Note on rings in which every proper left-ideal is cyclic

by

F. A. Szász (Debrecen)

We shall call an arbitrary ring \(R \) cyclic if the additive group \(R^+ \) is cyclic. The ring \(J \) of rational integers is obviously cyclic. Starting from the fundamental property of the ring \(J \) we introduce the following

Definition. An arbitrary ring \(R \) is called a ring with property \(F \), if every proper left-ideal \(L \) of \(R \) is cyclic. For example any cyclic ring and any skew-field have the property \(F \).

Theorem. An arbitrary ring \(R \) has the property \(F \) if and only if \(R \) is a skew-field, or a cyclic ring, or a zero-ring of type \(p^m \) or else an arbitrary ring of order \(p^2 \) where \(p \) is a prime.

Remark. A skew-field, as a ring without proper left-ideals, can have an arbitrary infinite cardinal, but the order of a finite ring with property \(P \) is necessarily \(p^2 \). For example \(R(p) = \{ x, y \} \) is a non-commutative ring with property \(P \) and of order \(p^2 \) where \(p \) is a prime number and \(p = p = y = x = y = x = y = x = y = 0, y = 0 \). We remark that the theorem is a generalization of Lemma 1 (see [7]). The notions of modern algebra can be found in the books [1], [3], [4] and [5], where we omit terminology remarks. Now we verify five Lemmas.

Lemma 1. A ring without proper left-ideals is a skew-field or else a zero-ring of prime-number-order.

Proof. If there exists an element \(0 \neq a \in R \) for which \(Ra \neq R \), then \(Ra = 0 \), and thus the zero-ring \((a) \neq 0 \), being a left-ideal, coincides with \(R \) and \(O(R) = p \). But if for any \(0 \neq a \in R \) the element \(Ra \neq R \) holds, then \(R \) has no divisors of zero and by the single equation \(a = a \) we see that \(e \in R \) is the unity of \(R \). The solvability of all equations \(yb = e \) trivially implies by the associativity law the skew-field behaviour of \(R \).

Remarks. From this short proof we see that only the rings of order \(p \) are without proper subrings; moreover the solvability of all equations \(yb = a \) in a ring means the solvability of all equations \(b = a \) in the same ring \((b \neq 0) \); and finally we observe that we can similarly prove that if in a ring \(R \) there exists an element \(a \neq 0 \) which is not a right an-
nihilator of \(R \) and if for this element with any \(0 \neq b \in R \) the element \(Rab = Ra \) holds, then \(R \) is a skew-field (see [8]).

Lemma 2. A ring \(R \) with mixed group \(R^+ \) cannot have the property \(P \).

Proof. We assume that \(R \) is a ring with property \(P \) and with mixed group \(R^+ \). Let \(T \) be the cyclic torsion ring of order \(n \in J \) in \(R \). Since \((aR) T = (aR) T = 0 \) and \(nR = T = 0 \), then exists a non-cyclic two-sided ideal \(D = nR + T \) (as a ring-theoretical direct sum) in \(R \), which by property \(P \) implies \(R = nR + T \) (without the use of the fundamental theorem of [8]). Then \(nR \) is a cyclic ideal in \(R \), consequently \(nR + T = R \). If \(nR = (aR) \), where naturally \(O(r) = \infty \), we obtain \(aR = R \), and \(T = 0 \).

Lemma 3. A ring \(R \) with property \(P \) but without divisors of zero is a skew-field or else an infinite cyclic ring.

Proof. If \(0 \neq a \in R \), then \(Ra = 0 \). If for every \(0 \neq a \in R \) it is \(Ra = R \), then \(R \) is cyclic. In the case \(Ra = R \) the ring \(R \) is itself cyclic by the property \(P \) and by \((aR) = aR \), and obviously \(O(R) = \infty \).

Lemma 4. A ring with property \(P \), containing divisors of zero and being of characteristic 0, cannot have an algebraically closed additive group.

Proof. We suppose that \(R \), being a ring with divisors of zero and having an algebraically closed additive group \(R^+ \), is of characteristic 0. Then \((R^+) \) cannot be simultaneously cyclic and algebraically closed, and therefore \(R^+ = 0 \) or else \(R^+ = R \). By Lemma 1 and by our hypothesis there exists a \(a \neq 0 \) right-annihilator of \(R_0 \), i. e., \(RZ \neq 0 \). Then the set \(Z = 0 \) of all right-annihilators of \(R \) is a two-sided ideal in \(R \), whose additive group \(Z^+ \) is a subring subgroup in \(R^+ \). The ideal \(Z^+ \) cannot be cyclic, since \(Z^+ \) is likewise algebraically closed, therefore \(R = Z \) and \(R \) is a zero-ring. But in an algebraically closed group there exists a subgroup which is not cyclic, and this contradiction proves our Lemma.

Lemma 5. Let \(F \) be a (finite or infinite) elementary \(p \)-ring for which \(F^1 = 0 \) and \(O(F) > p \), and let moreover \(J \) be a two-sided ideal of order \(p \) in a ring \(R \). If \(E = F \), then \(R \) is without property \(P \).

Proof. We shall assume that \(R \) has the property \(P \) and we shall show a contradiction. The complete endomorphism ring of \(J^+ \) has the order \(p \), an by the endomorphism \(j \rightarrow j \), \(j \in J \), \(r \in R \) of \(J^+ \) we have a ring-theoretical homomorphism \(r \rightarrow s \), of \(R \) into the complete endomorphism ring of \(J^+ \). The kernel of this mapping \(r \rightarrow s \) is an ideal \(N \), for which \(R = 0 \) and \(O(R/N) > p \) holds. Consequently by \(O(R) > p \) and by property \(P \) obviously \(R = N \); therefore \(R \) is a zero-ring. But then likewise \(E = F \) is a zero-ring, which contradicts our hypothesis.

Now we give an elementary
Proof of Theorem. Let \(R \) be a ring with property \(P \). By Lemma 3 we can suppose the existence of divisors of zero. If \(R \) contains an element of infinite order, then by Lemma 2 and 4 there exists a number \(u \in J \) for which \(0 \neq a \in \text{R}_a \). But by \(R^+ \supseteq (aR)^+ \) and by property \(P \), \(R \) is cyclic.

If \(R^+ \) is a torsion group, then a ring-theoretical direct decomposition \(R = \bigoplus E_p \), where the ideal \(E_p \) is generated by all elements of \(p \)-power order of \(R \). If \(R^p \neq R \), then \(R \) is a finite cyclic ring. Now let \(R \) be a \(p \)-ring in which \(R' \) is generated by all elements of order \(p \) of \(R \). If \(R' \neq R \), then \(R \) is cyclic or else of type \(p^n \) because in both cases \(R' \) is cyclic [2]. Finally we assume that \(R' = R \). By the existence of divisors of zero, by \(pR = 0 \), by Lemma 1 and by property \(P \) the existence of a left-ideal \(L \) of order \(p \) of \(R \) is necessarily ensured. Now we show the impossibility of \(O(R) \supseteq p^2 \). It is clear that \(Lr \) is a left-ideal in \(R \) \((r \in E)\). If there exists an element \(0 \neq r \in R \) for which \(Lr \neq 0 \) and \(Lr \cdot Lr = 0 \) holds, then for the left-ideal \(D = (L, Lr) \) it is \(D = D_r \), i.e., \(O(R) = p^2 \). But if \(Lr \subseteq L \) for all \(r \in R \), the subring \(L \) is a two-sided ideal in \(R \). Then \(R/L \) has the property \(P \) and consequently has no proper left-ideals. By \(O(R) \supseteq p^2 \) we can assume that \(R/L \) is a skew-field, and thus not a zero-ring, but has the property \(P \). By \(O(R/L) \supseteq p^2 \) and by Lemma 5 we have obtained a contradiction, which completes the proof.

References

Errata to the paper "On the \(\varepsilon \)-theorems"

(Fundamenta Mathematicae 43, p. 158-165)

by

H. Rasiowa (Warszawa)

Page	for	read
156\(\alpha\) | theories | theories since the non-enumerable case follows immediately from the enumerable one
161\(\alpha\) | a consistent | a consistent, enumerable
161\(\alpha\) | cf. [6] | cf. [8], or an extension in a Boolean algebra of all subrings of a set.
163\(\alpha\) | in algebra \(R \) \(L \) | in algebra \(R \) of sets of \(e \)-theorem 3.1 (with property \(R \)).
163\(\alpha\) | \(f \) | of \(e \)-theorem 3.1 (with property \(R \)).
164\(\alpha\) | \(e \)-theorem | \(e \)-theorem 3.1 (with property \(R \)).

Reçu par la Redaction le 12.9.1956