet C(x) denote, for every x e T,, the meridian disk of T, contain-
ing w; it is defined as the intersection of T, with the plane passing
through # and through the axis of T;. Let ¢ be the mapping which maps
every point @ of 7, into the centre of (). Then ¢ maps T, onto the
central circle 8 of T,.

Let § be the mapping of X(2) onto § defined by f= !X (2). Since
H, (X (2),J,) == 0, the assnmptions of theorem 6 are fulfilled, Tt follows
that there exists a mapping g: X(2)—S such that f= ng. Let us ob-
gerve that the mapping ¢ may be defined immediately: obviously, there
exists a homeomorphism % of T, onto 7, such that, for every x e T,
b maps two disks of the intersection of T, with C(x) onto two meridian
disks 0, 0, of T, which are symmetric with respect to the axis of T.
Then we may put g=fhlX(2).

Now let f be the mapping of X(3) onto § defined by f= ¢|X(3).
In thiz case the assumptions of theorem 6 arve not fulfilled. We shall
show that there exists no mapping g of X (3) satisfying the statement
of the theorem. Let y; be a 1-dimensional (1/i)-cyele which represents
a basis of the group Hy(T ,J,). Then y; 5 3yi = iy in Tiy. By 2 dis-
placement of every vertex of y; to the nearesti point of X (3) we obtain
a convergent cycle {yi} in X (3) which represents a basis of the group
Hl(X(?;),Jz); hence it is not homologous to zero in X (3). Tt in evident
that f induces an isomorphism. But =; maps H,(S, J,) into zero, whence
the factorization f= ng is impossible.

.9. It is known™that the theorem of Poincaré-Brouwer may be gen-
eralized so that the vector fields on the sphere may be replaced in it
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by felds of straight lines tangent to the sphere. We shall prove a gimilar
theorem for multi-valued fields of lines.

TaROREM 7. Let n be even and m — an arbitrary integer =2. Then
there exists no multi-valued continuous acyclic function I which assigns
1o every point © e Sy, @ set F(x) of straight lines tangent to S, at z and such
that Hy(F (), Jp) == 0 for every @ eSn.

Proof. Let us assign to every @ e 8, the set ¢(z) of antipodal pairs
of points in which the straight lines pagsing through the centre of S,
and parallel to the lines of IM(z) intersect 8,. Thus we obtain a multi-
valued continuous acyclic mapping & of §, into P,. Tet W be the graph
of @ and let 7: W8, 8: WP, be the projections defined by (1).
Let us observe that

{(19) it p e, w==(0,y)e W and a(p)= s(w), then o(r(w), p) = 72

Since 7—1(x) is homeomorphic to F(z), then Hi{r—Y),Jn) = 0 for
i=—1,0,1, Hence by the Vietoris theorem, 7,1 Hy (W, Ju)>Hi(8n, In)
ig an isomorphism onto, and sinee m > 1, then H(W,Jn) = 0. Then
theorem 6 provides a contimuous mapping g: W —8,, such that -

(20) § =y
By (19) and (20)
(21) olr(w), glw)) =1 7, for every weW.

By (21), the mappings r and ¢ are homotopic. Hence 7= fr, for
every k. Since r—(z) is acyeclie for every ®eS,, then by the Vietoris
theorem, 7r: HyW)~nHzi(Sy). It follows that 7' is the identity auto-
morphism of Hy(S,) and therefore Alg,r)= %(8,) = 2 (see No 5). Con-~
sequently, the theorem of Eilenberg and Montgomery implies that there
exists a point w, ¢ W such that r(w,) = g (w,). However, this is impossible,
by (21). Thus theorem 7 ir proved.

Tet B be a set of straight lines in Fyy,, such that every line L e B
is tangent to §,. Let us denote by F{x) the set of all straight lines Le®B
which are tangent to S, at the point = e 8,. Then we observe that the
multi-valued function F is continvous if and only if the get B ix closed.
Tt follows that the theorem 7 may be formulated as follows:

TrmownEM 7' Let m be even and m — an integer >2. Then there exwists
i1 Bpey no closed set B of siraight lines tamgent to S, such that, for every
xzel,, the set I(x) of lines LeB tangent to Sn, af @ is acyclic and
H,y(F(x), ) = 0.

TFor # = 2, this theorem may be formulated as follows:

CoroLLaRY. Let B be a closed set of straight lines in E, tangent to Sp.
Let F () denote the set of lines L « B tangent o 8, ot © e S, If F(w) is non-
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empty and connected for every @ € Sy, then there ewists a point xy € S, such
that F(z,) coniains all straight lines in By passing through m, and tan-
gent to 8,.

Remark. The questions whether theorem 6 and 7 remain true for
m =0 i3 open.
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On function spaces

by
S. Mréwka (Warszawa)

In the prosent paper we are concerned with the study of the prop-
erties of topologies in function spaces; in particular, we shall congider
the so-called k-topology (1). The following problems will be treated:

1° conditions regarding the spaces X and ¥ under which the space
v¥ with a k-topology is of the character <m (?) in particular, condi-
tions under which the space ¥¥ ig m-almost-metrizable (*);

9° conditions regarding X and ¥ under which there exists a topo-
logy for 7¥ which induces the continuous convergence of nets of func-
tions (see [3], p. 241);

3° let § be a function defined on the product X x T of topological
spaces X and T with values from a ‘topological space ¥ and let f be the
funetion defined on 7T whose value at a point ¢ is the function f;, de-
fined Dby the equality fi(»)= flz,t,). Clearly, the continuity of f de-
pends only on topologies in X,Y, T, and the continuity of f depends
on topologies in 7' and 7%, Is there a topology for Y% guch that the
continuity of § with respect to this topology is equivalent to the con-
tinuity of f? ‘

Known results relating to these problems may be listed as follows:

() A basis of k-topology for & function space ¥ ¥ (= space of all continuous
functions on X to ¥) consists of all sets of the form W (0ys ves Cs Ty voes U,), where
0, are compact subsets of X, U, are open subsets of ¥, and

WGy, woer G s ooes Upd = {f « T5: f(G) € Ugg 4= 1, s B

Clearly, sefs of the form W(0; T7) form a subbasis for T - topology. ) .

%) The character of a point w (in gymbols: x(x)) is the least cardinal m for whu}h
there is & bagis of # of the power m. The character of a space X (in symbols: 2 (X)) s,
by definition, the number su];)x(m).

xeX .

(®) A space X is said to be m-almost-metrizable if there is & family P = {@gleez
(E= = m) of psendometrics on X such that A = {z e X: gi=, A) =0 for each & i.n EY
for each 4 ¢ X. It may always be assumed that max{ge. 0z} ¢ P for each ¢y, gpr 10 P.
An m-almost-metrizable space is of the character <m (see [4]).
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