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On the convergence of nets of sets
by
S. Mréwka (Warszawa)

“The topological convergence of mnet (*) of subsets of a topological
space X may be defined in the same manuer as the topological con-
vergence of a sequence of sets: if {4,,n e D} is a net of subsets of X,
then Lid, (Lisd,) is defined as the set of all » ¢ X such that every neigh-
bourhood of w intersects 4, for almost all (arbitrarily large) & (%). A net
{4,,neD)} is said to be topologically convergent (to a set A) if
LA, = Lid, (= A) and in thiz cagse the set 4 will be denoted by
Lim A4,.

Hausdorff ([2], p. 145) has shown that if X is a compact metric
gpace, then in the space 2% consisting of all closed non-empty subsets
of X a metric may be defined such that the convergence of sequences
of sets induced by this metric (%) coincides with topological convergence.
This result has been generalized by Watson [7] who has shown that
if X is a locally compact separable metric space then another metric
may be defined in 9% which induces topological convergence. Watson
has also shown that if X is not locally compact, then the space 2% con-
sidered as a L*-space (see [4], p. 89 and p. 274) topological convergence
is not a topological space. . .

The present paper is devoted to generalizations of the above results.
It will be shown that:

(1) A met is a function defined on a directed set (a partially ordered set D is called
directed it for every m,, n, « D an eloment n ¢ D may be found such that 5, < n, 1< 0,
where - is the relation which partially oxders the get D). If a net defined on D assigns
to an element 1 « 1) an element x,, then it will be denoted by {z,, n €D} (see [3], p. 65).

(%) We say that o statement 7 on elements of a directed set D is fulfiled for

almost all w ¢ D if an element n, ¢ ) may be found such that T is fulfiled for
every & ng; :

arbitrarily large n « D if the set of all n « I for which T ig fulfiled is cofinal with D.

() We say that & metrie ¢ (a topology &) for a set X induces a certain conver-
gence of nets in X of some sort if each net in X of that sort is convergent with respect
to this convergence if and, only if it is convergent with regpect to the metric ¢ (the
topology J).
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1. If X is a Hausdorff bicompact space, then the Vietoris topology
in 2% (the basis of the Vietoris topology in 2% consists of all sets of the
form (U, ..., Und, where U; are arbitrary open sets in X and (Uy, ..., Uy}

n
= EX(ACU Uy A~U;£0; i=1,..,n) (see [6] and [5], p. 153) in-
de2 i=1
duces the topological convergence of nets of sets and that this is not
the case if X it locally hicompact without being bicompact.
. 9. If X is a locally bicompact space, then another topology may
be defined in 2% which induces the topological convergence of nets of sets,

3. If X is not locally hicompact, then there exists no topology in a&
which induces the topological convergence of nets of sets.

1. Some properties of topological limits.

1. Lid,CLs A4,.
nel) nen

This property is obvious.

2. If & net {4,,n e D} topologically converges to A and K is a cofinal
subset of D, then the net {A,, n ¢ B} (*) is also topologically convergent and
Lim A, = 4.
nekl

Proof. If # ¢ A then every neighbourbood U of @ infersects 4, for

almost all # ¢ D; thus U intersects 4, for almost all n ¢ B and @ ¢ Li 4,,
nes

whence 4 C Li 4,. If «¢ A then there exists a neighbourhood U, of z

nek
that is disjoint with 4, for almost all n ¢ D; thus U, is disjoint with 4,
for almost all n ¢ ¥ and z,¢ Ls 4,, whence Ls 4, C 4. Trom 4 CIi 4,
nel

nel nesy

and Li: 4, C A it follows that the net {4,,neE} is topologically con-
ne

vergent and Lim 4, = A.
nel

8. If F is closed and A, CF for all n e D, then Lg A, CF.
nelh
In fact, if 2 eLsd,, then every neighbourhood U of @ intersects
some A,; thus U contains points of F and « e F.
4, In A,= U A,.

neD melD nxm

Proof. If z e LsD Ay, then for each m ¢ D and each neighbourhood U
neE

of » there is an n > m such that U interseets A,, whence U intersects
U Ay thus 2 e {J 4, for each m and it follows that » e J A,. If
m

a=m = meD nzm

o (*) Obviously a cofinal subset of a directed set is also a directed set; thus {4_, » « B}
is, in faot, a net. "
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@ ¢ Led,, then there is a neighbourhood U, of & and m, ¢ D such that U
intersects no A, with n > m,, whence z¢é | 4,.

nzmp ‘
B. If AnC Ay for m, ' e Dy n < »', then the net {A,,n e D} is topo-
logically convergent and TimA, = Ay .
nell nel

Proof. Clearly, () A, C Li 4,. On the other hand, from formula 4
nel nen
follows T8 Ap U= 4.

nedd amel)
6. s (A, By)=1s 4,0ls B,.
nelp nel) nel)

Proof. T 2z eLs (4, By) and @ ¢ Ly 4,, then there are a neigh-
D nel)

ne
bourhood 17, of # and an index =, such that Ug~.dy,= 0 for a2 i,.
T# T is an arbitrary neighbourhood of @, then Usn U intersects Apu B,
for arbitrarily large n. But Uynda= 0 for @ > n, implies that U inter-
sects B, for arbitrarily large n; thus e,}:i B, and nIﬁ) (4,0 B, C nIS; Apo

o Ls By. I ¢ Ls (4w By), then there is a neighbourhood V of @ which
nel) nel
ig digjoint with A, u B, for almost all n and it follows that x énI:}q) A,

and ¢ Ts Ba, whence L (dnw By) D L A,o Ls By.
neD nel

nen nel)
7. Ti(ApwBy) CLi dpv Ti B,.
nel nekl nen
Proof. 4,C 4y B, implies LiD A,C Liﬂ (Apw By).
ne ne

8. If nets {d,,neD} and {B,, neD} are topologically convergent,
then the met {Apw By, n e D} is topologically convergent omd
Tim (Agw Bp) = Lim 4, o Lim B, .
neh nepD neB ¢
Proof. This iz an immediate consequence of formulae 6 and 7.

1I. Ibe-topology in 2%, I_li this section X is supposed to be 10;
cally hicompact, and. 9% consists of all elosed non-empty gubsets of X.
The basis of the Ibe-topology in 9% of all gets of the form [Ul,' ey Uns
Viy ooy Vie] where Uy and V; are arbitrary open gets in X with & bicompact
closure and

[Ty ey Unj v“‘"’vf]mﬁf‘,x(lln Ut 05 AnV;=05 i=1,..,% j= 1,0, k),

A bagis B of X is called bicompact if for every U ¢« B, U is bicompact.

TarorEM 1. If B is a bicompact basis, then the family of all [U{_, ey Uns
Vs eory Vi) where U, Ve B is @ basis for the Ibe-topology in 27,

Proof. Let A e[Us, ey Unj Vi ey Vi) where U; and V; 'are arbi-
trary open sets with a bicompach closure, It must be. shown that there
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exist U, .., Us, Vi,..,Vie®B such that 4 e[UF, ..., Uh; VY, ., V]
CiUy e, Uns Vi, oeey Vil Lot us take Uf ¢ B such that Uy CU; and
ARTUF#0 (=1, ...,n). Since 4~V;=0, for every x<V; there exists

V2 B such that g eV and V7 is disjoint with A. Since v,cu vy

melf’,-
and V, is bicompact, there exists a finite system Vi, ..., Vi7" such that
V; CVitu...uVin. Obviously

A LTS, o, U VO, oo, VO, VL L Vs, Vi, e, V]
ClUyy ey Uy Viy ooy Vil o

TasoreM 2. If X is a bicompact space, then the Vietoris topology
in 2% coincides with the Ibe-topology.

Proof. Let 4 e (T, ..., Upnd. The set ¢ =X\(U;w..ol,) iy hi-
compact and disjoint with 4, whence there exists a finite system Vy, ..., Vi
of open sets that have closures disjoint with A snch that 0 CVyu... LT,
Obviously A e[ Uy, ooy Unj Vip ooy Vil CUyy ooy Und.

Conversely, let A e[Uy, ..., Un; Vy,.., Viel. Setting Uf = ANV )
(i =1,...,n) and Usyy = X\ (Vyw..w Vi) we have A « CUY, ..., Uk, Uhisd
ClUOyy cevs Uny Vig ooy Vil _

TeEOREM 3. The space 2~ with a Ibc-topology is locally bicompact.

Proof. Let X;== Xu{a} be the Aleksandroff one-point bicompact-
ification of the space X (see [1] and [3], p. 150). The space X, = 2™
with the Vietoris topology is bicompact (see [5], p. 161). Let ¥’ be the
set of all 4 ¢ %, such that a e A and X, = X'\ {{a}}. The set X' iy cloged
in ¥,, whenece it is bicompact and it follows that ¥, is locally bicompact.
We shall show that 2% (with a Ibe-topology) is homeomorphic to X,.
Let % be the mapping that assigns to a set 4 2% the set A {a}. Ob-
viously, kb is a one-to-one mapping and h(2%¥) = ¥, (if 4 is a closed sub-
set of X, then AU {a} is a closed subset of X,). Let <Uy, ..., U,> be an
arbitrary neighbourhood of Ao {a} in ¥, and let Uy, ..., U; denote all
the sets among Uy, ..., Uy that do not contain a. For every i, (:" =1, .., 8)
there exists an open set Uy of X with a bicompact closure in X such
that A~ Uf=0 and UFCU,;. Let €= X \(Uyu...w U,). We have a ¢ 0,
whence ¢ C X. Since 0 is bicompact and 4~ C = 0, there exists a finite
system V7, ..., Vy of open sets of X having bicompact closures in X such
that OCCViu..uVy and 4AAV;=0 (f=1,.,k). It follows that
U=[Uf, .., Us; Vi, Vil is a neighbourhood of A in 2% and h(M)
C Uy« Un). Conversely, it W= [Ty, ..., Un; Vi, ..., Vil is an arbitrary
neighbourhood of 4 in 2%, then setting Uf = UN\(Vyu .o u V) (i =1, ..., 1)
and Uhy= X\(Viv..uPy) and W= (UL, ..., Uk, Uk.> we see t]’nat
U* is a neighbourhood of 4 u {a} in %, and kY U*) C 1.
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TugorEM 4. lbe-topology in 2% induces the topological convergence
of mets of sets.
Proof. Let us agree to write 4,4 if a net {4,, n eD} is con-
vergent to A in the sense of lbe-topology. .
Let {d., neD} be a net of closed non-empty subsets of X and
let A,—~A. If @ ¢ A then there exists a neighbourhood V; of # with a bi-

. compact closure and disjoint with 4. Let U, be an arbitrary neigh-

bourhood with a bicompact clogure which intersects A. Since A e [Uy; V3],
A, e[Uy Vy] for almost all neD and Ay~ V7, =0 for almost all neD
and « ¢ L.T)An. Hence L.I< A,CA. Let #¢ A and let U be an arbitrary
‘noighbmwl;'hood of . 'l?"l;(\)ru exists & neighbourhood U, of & with a bi-
compact closure that ix contained i U. Since A e[Uy; ], AnelUsy ]
for almogt all n e D and An~ U 70, whence A,n U0 for almost all
neD and welid, Thus ACLi A4, From Ls A4,CA and AC 1i4,

ns() nel) nel) nel
it follows that Limd, == A.
nel
Let Ts A, C A CTLi 4y and let [Ty, ooy Us; Vyy -y Vil be an arbi-

nes) nel) -
trary mneighbourhood of A in 2%, Suppose Ann~ Uy=0 for some ¢

(i =1, ..., 8) and for arbitrarily large n e D and let & =. E (4, ~U;=0).

nel

The set J i8 cofinal with D, whence, by the property 2, Timd, = A.

. nell .
But 4, C X U; for all n e B and the set X U, is closed, whenee it fol-

lows, by the property 3, that 4 C X\ Uy, and this contradiets 4~ U; 0.
Hence A, Uy 0 for all £ (i == 1,...,s) and for almost all » ¢ D. Sup-
pose A~V;0 for some § (j=1, ., k) and for arbitrarily large n e D.
Tet By = Ji (A, V;50). The set B, is cofinal with D, whence Lim 4, == 4.

n el

For evergre n ¢ B, there exists a point », that belongs to An:wvj and
for ¥, is bicompact; there exists & point z, that is a cluster point (see [3],
p. T1) of the net {m,, n ¢ B} Obviously every neighbourhood of x, inter-
sects A, for arbitrarily large n e Ey, whence x, enI:g Ap= I;iguln: A.
Oun the other hand, z, € 75, which contradicts 4~ V= 6 Thus A;n V,=0
for all § (j =1, .., k) and for almost all n e D. Finally, Ay e [Uy,y ooy Uss
Viy ey Vi] for almogt all n e and 4, 4.

From Theorems 2 and 4 follows .

TugorsM 5. [f X 48 a bicompact space, then the Vietoris topology
in 9% induces the topological convergence of nets of sets.

TaporeM 6. If X is a locally bicompact space without being bicom-
pact, then the Vieloris topology n 9X does not induce the topological con-
vergence of meis of sets.

Proof. Let X,= X w {a} be the one-point bicompactification of X.
{ince X is not bicompact, the point a is not isolated in X,, whence there
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exists a net {2, n D} of points of X that converges to «. Let @, be
an arbitrary point of X and let A, = {&,, Z»}. The net {4yn, neD) i8
topologically convergent to {a,}, but it does not converge to {z,} in the
sense of the Vietoris topology.

1II. Application te the theory of continua. A completely
regular space is said to be a continuwm if it is bicompact and connected.

TraEOREM 7. The set of all continua of a bicompact space X is closed
in 9.

Proof. Let 4 be a closed non-connected subset of X and let
4 = H, H,, where H,, H, are closed and H,~H,== 0. Then there are
open sets U, U,C Xy with H,C Uy, H,C Uy Usr Uy== 0. Clearly
(Uy, Uy is & neighbourhood of 4 and for each B e (U Uy, £ is non-
connected.

An immediate consequence of the preceding theorem and theorem 6
is the following: '

THEOREM 8. If {4, n e D} is a topologically convergent met of con-

tinua of a bicompact space, then Lim A, 4s a continwum.
neD

THEOREM 9..1f {4,},c7 is & monotone family of continua (. 6., 4,C 4,
or AD Ay for each o, eI), then (M A, s a continuum.
el

Proof. Let us agree that ¢ <+' in I if and only it 4,0 A, . Then
the set I is directed. Let ¢, be an arbitrary element of I and let I,
=K (=) By formula 5, Limd, = () 4,= () 4.. On the other hand,

1€l relp el vely
A, CA, for each tely, and 4, is hicompact, whence, by theorem 7,
Lim 4, is a continuum.
telp
1V. Topological convergence of nets of sets of a non-lo-
cally bicompaet space. In this section we shall prove the following
theorem:

THEOREM 10. If X is a non-locally bicompact space, then there exists
no topology in 2% which induces the topological convergence of nets of sels
(X is supposed to be regular).

By the product P D, of directed sets D, we understand the seb

el
of all functions 7 defined on I such that f(:) ¢ D, for eva v e I partly
ordered by the relation ¢“f<g¢ in P D, if and only if (1) < g(s) in D,

for each ¢ e I” (we write “n < n' 1n D> for elements n,an’ belonging
to the directed set D if and only if % = »’ or the element n procedes the
element #’ in the sense of the relation which partly orders the set D).
The product of two directed sets D, and D, will be denoted by 1Dy xD,.
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It is known that a convergence of nets of elements of a set X in-
duced by some topology in X satisties the following condition:

(W) Let D be a directed set and suppose that for every n e D a directed
set By is given, and let B = P B,,. Suppose that to every pair {n,m),

nep
where we D, me By, an element xu, ¢ X ts assigned. If, for every ne D,
the net {Tyy, m e DY s convergent to 1, and the nel {x,, neD} is con-
vergent to x, then the net {Yapn, <Ny [> e DXE} where Yo = Tnjm
is convergent to x (see [3], p. 69). :
To prove Theorem 10 we shall show that the topological conver-
gence of closed subsets of X does not satisfy the condition (W).

LeMuA 1. For every two directed sets Dy and D, there exvist a directed
set D and functions g, and g, such that @; maps D onto D; and g(n) < g(n')
in Dy; for every n<n' in D (i=1,2).

Pr()of. Let D= D, xDy and en)=n; for n= (g, Ny e I) and
=1,

LeMMA 2. If {yn, keD,} is a net of points of a topolojwal space X
which has no cluster point and ¢ i o function which maps o directed set D
onto Dy in such o way that p(n) < p(n') in Dy for every n << a' 2n D, then
the net {&,, n e D} where = Yy also has no cluster point.

Proof. Let @ be an arbitrary point of X. Since @ is not a cluster
point of {yr, ke Dy}, there exist a neighbourhood U of z and an ele-
ment ko e D, such that yy e X - U for every k = ko in Dy. If ng is an ele-
ment of D sueh that g(n,) = k,, then clearly @, e X U for every » = n,
in D; thus » is not a cluster point of {x,, neD}

Now we shall show that if X is a regular nom-locally bicompact
space, then the topological convergence of nets of closed subsets of X
does not satisfy the condition (W).

Let @, be a point of X which hag no neighbourhood with a bicompact
closure and let D, be a basis of neighbourhoods of z,. Let us agree that
U < U in D, it UD U Then I is a directed set. Let #, be an arbitrary
point of X which is different from @, and let {y;, ke.D,} be a net of
elements of X which has no cluster point. By Lemma 1 there exist a di-
rected set I and functions g, and @, such that ¢; maps D onto D; and
@i(n) =< (p;(n ) in Dy for every =5 n' in D (i = 1, 2). Let us set U, == @y(n)
and @, = Y, for every wnel. Then U, Un/ for n < a' in D. By
Lommsa 2, the net {z,, % e D} hag no eluster point. Since T, is not bi-
compact, Lholo exists a net {x, wm ¢ B,} of elements of U, which has
no clugter point. Let us set Anp = {@ ) o {n} o (&P} for n eD m e By.
The net {Am., m e E,} is topologically convergent to A= {m}{zn}
for every m €D (since the net {#{P, m ¢ E,} has no cluster point) and
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the net {4, n e D} is topologically convergent to A = {m} (since the
net {&,, % ¢ D} has no cluster point). Let I = P B, and let us consider

the net {Aewmp, ,[> e DxXH}, where A<n,,«>=An,m) It U ig an

arbitrary neighbourhood of %, and UnCU and f, is an arbitrary ele-

ment of B, then Ayp~ U0 for every <m,f> = {n,fo in DX,

whence z, belongs to  Li Ay, and the net {Awp, 4, > e DXE}
(ufeDXE . :

is not topologically convergent to A.

Remark. It is interesting to compare Theorem 8 with a result of
‘Watson, who states that if X is a separable metric non-locally bicom-
pact space, then the space 2% considered as a L*-space with the topo-
logical convergence of sequences of sets is not a topological space. T.eb
us consider the following examples:

BExaMprLr 1. Let X be the unit (closed) interval <0, 1> with a dis-
crete topology. Then 2% consists of all non-empty subsets of X. By Theo-
rem 5, the lbc-topology in 2% induces the topological convergence of
nets of sets (a set with a discrete topology is clearly a locally bicompact
space), whence, in particular, the Ibe-topology induces the topological
convergence of sequences of sets. On the other hand, the space 2% con-
sidered as a L*-space is not a topological space. In fact, the topological
upper and lower limits of sequences of sets coincide respectively with
the upper and lower limits in the sense of the set-theory (i.e., Lid,

n

U m An, Lsd, = ﬂ U 4,). Let ¥, be a subset of 2% consisting

=1 n=k k=1n=k
of all closed non-empty subsets of X (with the ordinary topology) and
let 4 be a G5-set which is not an F,-set. There exists a sequence &, D G,
D..D6G,D ... such that 4 = ﬂ @, and for every u there exists a se-

n=1

quence A,,,ICAMC o C Ay C... of sets of X, such that G, = U Ay -
. ]

We have G, = Limd,, and 4 =TLim@,, i. ¢., 4 € [[%,]r], ([(¥]. denotes
m n

the limit-closure of a set X C 2%). But 4 ¢ [%,];. In fact, A € [¥,]; implies
the existence of a sequence (B,) of sets of X, such 1.hat A == lelfm

i.6, A= {J (N B,. But the set ¢, = ﬂ B, belongs to ¥, and it fol-

k=1 n=k neale
lows that 4 is an F,-set. Thus the space 2% considered as a L*-gpace iy
not a topological space but there exists a topology in 2% which induces
the topological convergence of arbitrary nets of sets, in.particular there

exists a topology in 2% which induces the topological convergence of
sequence of sets.
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IxamrLe 2. Let X; be a set of the power of the continuum and «

a point which does not belong to X;. Let us introduce a topology in

the set X = X, {o} taking as a basis of neighbourhoods the family

consisting of all the one-point sets {x} where x ¢ X, and all the sets of

the form X\ § where § is an arbitrary enumerable subset of X;. Then,

as may easily be verified, the equalities LsAd, = Is 4, and Lid,=1li4,
n n N

n 3
hold for every infinite sequence (4,) of closed subsets of X (Is4, and
n

li4,, denote, respectively, the upper and the lower limits of the sequence
T

(4,) in the sense of the set-theory, 7. e., 1&A,, = ﬂ U Ay, hA,, = U ﬂ An)
k= 1 n=k k=1 n=k
and it follows that there cxisty a topology in 2% which 1nduces the topo-

logical convergence of sequences of sets. (In fact, if ¥ is an arbitrary
set congidered as a discrete topological space, then Tisd, ==1sd,, Tid,
n n «n

= 1id, for every sequence of subsets of ¥. But a discrete space is locally
n

bicompact and it follows that the convergence of sequences of sets in-
duced by the Ibe-topology in 2% coincides with convergence in the sense
of the set-theory.) But X is not locally bicompact and it follows by
Theorem 10 that there exists no topology in 2% whieh induces the topo-
logical convergence of arbitrary mets of sets. One may also shown (in
the same way as in BExample 1) that the space 2 9% considered as a L*-
space is not a topological space.

The following problem arises:

ProBLEM. Suppose that 2% considered as a I*-space is a topo-
logical space. Does the sequential topology in 2% induce the topological
convergence of arbitrary nets of sets? (It is true if X is separable metric.
In fact, in this case, if 2% congidered as a L*-space is a topologmal space,
then X is locally bicompact, whence the lbe-topology in 2% induces the
topological convergence of nets of sets. But X being- separable metric
implies that 2% with a lbe-topology is first countable, and it follows
that the Ibc-topology coincides with the sequential topology, whence
the sequential topology in 2% induces the topological convergence of
arbitrary nets of sets.)
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On the spaces of ideals of semirings
by

A. Bialynicki-Birula (Warszawa)

1. L. Gillman (see [2]) has proved that if a structural set J of ideals
of a ring is a Hausdorff space under Stone topology, then every prime
ideal which contains the intersection of ideals in J is contained in at
most one ideal of J. It is easy to generalize this theorem to the case
when R is a semiring (theorem 3.9). The principal result of this paper
is the proof of a converse theorem for semirings R which are ¢-regular (1)
(this class contains in particular distributive lattices, commutative rings
and biregular rings) and for sets consisting exclusively of prime ideals
of R. Moreover we give a few theorems on some topologies of families
of sets having the finite character as well as some applications of those
theorems to problems concerning spaces of ideals.

2. Let B be the set formed only of integers 0 and 1. Let B* be the
set B with the following definition of topology: open subsets of B are
9 (?), {0} and {0, 1}. Let B2 be the set B with the Hausdorff topology.

We shall consider an arbitrary but fixed non-empty set R and
a set J of subsets of R. It is known that we can treat J as a subset of

1132 B, where B,= B for every a ¢ E (we assign the characteristic func--
a€

tion g ¢ P B, to each iej ). Let g* denote the subset of P B, such
aeR aeR
that ze J*= 3 (# = 7).
ey

Let J* and J? denote respectively the set J* with the following de-
finitions of topology:

1. a subset JC * is open if and only if there exists an open sub-

set J, of P B (where Bi= B' for every a e R) such that , ~J*=7;
well

2, a subset IC g* iy open if and only if there exists an open sub-

set J, of P B: (where Bi== B for every aeR) such that J,~n J*=J.

aeld

(*) This notion will be defined later.
(*) @ denotes here the empty set.
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