Coutures et tapis
par
B. Knaster et A. Lelek (Wrocław)

1. Introduction. Nous appelons "simple mapping" au sens de Borsuk et Moluki [1], p. 84) toute fonction continue f prenant chacun de ses valeurs au plus pour deux valeurs distinctes de sa variable.

Nous appelons tapis tout continu T localement connexe (image continue du segment de droite) situé sur la surface sphérique S, étant une courbe (c'est-à-dire de dimension 1) et dont le complémentaire se compose d'une suite de disques (c'est-à-dire de régions ayant pour frontières des courbes planes fermées) aux fermures disjointes. Soient D_n, D_{n+1}, \ldots ces disques et C_1, C_2, \ldots leurs frontières; $C_n = \partial D_n$. Par suite de la connectivité locale du tapis, le diamètre de D_n est aussi celui de C_n, tendant vers zéro en vertu du théorème de Schönflies (voir [3], II, p. 363) à zéro:

$$\lim_{m \to \infty} \delta(D_m) = 0 = \lim_{m \to \infty} \delta(C_m).$$

Tout tapis a évidemment une image homéomorphe sur le plan: tapis-plan (1). La dénomination est due, en fait, à l'aspect d'une courbe plane de Sierpiński [7], dite universelle (car contenant des images homéomorphes de toutes les courbes planes) et connue par ses nombreuses applications. D'après un théorème de Whyburn (voir [8] et [9]), la démonstration va paraître prochainement (voir ce volume trois propriétés suivantes des ensembles plans X sont équivalentes:

(i) X est un tapis;
(ii) X est un courbe localement connexe qu'aucun point ne coupe localement;
(iii) X est homéomorphe à la courbe universelle de Sierpiński.

Nous allons montrer que tous les points d'un tapis sont des points de ramification d'ordre 2^m (au sens de Menger; voir [6]), p. 97) et définir un tapis G qui sera obtenu du segment de droite par une couture. C'est la solution du problème 2 de Borsuk et Moluki ([15], p. 92) (6). Elle sera

2. Préliminaires. Fixons les notations: I désignera le segment $0 < x < 1$; E le plan $z = 0$, P le carré au côté I sur E, S_2 la surface sphérique $x^2 + y^2 + (z - 1)^2 = 1$, P_x le point $(0, 0, 2)$ de S_2 (son pôle nord), $x: S_2 \to P_x \to E$ la projection stéréographique de S_2 sur E du point P_x, enfin R l'ensemble des points de E aux deux coordonnées rationnelles. Les notations plus générales seront empruntées à [3].

E étant un espace métrique (avec la distance d) et compact, nous entendrons ici par décomposition F de E toute famille $F \subseteq \mathcal{P}E$ d'ensembles T_i convexes, non-vides, disjoints deux à deux — dits tranches de la décomposition F — et tels que $E = \bigcup_{i \in F} T_i$. La semi-continuité supérieure d'une décomposition F sera entendue comme dans [3], II, p. 42, à savoir que si F est un ensemble fermé quelconque dans l'espace E, la somme $\bigcup_{i \in F} T_i$ y est aussi un ensemble fermé.

Lemme 1. $X = \bigcap_{i \in F} T_i$ est un ensemble fermé, disjoints et tels que

$$\lim_{m \to \infty} \delta(X_m) = 0,$$

et F_m étant une décomposition supérieurement semi-continue de X_m, la décomposition F de E en tranches des décompositions F_m pour $m = 1, 2, \ldots$ et en points individuels de l'ensemble $E - \bigcup_{m=1}^{\infty} X_m$ est supérieurement semi-continue.

Démonstration. Soit $\{T_n\}$ une suite convergente de tranches de la décomposition F de E.

Si une infinité des T_n appartient à une même décomposition F_m, la limite de ces tranches, qui est en même temps celle de la suite $\{T_n\}$, est contenue dans une seule tranche de la même décomposition T_m, en raison de la semi-continuité supérieure de cette décomposition (voir [3], II, p. 45), donc aussi dans une seule tranche de la décomposition F, car $F_m \subseteq F$.

S'il n'y a, par contre, qu'un nombre fini des T_n dans chaque F_m pour $m = 1, 2, \ldots$, il résulte de (2) et de l'hypothèse d'après laquelle les tranches de $F = \bigcup_{m=1}^{\infty} F_m$ se réduisent à des points qu'il en est de même de la limite de la suite $\{T_n\}$; cette limite est donc encore contenue dans précédée par un théorème d'après lequel une couture de G peut fournir un carré ou une surface de sphère, de sorte que les deux certains continus (de dimension 2) se laissent obtenir du segment rectiligne par superposition de deux coutures. Les autres résultats établis dans la suite ne sont qu'accessoires.
une seule tranche de F. La condition précitée, équivalente à la semi-continuité supérieure de la décomposition F (voir [3], II, p. 45, (ii)), est ainsi satisfaite dans les deux cas possibles.

Lemme 2. Tout ensemble dénombrable P dense dans S_2 équivaut topologiquement à l'ensemble $s^{-1}(B)$.

Démonstration. Il s'agit d'établir une homéomorphie $h: S_2 \rightarrow S_2$ telle que $h(P) = s^{-1}(B)$.

On peut évidemment admettre que $p_\infty \subset S_2$. Comme dénombrable et dense dans T, l'ensemble $s(P)$ équivaut topologiquement à R (voir [5], p. 264), c'est-à-dire qu'il existe une homéomorphie $g: T \rightarrow R$ telle que $s(P) = g^{-1}(R)$. La fonction $h = s^{-1}g$ est donc une homéomorphie transformant l'ensemble $S_2 \setminus \{p_\infty\}$ en lui-même et l'on a $h(P) = s^{-1}(B)$. Or, $S_2 \setminus \{p_\infty\}$ étant une région et son complémentaire (p_∞) étant de dimension 0, cette dernière se laisse prolonger en celle de S_2 en S_2 (voir [3], II, p. 386).

3. Partie irrationnelle du tapis. T étant un tapis, appelons ses sous-ensembles $N = T - \bigcup_{n=1}^{\infty} C_n$ et $T - N = \bigcup_{n=1}^{\infty} C_n$ partie irrationnelle et rationnelle de T respectivement. Évidemment,

$$N = S_2 - \bigcup_{n=1}^{\infty} D_n.$$

Théorème 1. T étant un tapis, il existe une fonction continue $\varphi: S_2 \rightarrow S_2$ satisfaisant aux conditions:

(4) La fonction partielle $\varphi|N$ est une homéomorphie,

(5) $\varphi(N) = S_2 - s^{-1}(R)$,

(6) $\varphi(T - N) = \varphi(S_2 - N) = s^{-1}(R)$.

Démonstration. On a $S_2 = N \cup D_1 \cup D_2 \cup \ldots$ en vertu de (3). Considérons la décomposition F de S_2 en continus disjoints D_m, où $m = 1, 2, \ldots$, et en points individuels de N. En posant $F_m = (D_m)$ et en tenant compte de (1), les hypothèses du lemme 1 se trouvent satisfaite, d'où la semi-continuité supérieure de F. Soit donc $f: S_2 \rightarrow S_2$ la fonction continue de laquelle les ensembles $f^{-1}(y)$, où $y \in \gamma$, sont précisément les tranches de la décomposition F:

$$f^{-1}(y) \in F$$ pour tout $y \neq f(S_2)$.

Toutes ces tranches étant des continus (à savoir des fermées de disques et des points) qui ne contiennent S_3, l'ensemble $f(S_2)$ est homéomorphe à S_2 en vertu d'un théorème de Moore (voir [3], II, p. 389). Soit $h: f(S_2) \rightarrow S_2$ cette homéomorphie.

N est un ensemble frontière dans S_2 en tant que sous-ensemble de l'ensemble T_1 qui est de dimension 1. Par conséquent, $S_2 - N$ est dense dans S_2 et il en est de même de l'ensemble $f(S_2 - N) = \bigcup_{n=1}^{\infty} D_n = f(\bigcup_{n=1}^{\infty} D_n)$ dans S_3 pour suite de la continuité de f. En outre, $f(S_2 - N)$ est dénombrable, les ensembles $f(D_n)$ se réduisant à des points. L'ensemble $h_0 f(S_2 - N)$ est donc à la fois dense dans S_2 et dénombrable, ce qui entraîne en vertu du lemme 2 l'existence d'une homéomorphie $h_0: S_2 \rightarrow S_2$ telle que

$$h_0 h_1 f(S_2 - N) = s^{-1}(R).$$

Posons

$$\varphi = h h_1 f.$$

Les points de N étant autant des tranches de la décomposition F, la fonction partielle $f|N$ est une homéomorphie, d'où (4) en vertu de (9). Comme $C_0 \neq 0$ et $C_0 \subset D_0$ par définition, il vient

$$f(S_2 - N) = \bigcup_{n=1}^{\infty} D_n = f(\bigcup_{n=1}^{\infty} C_n) = f(T - N),$$

d'où (6) en vertu de (8). Enfin, on a (5), car $f(N) \cap f(S_2 - N) = 0$, donc en vertu de (3) et (9)

$$\varphi(N) = h_0 h_1 [f(S_2) - f(S_2 - N)] = h_1 f(S_2) - h_0 h_1 f(S_2 - N) = S_2 - s^{-1}(R).$$

Corollaire. Tout ensemble frontière $X \subset S_2$ est homéomorphe à un sous-ensemble de N.

Il existe, en effet, un P dénombrable, dense dans S_2 et tel que $X \subset S_2 - P$. En vertu du lemme 2, il existe donc une homéomorphie $h: S_2 - P \rightarrow S_2 - s^{-1}(R)$. Posons $h' = h|X$ et $\varphi = \varphi^{-1} h(X)$, où φ est la fonction (9). En vertu de (4) et (5), la fonction $w' = \varphi$ est une homéomorphie et $w'(X) \subset N$.

En particulier, la partie irrationnelle de tout tapis contient des images homéomorphes de toutes les courbes planes.

Ces corollaires sont des généralisations de la propriété mentionnée dans l'introduction et qui a été établie pour la courbe universelle de Sierpinski toute entière (voir [7], p. 629 et [9], p. 354).

Lemme 3. Si $C \subset S_2$ est un ensemble connexe ne se réduisant pas à un point, l'ensemble $C \setminus N$ est dense en soi.

Démonstration. On peut admettre que $C \cap N = \emptyset$. Si un point $p \in C \cap N$ était isolé, il existait un entourage ouvert U de p, tel que

$$[G - \{p\}] \cap C \cap N = \emptyset.$$
La composante C_p du point p dans l'ensemble $\mathcal{C} \cap G$ est donc un ensemble connexe ne se réduisant pas au point p et l'on a $C_p = (p) \cap \mathcal{C} \cap (G-p) = 0$, c'est-à-dire $C_p = (p) \cap \mathcal{S}_2 - N$. La fonction continue (9) transforme par conséquent C_p en un ensemble connexe $\varphi(C_p)$ tel que

$$\varphi(C_p) = \varphi((p) \cap \mathcal{S}_2 - N) \cap \mathcal{S}_2 - (R)$$

et que $\varphi(p) \in \mathcal{S}_2 - s^{-1}(R)$ d'après (6), donc qui ne se réduit pas à un point, puisque $\varphi(p)$ n'appartient pas à $\varphi(C_p \cap (p))$. Or, l'ensemble $s^{-1}(R)$ étant dénombrable, il en serait de même, en vertu de (11), de l'ensemble

$$\varphi(C_p) = \varphi((p) \cap \mathcal{S}_2 - N) \cup \varphi(p),$$

ce qui en contredit la connectivité.

Théorème 4. Si $C \subset \mathcal{S}_2$ est un continu ne se réduisant pas à un point, l'ensemble $C \cap N$ est vide ou de puissance $2^\mathbb{N}$.

Démonstration. N étant un G_δ d'après (3), $C \cap N$ est aussi un G_δ, donc topologiquement complet (en vertu d'un théorème de P. Alexandroff; voir [3], p. 316). En outre, il est dense en soi d'après le lemme 3 et composé par conséquent de points de condensation (voir [3], I, p. 321). Il est donc de puissance du continu, en tant qu'ensemble borelien indénombrable.

Théorème 2. Tout point d'un tapis est d'ordre $2^\mathbb{N}$.

Démonstration. T étant un tapis, considérons deux points, $a \in T \cap G$ et $b \in T - G$, où G est un entourage de a dans \mathcal{S}_2. La frontière $\text{Fr}(G)$ coupe donc \mathcal{S}_2 entre a et b. L'ensemble N étant dense dans T en vertu du théorème 1, il existe deux points, $a' \in N$ et $b' \in N$, tels que $\text{Fr}(G)$ coupe \mathcal{S}_2 entre a' et b'. Soit $C \cap \text{Fr}(G)$ une courbe irréductible de \mathcal{S}_2 entre ces points. O est donc un continu ne se réduisant pas à un point et, N étant connexe en vertu du théorème 1 (en tant qu'image continue, à savoir projection stéréographique de l'ensemble connexe $E_p - E_0$), on a nécessairement $C \cap N \neq 0$. En vertu du lemme 4, l'ensemble $C \cap N$, et à plus forte raison son sous-ensemble $\text{Fr}(G) \cap T$, est donc de puissance $2^\mathbb{N}$. Tel est par conséquent l'ordre du point $a \in C$ dans T, l'entourage G étant arbitraire.

4. Surface sphérique et domaines fermés plans comme coutures des tapis. Toute composante D_m du complémentaire $\mathcal{S}_2 - T$ d'un tapis T étant un disque (voir la définition, p. 180), il existe pour tout $m = 1, 2, \ldots$ une homéomorphie h_m transformant le cercle $Q = \{(x, y): x^2 + y^2 < 1\}$ en D_m. En particulier, on a donc

$$h_m(\text{Fr}(Q)) = \text{Fr}(D_m) = C_m.$$

La décomposition de Q en tranches $T_i = ((x, y): x = \xi, y^2 < 1 - \xi^2)$ où $-1 < \xi < 1$ étant évidemment semi-continue supérieurement (même continue), nous concluons que

(13) la décomposition F_n de D_m en tranches $h_m(T_i)$ — qui sont d'ailleurs des arcs simples pour $\xi < 1$ et des points pour $\xi = 1$ — est semi-continue supérieurement ($m = 1, 2, \ldots$).

L'ensemble $T_2 \cap \text{Fr}(Q)$ n'étant composé, pour $-1 < \xi < 1$, que d'un ou de deux points, il en est de même de $h_m(T_2) \cap h_m(\text{Fr}(Q))$, qui coïncide avec $h_m(T_2) \cap D_m$ d'après (12), donc avec $h_m(T_2) \cap T$, puisque le sous-ensemble D_m de $h_m(T_2)$ est disjoint de N en vertu de (3). Notons donc que

(14) pour $m = 1, 2, \ldots$ et $-1 < \xi < 1$, tout $h_m(T_2) \cap T$ se compose de deux points au plus.

Théorème 3. Tout continu $G \subset \mathcal{S}_2$ dont le complémentaire $\mathcal{S}_2 - G$ se compose de n (nombre fini) disques aux fermetures disjointes ($n = 0, 1, 2, \ldots$) se laisse obtenir par couture de n importe quel tapis T.

Démonstration. En numérotant de compte de (3) et (13), soit F la décomposition de \mathcal{S}_2 en tranches $h_m(T_i)$ des décompositions F_n des D_m pour $m = n, n + 1, n + 2, \ldots$ et en points individuels de l'ensemble $N\cup \bigcup_{m=0}^{\infty} D_m$ (le sommande droit étant considéré constamment comme vide dans le cas de $n = 0$). D'après (1) et (13), la décomposition F est semi-continue supérieurement en vertu du lemme 1. Soit donc f la fonction continue satisfaisant à (7). Les tranches de F étant, conformément à (13), des continus qui ne coupent pas \mathcal{S}_2 (en tant que des arcs simples et des points), il existe, en vertu du théorème précédent de Moore (voir [3], II, p. 380), une homéomorphie $h: f(\mathcal{S}_2) \rightarrow \mathcal{S}_2$ en \mathcal{S}_2.

En vertu de (14), la fonction partielle $h_i = f|T$ est une couture et l'on a

$$f_i(T) = f(T) = f(T \cap \bigcup_{m=0}^{n-1} D_m) = f(T \cap \bigcup_{m=0}^{n-1} D_m) \cup \bigcup_{m=0}^{n-1} D_m.$$

La fonction f étant, évidemment une homéomorphie de $\bigcup_{m=0}^{n-1} D_m$, il en est de même de h_f. Par conséquent $h_f(\bigcup_{m=0}^{n-1} D_m)$ est une somme de n disques aux fermetures disjointes (sinon vide). Deux sous-continus quelconques de la sphère qui en diffèrent par un même nombre (nul ou fini) de disques aux fermetures disjointes étant notoirement homéomorphes (voir [3], II, p. 382), il existe une homéomorphie h: $\mathcal{S}_2 - h_f(\bigcup_{m=0}^{n-1} D_m) \rightarrow \mathcal{S}_2$ telle que

$$h(\mathcal{S}_2 - h_f(\bigcup_{m=0}^{n-1} D_m)) = T.$$
Toute tranche de la décomposition F étant continue soit dans $\bigcup_{m=1}^{n} D_m$, soit dans $S_n - \bigcup_{m=1}^{n} D_m$, on a $f(\bigcup_{m=1}^{n} D_m) = f(S_n) - f(S_n - \bigcup_{m=1}^{n} D_m)$, d'où

$$S_n - h^*_f(\bigcup_{m=1}^{n} D_m) = S_n - h^*_f(f(S_n) - f(S_n - \bigcup_{m=1}^{n} D_m))$$

$$= S_n - [h^*_f(f(S_n) - h^*_f(S_n - \bigcup_{m=1}^{n} D_m))]$$

$$= S_n - [h^*_f(S_n) - h^*_f(S_n - \bigcup_{m=1}^{n} D_m)]$$

$$= h^*_f(S_n - \bigcup_{m=1}^{n} D_m) = h^*_f(T)$$

en vertu de (16). Ainsi $h^*_f(T) = I'$ d'après (16). Enfin, f_I étant une couture de T, il en est de même de $h^*_f f_I$, puisque h^*_f et h^*_f sont des homéomorphies.

Corollaire. La surface sphérique S_n, de même que le carré plan T^* se laissent obtenir par couture de tout tapis T.

En effet, pour S_n c'est le cas particulier où $n = 0$ et pour T^* c'est celui où $n = 1$, puisque S_1 sans un disque est une fermeture de disque (en vertu du théorème de Jordan), donc un continu homéomorphe à P.

5. **Tapis comme coutures du segment de droite.** La courbe \mathcal{R} que nous allons définir par une couture de I sera un tapis plan; il suffit donc de la soumettre à la projection π pour en obtenir par homéomorphie un tapis $T \subset S_n$.

Nous définissons d'abord une opération \mathcal{R} portant sur les carrés. Soient Q un carré, L sa diagonale ayant ses bouts aux sommets a et b, J un segment $a < x < b$, où $a < b$, et f la fonction transformant linéairement J en L de manière que $f(a) = a$ et $f(b) = b$.

Divisons Q en T carrés égaux à l'aide des droites parallèles aux côtés de Q, rejetons-en a, à raison de 4 formant un carré à chacun des deux sommets opposés autres que a et b, et numérotions les carrés qui restent comme à la fig. 1. Soit Q_1, Q_2, \ldots, Q_n la suite qu'ils forment.

Divisons ensuite J en 41 segments égaux à l'aide des points $a_i = a + t_i$ et transformons linéairement chaque segment $a_{i-1} < x < a_i$ en diagonale L_i du carré Q_i (à savoir en celles marquées à la fig. 1), de façon que le segment J se trouve transformé en ligne brisée $B = L_1 \sqcup L_2 \sqcup \ldots \sqcup L_{41}$ aux bouts a et b (passant d'ailleurs deux fois par plusieurs de ses sommets).

Soit Q_i la transformation de J en B ainsi définie. Elle est bien une couture, elle est biconvexe sur le contour du carré Q et en outre

(17) $f(J) \subset \mathcal{R}(Q)$,

(18) les fonctions f et Q_i coïncident aux bouts du segment J.

Théorème 4. Il existe une couture \mathcal{T} du segment I telle que le continu $\mathcal{C} = \mathcal{T}(I)$ est un tapis.

Démonstration. Posons $Q = T^*$; c'est donc le carré unité aux sommets opposés $a = (0,0)$ et $b = (1,1)$. L étant sa diagonale aux bouts a et b, soit f_L une fonction linéaire telle que

$$f_L(0) = (0,0) \quad et \quad f_L(1) = (1,1).$$

Posons $f_I = \mathcal{R}_T$ et désignons par Q^*_1 et L^*_1 respectivement le carré au côté $1/7$, analogue du carré Q_1, et sa diagonale, analogue de L_1. La fonction f_I est donc une couture et transforme le segment $I^*_1 = [a: (i-1)/41 < x < i/41]$ en diagonale L^*_1 de Q^*_1, pour $i = 1, 2, \ldots, 41$. Appelons les carrés $Q^*_1, Q^*_2, \ldots, Q^*_n$ et les segments $I^*_1, I^*_2, \ldots, I^*_n$ respectivement carrés et segments de première approximation et posons $L^*_k = L^*_1 \sqcup L^*_2 \sqcup \ldots \sqcup L^*_n$. On a donc $f_I: I^*_1 \rightarrow C^*_P$.

Afin que qu'une couture $f_{a_i}: I^*_1 \rightarrow C^*_P$ se trouve définie qui transforme linéairement le segment $I^*_i = [a: (i-1)/41 \leq x \leq i/41 - a^*]$ en diagonale L^*_i du carré Q^*_i au côté $1/7 - a^*$ où $i = 1, 2, \ldots, 41$. Définissons alors la fonction f_{a_i} par les conditions:

(19) $f_{a_i} = \mathcal{R}_{Q^*_i}, a^*_i,$

(20) $f_{a_i} |L^*_i = f^*_i$.

où \(i = 1, 2, \ldots, 41^{n-1} \). Ainsi définie, la fonction \(f_n \) est une couture en vertu de (18) et chacune des fonctions \(f_n \) transformée d'après (19) les 41 segments

\[J_{ij} = \{ x: (i-1)/41^{n-1} + (j-1)/41 \leq x < (i-1)/41^{n-1} + j/41 \} \]

où \(j = 1, 2, \ldots, 41 \), en diagonales des carrés aux côtés 1/7, analogues des carrés \(Q_1, Q_2, \ldots, Q_m \), contenus dans le carré \(Q_m \). Rangeons tous les segments \(J_{ij} \), où \(i = 1, 2, \ldots, 41^{n-1} \) et \(j = 1, 2, \ldots, 41 \), d'après leur ordre de succession sur \(I \) en une suite \((I_{ij}) \), où \(i = 1, 2, \ldots, 41^{n-1} \). Les carrés aux côtés 1/7, qui leur correspondent, et leurs diagonales respectives forment alors les suites \((Q_{ij}) \) et \((L_{ij}) \). Appelons les 41 carrés \(Q_m \) et les segments \(I_{ij} \) carrés et segments de \(n \)-ième approximation et posons

\[B_n = L_{ij} \cup L_{ij} \cup \cdots \cup L_{ij} \]

On a alors \(f_n: I \rightarrow B_n \subset P \) et tout segment \(I_{ij} \) est ouvert pour tout \(n = 1, 2, \ldots, 41^{n-1} \) où \(i = 1, 2, \ldots, 41^{n-1} \). On a trouvé transformé par \(f_n \) linéairement (à savoir par similitude) en diagonal \(L_{ij} \) du carré \(Q_{ij} \) au côté 1/7.

La suite infinie \((f_n) \) de coutures de \(I \) étant ainsi définie par induction, posons

\[\tau = \lim_{n \to \infty} f_n \]

Montrons que cette limite existe et qu'elle est continue. Si \(x \in I_{ij} \), on a \(f_{n}(x) \to Q_{ij} \) et aussi \(f_{n}(x) \to Q_{ij} \) en vertu de (19) et (20). Par conséquent, \(\delta(x) \) et \(\delta(x) \) sont des segments de \(n \)-ième approximation, donc de longueur 1/41, pour lequel \(f_{n}(x) \to Q_{ij} \). On a donc \(I_{ij} \to I_{ij} \) et la partie communs \(\cap I_{ij} \) se réduit à un point, soit \(\xi \). Par conséquent, \(\tau(\xi) = y \).

Or \(x \neq \xi \) entraîne \(\tau(x) \neq y \). En effet, il existe pour \(n = 1, 2, \ldots, m \) des indices \(n \) et \(m \) suffisamment élevés, un nombre \(m \neq n \) et d'après (19) et (20), donc \(f_{n}(x) \to Q_{ij} \) et \(f_{m}(x) \to Q_{ij} \), de même \(\tau(x) \to Q_{ij} \) et \(\tau(y) \to Q_{ij} \). Il en résulte d'après (27) que \(\tau(x) \neq y \). Ainsi \(\tau(\xi) = y \) et \(\tau(\xi) \neq y \) se réduit dans ce cas au seul point \(\xi \).

2° Il existe, à partir d'un \(m \), deux suites infinies \((\xi_{m}) \) et \((\eta_{m}) \) d'indices, telles que

\[y < Q_{\xi_{m}} < Q_{\eta_{m}} \]

et comme \(f_{n}(I) = B_n \subset Q_{ij} \) par définition, il vient \(f_{n}(I) \subset Q_{ij} \) pour

\[m = 0, 1, \ldots, n = 1, 2, \ldots \]

et \(d'après (22), donc \(f_{n}(I) \subset \cap_{i=1}^{n} \cap_{j=1}^{41} Q_{ij} \) pour

\[m = 0, 1, \ldots, n = 1, 2, \ldots \]

et le membre droit de cette inclusion étant fermé, on conclut de (23) que

\[\tau(I) = \bigcap_{n=1}^{\infty} \bigcup_{i=1}^{41} Q_{ij}^{n} \]

Réciproquement, on a pour tout \(i = 1, 2, \ldots, 41 \) et pour tout

\[\lim_{n \to \infty} Q_{ij}^{n} = 0 \]

\[d'\text{où} \]

\[\bigcup_{i=1}^{\infty} \bigcup_{j=1}^{41} Q_{ij}^{n} \subset \tau(I) \]

en vertu de (23). Les deux inclusions établies donnent donc l'égalité

\[\tau(I) = \bigcap_{i=1}^{\infty} \bigcup_{j=1}^{41} Q_{ij}^{n} \]

Nous pouvons montrer à présent que \(\tau \) est une couture. Soit \(y \in \tau(I) \).

Posons, pour abréger, \(F_n = \bigcap_{j=1}^{41} Q_{ij}^{n} \) et considérons les trois cas possibles:

1° Il existe, pour tout \(n = 1, 2, \ldots, m \), un indice \(\xi_{n} \) tel que \(y \) est l'intersection de \(Q_{\xi_{n}} \) relativement à la somme \(F_{n} \):

\[y \in F_{n} \]

2° Il correspond à tout \(Q_{\xi_{n}} \), le segment \(I_{ij} \) de \(n \)-ième approximation, donc de longueur 1/41, pour lequel \(f_{n}(I_{ij}) = L_{ij} \subset Q_{ij}^{n} \). On a donc \(I_{ij} \to I_{ij} \) et la partie commune \(\cap I_{ij} \) se réduit à un point, soit \(\xi \). Par conséquent, \(\tau(\xi) = y \).

Or \(x \neq \xi \) entraîne \(\tau(x) \neq y \). En effet, il existe pour \(n = 1, 2, \ldots, m \) des indices \(n \) et \(m \) suffisamment élevés, un numéro \(m \neq n \) et par conséquent \(\tau(x) \to Q_{\xi_{n}} \), de même \(\tau(\xi) = \tau(y) \to Q_{\xi_{n}} \) et \(\tau(x) \neq y \). Ainsi \(\tau(\xi) = y \) et \(\tau(\xi) \neq y \) se réduit dans ce cas au seul point \(\xi \).

3° Il existe, à partir d'un \(m \), deux suites infinies \((\xi_{m}) \) et \((\eta_{m}) \) d'indices, telles que

\[y < Q_{\xi_{m}} < Q_{\eta_{m}} \]

et \(y \not< Q_{\xi_{m}} \) pour \(\xi_{m} \neq \eta_{m} \), donc \(\tau(\xi) = \tau(\xi) = y \) en vertu de (21) et (28). Or \(\xi \neq \xi \) entraîne \(\tau(x) \neq y \).
En effet, si a diffère de t_3 et de t_4, il existe pour un n suffisamment élevé un indice h_n, distinct de i_2 et f_2, et tel que $a < i_n$, d'où $f_n(a) < Q_n$, pour $n > n$ et par conséquent $\tau(a) < Q_n$ en vertu de (21). Il en résulte d'après (28) que $\tau(x) \neq y$. Ainsi $\tau^{-1}(y)$ se réduit dans ce cas au couple de points x, y.

3° Il existe, pour un n, au moins trois indices distincts i_n, j_n et k_n, tels que

$$y \in Q_n \cap Q_n \cap Q_n.$$

Le point y est donc un sommet du réseau quadratique au côté $1/17^n$, à savoir sommet commun de plus de deux carrés de n-ième approximation. Il en résulte que

$$y \notin f_n(I),$$

car en cas contraire y serait (vu (19), (20) et la définition de l'opération Q) l'un des sommets des carrés au côté $1/17^n$, rejeté avec eux à l'approximation immédiatement suivante, d'où $y \notin E - \bigcup_{i=1}^{1/17^n} Q_i$ et y ne saurait appartenir à $\tau(I)$ en vertu de (36).

Nous allons montrer que, dans le cas considéré, y est un point intérieur d'une somme de quatre carrés d'une autre approximation (il est donc leur sommet commun).

La fonction f_n, étant une courbe et y appartenant, en vertu de (29) et (30), à plus de deux segments de B_n, l'ensemble $\bigcup_{i=1}^{1/17^n} f_n^{-1}(y)$ se compose exactement de deux points, soit x_1 et x_2, dont chacun est un bout de deux segments de n-ième approximation, transformés par f_n en diagonales de deux carrés de n-ième approximation. Mais alors il en est de même des points x_1 et x_2 dans toutes les approximations ultérieures. Soit pour tout $n = m_1 + 1, m_2 + 2, ...$

$$x_1 = i_n \cap I_n, \quad x_2 = j_n \cap I_n, \quad i_n \neq j_n \neq i_n,$$

d'où

$$y = \tau(x_1) = \tau(x_2) = \tau(x) \in E - \bigcup_{i=1}^{1/17^n} Q_i,$$

Or $x_1 \neq x_2$, entraîne $\tau(a) \neq y$. En effet, si x diffère de x_1 et x_2, il existe pour un $n > n$ suffisamment élevé un indice h_n tel que $1 < h_n < 17^n$, que

$$h_n \neq i_n, \quad j_n \neq i_n \quad \text{et que } x < i_n.$$

et que $x \in I_n$, d'où $f_n(x) < Q_n$, pour $n > n$, d'où $\tau(x) < Q_n$ en vertu de (21).

On a

$$Q_n \cap Q_n \cap Q_n \cap Q_n \subset E - \bigcup_{i=1}^{1/17^n} Q_i,$$

et $\tau^{-1}(y)$ se réduit à deux points également dans le dernier cas.

Reste à démontrer que le continu $C = \tau(I)$ est un tapis (plan). Comme image continue de I, il est localement connexe. Tout carré Q_i, où $i = 1, 2, ..., 41^n$, contenait des points rejettés au passage à la $(n+1)$-ième approximation, le continu $\tau(I)$ est non-dense dans E en vertu de (25) et (26); il est donc une courbe (voir [3], II, p. 383, 12).

Pour montrer que le frontière C_0 des composantes D_n de $E - \tau(I)$ sont des courbes simples fermées, il suffit (voir [3], II, p. 360) de montrer qu'aucun point ne couvre $\tau(I)$. Désignons par U^n l'ensemble de tous les sommets g communs d'au moins trois carrés de n-ième approximation et par $P^n(g)$, pour $g \in U^n$, la somme des carrés de n-ième approximation au sommet g. L'ensemble $\bigcup_{i=1}^{1/17^n} Q_i \cap P^n(g)$ est connexe pour tout $g \in U^n$ (voir fig. 2). En multipliant les deux membres de (36) par Q_i, on constate que, pour tout $i = 1, 2, ..., 41^n$, l'ensemble $Q_i \cap \tau(I)$ est semblable, donc homéomorphe, à $\tau(I)$. Il est par conséquent un continuum, d'où la connexité de l'ensemble $\tau(I) - (\bigcup_{i=1}^{1/17^n} Q_i \cap P^n(g))$

$$= \bigcup_{i=1}^{1/17^n} Q_i \cap \tau(I) - P^n(g).$$

(33) $\tau(I) - P^n(g)$ est un continu pour tout $g \in U^n$.

Soient maintenant y_1, y_2 et z trois points distincts appartenant à $\tau(I)$. Pour conclure que z ne coupe pas $\tau(I)$ entre y_1 et y_2, il s'agit de lier les points y_1 et y_2 par un sous-continu de $\tau(I) - (a)$. En dénombrant par a l'ensemble le plus petit pour lequel on a

$$2\sqrt{2}/7^n < \min[\|a - y_1\|^2 + \|a - y_2\|^2],$$

il existe un point $q \in U^n$ tel que

$$s \in F_n - F_n - P^n(g).$$

En effet, si $s \in U^n$, on n'a qu'à placer $g = s$; si $z \in F_n - F_n - P^n(g)$ pour un $i = 1, 2, ..., 41^n$, on a $Q_i \cap V^n(g)$ pour un sommet g de Q_i, qui entraîne (35), et si z est situé sur le côté commun d'un Q_i et d'un autre carré de n-ième approximation, un des deux bouts de ce côté satisfait à (35) pour la même raison.

Or $\delta(V^n(g)) = 2\sqrt{2}/7^n$ et $s \in V^n(g)$ entraînent l'appartenance de y_1 et y_2 à $\tau(I) - P^n(g)$ en vertu de (34). On a aussi $\tau(I) - P^n(g) \subset F_n - P^n(g)$, donc z non $\tau(I) - P^n(g)$ en vertu de (35). L'ensemble $\tau(I) - P^n(g)$ ainsi défini est donc, en vertu de (33), un continu liant y_1 à y_2 dans $\tau(I)$ sans passer par z.
Enfin, pour montrer que les frontières C_m des composantes D_m de $E - \tau(I)$ sont disjointes, posons

$$H_n^m = D_m \setminus \bigcup_{i=1}^{4^n} Q_i^m;$$

on a donc

$$(36) \quad H_n^m \subset H_{n+1}^m \subset \ldots \subset H_m^m \subset \ldots$$

en vertu de (24) et $\bigcup_{m=1}^{\infty} D_m = E - \tau(I) = \bigcup_{m=1}^{\infty} (E - \bigcup_{i=1}^{4^n} Q_i^m)$ en vertu de (28). Par conséquent

$$(37) \quad D_m = \bigcup_{n=1}^{\infty} H_n^m.$$

Or on obtient par définition H_n^{m+1} de H_n^m en ajoutant à H_n^m les carrés au côté $2/7^{n+1}$ (donc les réunions de quatre carrés au côté $1/7^{n+1}$) rejetés de $\bigcup_{i=1}^{4^n} Q_i^m$ au passage de la fonction f_n à la fonction f_{n+1} (cf. (9), (20) et la définition de l'opération Ω). Si $H_n^m \neq 0$, on a donc $(9) \quad H_n^{m+1} = H_n^m \setminus K(H_n^m, 2/7^{n+1})$, et comme $D_m = H_m^m \cup \bigcup_{n=1}^{\infty} H_n^m - H_m^m$ d'après (36) et (37), il vient

$$(38) \quad D_m \subset K(H_m^m, \bigcup_{n=1}^{\infty} 2/7^{n+1})$$

pour tout m tel que $H_m^m \neq 0$.

Deux indices m et m_1 étant donnés, il existe en vertu de (36) et (37) un m tel que $H_n^m \neq 0 \neq H_n^{m_1}$ et on a (10)

$$(39) \quad \Omega(H_n^m, H_n^{m_1}) > 1/7^n,$$

d'où

$$(40) \quad K(H_n^m, 1/2/7^{n+1}) \setminus K(H_n^{m_1}, 1/2/7^{n+1}) = 0,$$

car $1/2/7^{n+1} < 1/2,25/3.7^n = 0,5/7^{n+1} < \Omega(H_n^m, H_n^{m_1})$ d'après (39). Mais

$$\bigcup_{n=1}^{\infty} 2/7^{n+1} = 1/2/7^n$$

et par conséquent $D_m \setminus D_{m_1} = 0$ d'après (38) et (40), d'où $C_m \cap C_{m_1} = 0$ pour les frontières de ces disques. La démonstration est achevée.

Travaux cités

INSTITUT MATEMATYCZNY UNIWERSYTETU WROCŁAWSKIEGO
INSTITUT MATHEMATIQUE DE L'UNIVERSITÉ DE WROCLAW

Rapporté par la Rédaction le 11.3.1947