On the convergence of nets of sets

by

S. Mrówka (Warszawa)

The topological convergence of net (1) of subsets of a topological space X may be defined in the same manner as the topological convergence of a sequence of sets: if $\{A_n, n \in D\}$ is a net of subsets of X, then $\operatorname{Li} A_n (\operatorname{Ls} A_n)$ is defined as the set of all $x \in X$ such that every neighbourhood of x intersects A_n for almost all (arbitrarily large) n (2). A net $\{A_n, n \in D\}$ is said to be topologically convergent (to a set A) if $\operatorname{Ls} A_n = \operatorname{Li} A_n$ (= A) and in this case the set A will be denoted by $\operatorname{Lim} A_n$.

Hausdorff ([2], p. 145) has shown that if X is a compact metric space, then in the space 2^X consisting of all closed non-empty subsets of X a metric may be defined such that the convergence of sequences of sets induced by this metric (*) coincides with topological convergence. This result has been generalized by Watson [7] who has shown that if X is a locally compact separable metric space then another metric may be defined in 2^X which induces topological convergence. Watson has also shown that if X is not locally compact, then the space 2^X considered as a L^* -space (see [4], p. 89 and p. 274) topological convergence is not a topological space.

The present paper is devoted to generalizations of the above results. It will be shown that:

⁽¹⁾ A not is a function defined on a directed set (a partially ordered set D is called directed if for every $n_1, n_2 \in D$ an element $n \in D$ may be found such that $n_1 \leq n$, $n_1 \leq n$, where \leq is the relation which partially orders the set D). If a net defined on D assigns to an element $n \in D$ an element x_n , then it will be denoted by $\{x_n, n \in D\}$ (see [3], p. 65).

⁽²⁾ We say that a statement T on elements of a directed set D is fulfiled for almost all n ∈ D if an element n₀ ∈ D may be found such that T is fulfiled for every n ≥ n₀;

arbitrarily large $n \in D$ if the set of all $n \in D$ for which T is fulfilled is cofinal with D.

(*) We say that a metric ϱ (a topology \mathcal{F}) for a set X induces a certain convergence of nets in X of some sort if each net in X of that sort is convergent with respect to this convergence if and only if it is convergent with respect to the metric ϱ (the topology \mathcal{F}).

- 1. If X is a Hausdorff bicompact space, then the Vietoris topology in 2^X (the basis of the Vietoris topology in 2^X consists of all sets of the form $\langle U_1, ..., U_n \rangle$, where U_i are arbitrary open sets in X and $\langle U_1, ..., U_n \rangle$ = $\sum_{I \in \mathbb{Z}} (A \subset \bigcup_{i=1}^n U_i; A \cap U_i \neq 0; i = 1, ..., n)$ (see [6] and [5], p. 153) induces the topological convergence of nets of sets and that this is not the case if X is locally bicompact without being bicompact.
- 2. If X is a locally bicompact space, then another topology may be defined in 2^X which induces the topological convergence of nets of sets.
- 3. If X is not locally bicompact, then there exists no topology in 2^X which induces the topological convergence of nets of sets.

I. Some properties of topological limits.

1. $\operatorname{Li}_{n \in D} A_n \subset \operatorname{Ls}_{n \in D} A_n$.

This property is obvious.

2. If a net $\{A_n, n \in D\}$ topologically converges to A and E is a cofinal subset of D, then the net $\{A_n, n \in E\}$ (4) is also topologically convergent and $\lim_{n \in E} A_n = A$.

Proof. If $x \in A$ then every neighbourhood U of x intersects A_n for almost all $n \in E$ and $x \in \operatorname{Li} A_n$, whence $A \subset \operatorname{Li} A_n$. If $x \in A$ then there exists a neighbourhood U_0 of x that is disjoint with A_n for almost all $n \in D$; thus U_0 is disjoint with A_n for almost all $n \in E$ and $x_0 \in \operatorname{Ls} A_n$, whence $\operatorname{Ls} A_n \subset A$. From $A \subset \operatorname{Li} A_n$ and $\operatorname{Ls} A_n \subset A$ it follows that the net $\{A_n, n \in E\}$ is topologically convergent and $\operatorname{Lim}_{n \in E} A_n = A$.

3. If F is closed and $A_n \subset F$ for all $n \in D$, then Ls $A_n \subset F$.

In fact, if $x \in LsA_n$, then every neighbourhood U of x intersects some A_n ; thus U contains points of F and $x \in F$.

4. Ls $A_n = \bigcap_{m \in D} \overline{\bigcup_{n \geqslant m} A_n}$.

Proof. If $x \in \text{Ls } A_n$, then for each $m \in D$ and each neighbourhood U of x there is an $n \geqslant m$ such that U intersects A_n , whence U intersects $\bigcup_{n \geqslant m} A_n$; thus $x \in \bigcup_{n \geqslant m} A_n$ for each m and it follows that $x \in \bigcap_{m \in D} \bigcup_{n \geqslant m} A_n$. If

 $x \notin \mathbf{Ls} A_n$, then there is a neighbourhood U_0 of x and $m_0 \in D$ such that U_0 intersects no A_n with $n \ge m_0$, whence $x \in \bigcup_{i=1}^n A_i$.

5. If $A_n \subset A_{n'}$ for $n, n' \in D$; $n \leq n'$, then the net $\{A_n, n \in D\}$ is topologically convergent and $\lim_{n \in D} A_n = \bigcap_{n \in D} \overline{A_n}$.

Proof. Clearly, $\bigcap_{n \in D} \overline{A}_n \subset \coprod_{n \in D} A_n$. On the other hand, from formula 4 follows Ls $A_n \cup = \overline{A}_m$.

6. $\underset{n \in D}{\text{Ls}} (A_n \cup B_n) = \underset{n \in D}{\text{Ls}} A_n \cup \underset{n \in D}{\text{Ls}} B_n.$

Proof. If $x \in Ls$ $(A_n \cup B_n)$ and $x \notin Ls$ A_n , then there are a neighbourhood U_0 of x and an index n_0 such that $U_0 \cap A_n = 0$ for $n \ge n_0$. If U is an arbitrary neighbourhood of x, then $U_0 \cap U$ intersects $A_n \cup B_n$ for arbitrarily large n. But $U_0 \cap A_n = 0$ for $n \ge n_0$ implies that U intersects B_n for arbitrarily large n; thus $x \in Ls$ B_n and Ls $(A_n \cup B_n) \subset Ls$ $A_n \cup n \in D$

 $\bigcup_{n\in D} \operatorname{Ls} B_n$. If $x \in \operatorname{Ls} (A_n \cup B_n)$, then there is a neighbourhood V of x which is disjoint with $A_n \cup B_n$ for almost all n and it follows that $x \in \operatorname{Ls} A_n$

and $x \in \operatorname{Ls} B_n$, whence $\operatorname{Ls}_{n \in D} (A_n \cup B_n) \supset \operatorname{Ls}_{n \in D} A_n \cup \operatorname{Ls}_{n \in D} B_n$.

7. $\lim_{n \in D} (A_n \cup B_n) \subset \lim_{n \in D} A_n \cup \lim_{n \in D} B_n$.

Proof. $A_n \subset A_n \cup B_n$ implies $\underset{n \in D}{\text{Li}} A_n \subset \underset{n \in D}{\text{Li}} (A_n \cup B_n)$.

8. If nets $\{A_n, n \in D\}$ and $\{B_n, n \in D\}$ are topologically convergent, then the net $\{A_n \cup B_n, n \in D\}$ is topologically convergent and

$$\lim_{n \in D} (A_n \cup B_n) = \lim_{n \in D} A_n \cup \lim_{n \in B} B_n.$$

Proof. This is an immediate consequence of formulae 6 and 7.

II. Ibc-topology in 2^X . In this section X is supposed to be locally bicompact, and 2^X consists of all closed non-empty subsets of X. The basis of the lbc-topology in 2^X of all sets of the form $[U_1, ..., U_n; V_1, ..., V_k]$ where U_i and V_j are arbitrary open sets in X with a bicompact closure and

$$[U_1,...,U_n; V_1,...,V_j] = \underset{A \in X}{E} (A \cap U_i \neq 0; A \cap \overline{V}_j = 0; i = 1,...,n; j = 1,...,k),$$

A basis $\mathfrak B$ of X is called bicompact if for every $U \in \mathfrak B$, $\overline U$ is bicompact. Theorem 1. If $\mathfrak B$ is a bicompact basis, then the family of all $[U_1, ..., U_n; V_1, ..., V_k]$ where $U_i, V_j \in \mathfrak B$ is a basis for the lbc-topology in 2^X .

Proof. Let $A \in [U_1, ..., U_n; V_1, ..., V_k]$ where U_i and V_j are arbitrary open sets with a bicompact closure. It must be shown that there

⁽⁴⁾ Obviously a cofinal subset of a directed set is also a directed set; thus $\{A_n, n \in E\}$ is, in fact, a net.

exist $U_1^*, ..., U_n^*, V_1^*, ..., V_s^* \in \mathfrak{B}$ such that $A \in [U_1^*, ..., U_n^*; V_1^*, ..., V_s^*]$ $C[U_1,...,U_n;V_1,...,V_k]$. Let us take $U_i^* \in \mathfrak{B}$ such that $U_i^* \subset U_i$ and $A \cap U_i^* \neq 0$ (i = 1, ..., n). Since $A \cap \overline{V}_i = 0$, for every $x \in \overline{V}_i$ there exists $V_i^x \in \mathfrak{B}$ such that $x \in V_i^x$ and $\overline{V_i^x}$ is disjoint with A. Since $\overline{V}_i \subset \bigcup V_i^x$

and \overline{V}_i is bicompact, there exists a finite system $V_j^{x_1}, ..., V_j^{x_{r_j}}$ such that $\overline{V}_i \subset V_i^{x_1} \cup ... \cup V_i^{x_{r_i}}$. Obviously

$$A \in [U_1^*, ..., U_n^*; V_1^{x_1}, ..., V_1^{x_{p_1}}, V_2^{x_1}, ..., V_2^{x_{p_2}}, ..., V_k^{x_1}, ..., V_k^{x_{p_k}}] \\ \subset [U_1, ..., U_n; V_1, ..., V_k].$$

THEOREM 2. If X is a bicompact space, then the Victoris topology in 2^X coincides with the lbc-topology.

Proof. Let $A \in \langle U_1, ..., U_n \rangle$. The set $C = X \setminus (U_1 \cup ... \cup U_n)$ is bicompact and disjoint with A, whence there exists a finite system $V_1, ..., V_k$ of open sets that have closures disjoint with A such that $C \subset V_1 \cup ... \cup V_k$. Obviously $A \in [U_1, ..., U_n; V_1, ..., V_k] \subset \langle U_1, ..., U_n \rangle$.

Conversely, let $A \in [U_1, ..., U_n; V_1, ..., V_k]$. Setting $U_i^* = U_i \setminus (\overline{V}_1 \cup ... \cup \overline{V}_k)$ (i=1,...,n) and $U_{n+1}^*=X\setminus (\overline{V}_1\cup...\cup\overline{V}_k)$ we have $A\in \langle U_1^*,...,U_n^*,U_{n+1}^*\rangle$ $\subset [U_1, ..., U_n; V_1, ..., V_k].$

THEOREM 3. The space 2^X with a lbc-topology is locally bicompact. Proof. Let $X_1 = X \cup \{a\}$ be the Aleksandroff one-point bicompact-

ification of the space X (see [1] and [3], p. 150). The space $\mathfrak{X}_1 = 2^{X_1}$ with the Vietoris topology is bicompact (see [5], p. 161). Let \mathfrak{X}' be the set of all $A \in \mathfrak{X}_1$ such that $\alpha \in A$ and $\mathfrak{X}_2 = \mathfrak{X}' \setminus \{\{\alpha\}\}$. The set \mathfrak{X}' is closed in \mathfrak{X}_1 , whence it is bicompact and it follows that \mathfrak{X}_2 is locally bicompact. We shall show that 2^{X} (with a lbe-topology) is homeomorphic to \mathfrak{X}_{2} . Let h be the mapping that assigns to a set $A \in 2^X$ the set $A \cup \{a\}$. Obviously, h is a one-to-one mapping and $h(2^X) = \mathfrak{X}_2$ (if A is a closed subset of X, then $A \cup \{\alpha\}$ is a closed subset of X_1). Let $\langle U_1, ..., U_n \rangle$ be an arbitrary neighbourhood of $A \cup \{a\}$ in \mathfrak{X}_2 and let $U_{i_1}, ..., U_{i_s}$ denote all the sets among U_1, \ldots, U_n that do not contain α . For every i_r $(r=1, \ldots, s)$ there exists an open set U_r^* of X with a bicompact closure in X such that $A \cap U_r^* \neq 0$ and $U_r^* \subset U_{i_s}$. Let $C = X_1 \setminus (U_1 \cup ... \cup U_n)$. We have $\alpha \notin C$, whence $C \subset X$. Since C is bicompact and $A \cap C = 0$, there exists a finite system $V_1, ..., V_k$ of open sets of X having bicompact closures in X such that $C \subset V_1 \cup ... \cup V_k$ and $A \cap \overline{V_j} = 0$ (j = 1, ..., k). It follows that $U = [U_1^*, ..., U_s^*; V_1, ..., V_k]$ is a neighbourhood of A in 2^X and $h(\mathfrak{U})$ $\subset \langle U_1, ..., U_n \rangle$. Conversely, if $\mathfrak{U} = [U_1, ..., U_n; V_1, ..., V_k]$ is an arbitrary neighbourhood of A in 2^X , then setting $U_i^* = U_i \setminus (\overline{V}_1 \cup ... \cup \overline{V}_k)$ (i = 1, ..., n)and $U_{n+1}^*=X_1\setminus (\overline{V}_1\cup...\cup\overline{V}_k)$ and $\mathfrak{U}^*=\langle U_1^*,...,U_n^*,U_{n+1}^*\rangle$ we see that U^* is a neighbourhood of $A \cup \{\alpha\}$ in \mathfrak{X}_2 and $h^{-1}(\mathfrak{U}^*) \subset \mathfrak{U}$.

THEOREM 4. lbc-topology in 2X induces the topological convergence of nets of sets.

Proof. Let us agree to write $A_n \rightarrow A$ if a net $\{A_n, n \in D\}$ is convergent to A in the sense of lbc-topology.

Let $\{A_n, n \in D\}$ be a net of closed non-empty subsets of X and let $A_n \rightarrow A$. If $x \notin A$ then there exists a neighbourhood V_1 of x with a bi-· compact closure and disjoint with A. Let U_1 be an arbitrary neighbourhood with a bicompact closure which intersects A. Since $A \in [U_1; V_1]$, $A_n \in [U_1; V_1]$ for almost all $n \in D$ and $A_n \cap \overline{V}_1 = 0$ for almost all $n \in D$ and $x \in Ls A_n$. Hence Ls $A_n \subset A$. Let $x \in A$ and let U be an arbitrary neighbourhood of x. There exists a neighbourhood U_1 of x with a bicompact closure that is contained in U. Since $A \in [U_1;]$, $A_n \in [U_1;]$ for almost all $n \in D$ and $A_n \cap U_1 \neq 0$, whence $A_n \cap U \neq 0$ for almost all $n \in D$ and $x \in \text{Li } A_n$. Thus $A \subset \text{Li } A_n$. From Ls $A_n \subset A$ and $A \subset \text{Li } A_n$ $n \in D$ it follows that $Lim A_n = \Lambda$.

Let Ls $A_n \subset A \subset \text{Li } A_n$ and let $[U_1, ..., U_s; V_1, ..., V_k]$ be an arbitrary neighbourhood of A in 2^{X} . Suppose $A_{n} \cap U_{i} = 0$ for some i(i = 1, ..., s) and for arbitrarily large $n \in D$ and let $E = F(A_n \cap U_i = 0)$. The set E is cofinal with D, whence, by the property $\stackrel{n \in D}{2}$, $\lim_{n \to \infty} A_n = A$. But $A_n \subset X \setminus U_i$ for all $n \in E$ and the set $X \setminus U_i$ is closed, whence it follows, by the property 3, that $A \subset X \setminus U_i$, and this contradicts $A \cap U_i \neq 0$. Hence $A_n \cap U_i \neq 0$ for all i (i = 1, ..., s) and for almost all $n \in D$. Suppose $A \cap \overline{V}_j \neq 0$ for some j (j = 1, ..., k) and for arbitrarily large $n \in D$. Let $E_1 = E_1 \cap A_n \cap \overline{V}_j \neq 0$. The set E_1 is cofinal with D, whence $\lim_{n \to \infty} A_n = A$. For every $n \in E_1$, there exists a point x_n that belongs to $A_n \cap \overline{V}_i$ and for \overline{V}_i is bicompact; there exists a point x_0 that is a cluster point (see [3], p. 71) of the net $\{x_n, n \in E_1\}$. Obviously every neighbourhood of x_0 intersects A_n for arbitrarily large $n \in E_1$, whence $x_0 \in \operatorname{Lis} A_n = \operatorname{Lim} A_n = A$. On the other hand, $x_0 \in \overline{V}_j$, which contradicts $A \cap \overline{V}_j = 0$. Thus $A_n \cap \overline{V}_j = 0$ for all j (j = 1, ..., k) and for almost all $n \in D$. Finally, $A_n \in [U_1, ..., U_s]$ $V_1, ..., V_k$] for almost all $n \in D$ and $A_n \rightarrow A$.

From Theorems 2 and 4 follows

THEOREM 5. If X is a bicompact space, then the Vietoris topology in 2x induces the topological convergence of nets of sets.

THEOREM 6. If X is a locally bicompact space without being bicompact, then the Vietoris topology in 2x does not induce the topological convergence of nets of sets.

Proof. Let $X_1 = X \cup \{a\}$ be the one-point bicompactification of X. since X is not bicompact, the point a is not isolated in X_1 , whence there exists a net $\{x_n, n \in D\}$ of points of X that converges to a. Let x_0 be an arbitrary point of X and let $A_n = \{x_0, x_n\}$. The net $\{A_n, n \in D\}$ is topologically convergent to $\{x_0\}$, but it does not converge to $\{x_0\}$ in the sense of the Vietoris topology.

III. Application to the theory of continua. A completely regular space is said to be a continuum if it is bicompact and connected.

Theorem 7. The set of all continua of a bicompact space X is closed in 2^X .

Proof. Let A be a closed non-connected subset of X and let $A=H_1\cup H_2$, where $H_1,\,H_2$ are closed and $H_1\cap H_2=0$. Then there are open sets $U_1,\,U_2\subset X_X$ with $H_1\subset U_1,\,H_2\subset U_2;\,U_1\cap U_2=0$. Clearly $\langle U_1,\,U_2\rangle$ is a neighbourhood of A and for each $B\in\langle U_1;\,U_2\rangle$, B is non-connected.

An immediate consequence of the preceding theorem and theorem 6 is the following:

THEOREM 8. If $\{A_n, n \in D\}$ is a topologically convergent net of continua of a bicompact space, then $\lim_{n \to \infty} A_n$ is a continuum.

THEOREM 9. If $\{A_i\}_{i\in I}$ is a monotone family of continua (i. e., $A_i \subset A_{i'}$ or $A \supset A_{i'}$ for each $\iota, \iota' \in I$), then $\bigcap_{i \in I} A_{\iota}$ is a continuum.

Proof. Let us agree that $\iota \leqslant \iota'$ in I if and only if $A_\iota \supset A_{\iota'}$. Then the set I is directed. Let ι_0 be an arbitrary element of I and let $I_0 = \underset{\iota \in I}{E} (\iota \geqslant \iota_0)$. By formula 5, $\underset{\iota \in I_0}{\operatorname{Lim}} A_\iota = \bigcap_{\iota \in I_0} A_\iota = \bigcap_{\iota \in I_0} A_\iota$. On the other hand, $A_\iota \subset A_{\iota_0}$ for each $\iota \in I_0$, and A_{ι_0} is bicompact, whence, by theorem 7, $\underset{\iota \in I_0}{\operatorname{Lim}} A_\iota$ is a continuum.

IV. Topological convergence of nets of sets of a non-locally bicompact space. In this section we shall prove the following theorem:

THEOREM 10. If X is a non-locally bicompact space, then there exists no topology in 2^X which induces the topological convergence of nets of sets (X is supposed to be regular).

By the product P D_{ι} of directed sets D_{ι} we understand the set of all functions f defined on I such that $f(\iota) \in D_{\iota}$ for every $\iota \in I$ partly ordered by the relation " $f \leq g$ in P D_{ι} if and only if $f(\iota) \leq g(\iota)$ in D_{ι} for each $\iota \in I$ " (we write " $n \leq n$ " in D" for elements n, n" belonging to the directed set D if and only if n = n" or the element n precedes the element n" in the sense of the relation which partly orders the set D). The product of two directed sets D_1 and D_2 will be denoted by $D_1 \times D_2$.

(W) Let D be a directed set and suppose that for every $n \in D$ a directed set E_n is given, and let $E = \underset{n \in D}{P} E_n$. Suppose that to every pair $\langle n, m \rangle$, where $n \in D$, $m \in E_n$, an element $x_{nm} \in \mathfrak{X}$ is assigned. If, for every $n \in D$, the net $\{x_{nm}, m \in D\}$ is convergent to x_n and the net $\{x_n, n \in D\}$ is convergent to x, then the net $\{y_{\langle n, f \rangle}, \langle n, f \rangle \in D \times E\}$ where $y_{\langle n, f \rangle} = x_{n,f(n)}$ is convergent to x (see [3], p. 69).

To prove Theorem 10 we shall show that the topological convergence of closed subsets of X does not satisfy the condition (W).

LEMMA 1. For every two directed sets D_1 and D_2 there exist a directed set D and functions φ_1 and φ_2 such that φ_i maps D onto D_i and $\varphi_i(n) \leqslant \varphi_i(n')$ in D_i for every $n \leqslant n'$ in D (i = 1, 2).

Proof. Let $D = D_1 \times D_2$ and $\varphi_i(n) = n_i$ for $n = \langle n_1, n_2 \rangle \in D$ and i = 1, 2.

LEMMA 2. If $\{y_k, k \in D_1\}$ is a net of points of a topological space X which has no cluster point and φ is a function which maps a directed set D onto D_1 in such a way that $\varphi(n) \leq \varphi(n')$ in D_1 for every $n \leq n'$ in D, then the net $\{x_n, n \in D\}$ where $x_n = y_{\varphi(n)}$ also has no cluster point.

Proof. Let x be an arbitrary point of X. Since x is not a cluster point of $\{y_k, k \in D_1\}$, there exist a neighbourhood U of x and an element $k_0 \in D_1$ such that $y_k \in X \setminus U$ for every $k \ge k_0$ in D_1 . If n_0 is an element of D such that $\varphi(n_0) = k_0$, then clearly $x_n \in X \setminus U$ for every $n \ge n_0$ in D; thus x is not a cluster point of $\{x_n, n \in D\}$.

Now we shall show that if X is a regular non-locally bicompact space, then the topological convergence of nets of closed subsets of X does not satisfy the condition (W).

Let x_0 be a point of X which has no neighbourhood with a bicompact closure and let D_1 be a basis of neighbourhoods of x_0 . Let us agree that $U\leqslant U'$ in D_1 if $U\supset U'$. Then D_1 is a directed set. Let x_1 be an arbitrary point of X which is different from x_0 and let $\{y_k,\ k\in D_2\}$ be a net of elements of X which has no cluster point. By Lemma 1 there exist a directed set D and functions φ_1 and φ_2 such that φ_i maps D onto D_i and $\varphi_i(n)\leqslant \varphi_i(n')$ in D_i for every $n\leqslant n'$ in D (i=1,2). Let us set $U_n=\varphi_1(n)$ and $x_n=y_{\gamma_2(n)}$ for every $n\in D$. Then $U_n\supset U_{n'}$ for $n\leqslant n'$ in D. By Lemma 2, then et $\{x_n,\ n\in D\}$ has no cluster point. Since \overline{U}_n is not bicompact, there exists a net $\{x_m^{(n)},\ m\in E_n\}$ of elements of \overline{U}_n which has no cluster point. Let us set $A_{nm}=\{x_1\}\cup\{x_n\}\cup\{x_m'\}$ for $n\in D$, $m\in E_n$. The net $\{A_{nm},\ m\in E_n\}$ is topologically convergent to $A_n=\{x_1\}\cup\{x_n\}$ for every $n\in D$ (since the net $\{x_m^{(n)},\ m\in E_n\}$ has no cluster point) and

the net $\{A_n, n \in D\}$ is topologically convergent to $A = \{x_1\}$ (since the net $\{x_n, n \in D\}$ has no cluster point). Let E = P E_n and let us consider the net $\{A_{\langle n,f\rangle}, \langle n,f\rangle \in D \times E\}$, where $A_{\langle n,f\rangle} = A_{n,f(n)}$. If U is an arbitrary neighbourhood of x_0 and $\overline{U}_{n_0} \subset U$ and f_0 is an arbitrary element of E, then $A_{\langle n,f\rangle} \cap U \neq 0$ for every $\langle n,f\rangle \geqslant \langle n_0,f_0\rangle$ in $D \times E$, whence x_0 belongs to $A_{\langle n,f\rangle} \cap U \neq 0$ and the net $A_{\langle n,f\rangle}, \langle n,f\rangle \in D \times E$ is not topologically convergent to A.

Remark. It is interesting to compare Theorem 8 with a result of Watson, who states that if X is a separable metric non-locally bicompact space, then the space 2^X considered as a L^* -space with the topological convergence of sequences of sets is not a topological space. Let us consider the following examples:

EXAMPLE 1. Let X be the unit (closed) interval $\langle 0,1 \rangle$ with a discrete topology. Then 2^X consists of all non-empty subsets of X. By Theorem 5, the lbc-topology in 2^X induces the topological convergence of nets of sets (a set with a discrete topology is clearly a locally bicompact space), whence, in particular, the lbc-topology induces the topological convergence of sequences of sets. On the other hand, the space 2^X considered as a L^* -space is not a topological space. In fact, the topological upper and lower limits of sequences of sets coincide respectively with the upper and lower limits in the sense of the set-theory (i. e., $\text{Li}A_n$

 $= \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n, \text{ Ls } A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n). \text{ Let } \mathfrak{X}_0 \text{ be a subset of } 2^X \text{ consisting of all closed non-empty subsets of } X \text{ (with the ordinary topology) and let } A \text{ be a } G_{\delta}\text{-set which is not an } F_{\sigma}\text{-set.} \text{ There exists a sequence } G_1 \supset G_2 \supset \ldots \supset G_n \supset \ldots \text{ such that } A = \bigcap_{n=1}^{\infty} G_n \text{ and for every } n \text{ there exists a sequence } A_{n1} \subset A_{n2} \subset \ldots \subset A_{nm} \subset \ldots \text{ of sets of } \mathfrak{X}_0 \text{ such that } G_n = \bigcup_{m=1}^{\infty} A_{nm}.$ We have $G_n = \underset{m}{\text{Lim}} A_{nm} \text{ and } A = \underset{n}{\text{Lim}} G_n, \text{ i. e., } A \in [\mathfrak{X}_0]_L]_L \text{ ([\mathfrak{X}_0]}_L \text{ denotes the limit-closure of a set } \mathfrak{X} \subset 2^X). \text{ But } A \notin [\mathfrak{X}_0]_L. \text{ In fact, } A \in [\mathfrak{X}_0]_L \text{ implies the existence of a sequence } (B_n) \text{ of sets of } \mathfrak{X}_0 \text{ such that } A = \underset{n=k}{\text{Lim}} B_n,$ i. e., $A = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} B_n.$ But the set $C_k = \bigcap_{n=k}^{\infty} B_n$ belongs to \mathfrak{X}_0 and it follows that A is an F_{σ} -set. Thus the space 2^X considered as a L^* -space is

not a topological space but there exists a topology in 2x which induces

the topological convergence of arbitrary nets of sets, in particular there

exists a topology in 2x which induces the topological convergence of

sequence of sets.

EXAMPLE 2. Let X_1 be a set of the power of the continuum and α a point which does not belong to X_1 . Let us introduce a topology in the set $X = X_1 \cup \{\alpha\}$ taking as a basis of neighbourhoods the family consisting of all the one-point sets $\{x\}$ where $x \in X_1$ and all the sets of the form $X \setminus S$ where S is an arbitrary enumerable subset of X_1 . Then, as may easily be verified, the equalities Ls $A_n = ls A_n$ and Li $A_n = li A_n$ hold for every infinite sequence (A_n) of closed subsets of X (ls A_n and $\text{li}\,A_n$ denote, respectively, the upper and the lower limits of the sequence (A_n) in the sense of the set-theory, i. e., $\lg A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$, $\lim_{n \to \infty} A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$) and it follows that there exists a topology in 2^X which induces the topological convergence of sequences of sets. (In fact, if Y is an arbitrary set considered as a discrete topological space, then $LsA_n = lsA_n$, LiA_n $= li A_n$ for every sequence of subsets of Y. But a discrete space is locally bicompact and it follows that the convergence of sequences of sets induced by the lbc-topology in 2^X coincides with convergence in the sense of the set-theory.) But X is not locally bicompact and it follows by Theorem 10 that there exists no topology in 2^X which induces the topological convergence of arbitrary nets of sets. One may also shown (in the same way as in Example 1) that the space 2^{x} considered as a L^{*} -

The following problem arises:

space is not a topological space.

PROBLEM. Suppose that 2^X considered as a L^* -space is a topological space. Does the sequential topology in 2^X induce the topological convergence of arbitrary nets of sets? (It is true if X is separable metric. In fact, in this case, if 2^X considered as a L^* -space is a topological space, then X is locally bicompact, whence the lbc-topology in 2^X induces the topological convergence of nets of sets. But X being separable metric implies that 2^X with a lbc-topology is first countable, and it follows that the lbc-topology coincides with the sequential topology, whence the sequential topology in 2^X induces the topological convergence of arbitrary nets of sets.)

References

^[1] P. S. Aleksandroff, Über die Metrisation der im Kleinen kompakten topologischen Räume, Math. Ann. 92 (1924), p. 294-301.

^[2] F. Hausdorff, Mengenlehre, Berlin-Leipzig 1927.

^[3] J. L. Kelley, General Topology, New York 1955.

icm

[5] E. Michael, Topologies on Spaces of Subsets, TAMS 71 (1) (1951), p. 152-182.

[6] L. Vietoris, Bereiche zweiter Ordnung, Monatshefte für Mathematik und Physik 33 (1923), p. 49-62.

[7] P. D. Watson, On the Limits of Sequences of Sets, Quart. Jour. Math. (2) 4 (1953), p. 1-3.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Recu par la Rédaction le 12.4.1957

On the spaces of ideals of semirings

by

A. Białynicki-Birula (Warszawa)

- 1. L. Gillman (see [2]) has proved that if a structural set $\mathcal J$ of ideals of a ring is a Hausdorff space under Stone topology, then every prime ideal which contains the intersection of ideals in $\mathcal J$ is contained in at most one ideal of $\mathcal J$. It is easy to generalize this theorem to the case when R is a semiring (theorem 3.9). The principal result of this paper is the proof of a converse theorem for semirings R which are c-regular (1) (this class contains in particular distributive lattices, commutative rings and biregular rings) and for sets consisting exclusively of prime ideals of R. Moreover we give a few theorems on some topologies of families of sets having the finite character as well as some applications of those theorems to problems concerning spaces of ideals.
- **2.** Let B be the set formed only of integers 0 and 1. Let B^1 be the set B with the following definition of topology: open subsets of B are $\mathcal{O}(2)$, $\{0\}$ and $\{0,1\}$. Let B^2 be the set B with the Hausdorff topology.

We shall consider an arbitrary but fixed non-empty set R and a set $\mathcal J$ of subsets of R. It is known that we can treat $\mathcal J$ as a subset of $P_a B_a$ where $B_a = B$ for every $a \in R$ (we assign the characteristic function $\chi_i \in P_a B_a$ to each $i \in \mathcal J$). Let $\mathcal J^*$ denote the subset of $P_a B_a$ such that $x \in \mathcal J^* \equiv \sum_{i \in \mathcal I} (x = \chi_i)$.

Let \mathcal{J}^1 and \mathcal{J}^2 denote respectively the set \mathcal{J}^* with the following definitions of topology:

- 1. a subset $\mathcal{I} \subset \mathcal{I}^*$ is open if and only if there exists an open subset \mathcal{I}_1 of $\underset{a \in \mathbb{R}}{P} B_a^1$ (where $B_a^1 = B^1$ for every $a \in \mathbb{R}$) such that $\mathcal{I}_1 \cap \mathcal{I}^* = \mathcal{I}$;
- 2. a subset $\mathcal{I} \subset \mathcal{J}^*$ is open if and only if there exists an open subset \mathcal{I}_1 of $\underset{a \in R}{P} B_a^2$ (where $B_a^2 = B^2$ for every $a \in R$) such that $\mathcal{I}_1 \cap \mathcal{J}^* = \mathcal{I}$.

⁽¹⁾ This notion will be defined later.

⁽²⁾ Ø denotes here the empty set.