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Some problems of definability in the lower
predicate calculus

by
A. Robinson (Toronto)

1. Introduction. The present paper!) arose out of the comsiders-
tion of the following problem. .

Let M be an ordered field such that every positive element of M
can be represented as a sum of squares of elements of the field and such
that there exists a uniform bound to the number of squares required
for the purpose. Let A’ be a finite algebraic extension of 3. Is there
a uniform bound to the number of squares required to express a totally
positive element of M’ as a sum of squares of elements of M'?

It will be shown in due course (section 5, below) that the answer
to this question is in the affirmative. Its investigation led to another
type of problem which can be introduced conveniently by means of the
following example.

Let

P(®)=Yo+ Y12+ ... + Yuil"

be a polynomial of the variable z where Yos--- Y, are parameters which
take values in the field of rational numbers, E. Then the property of p (x)
of possessing (or not possessing) a real root may be regarded as a pre-
dicate of its coefficients, Q*(yy,...,¥,), say. We note that, as stated, this
predicate is not formulated within the field of the coefficients, R, but
with reference to the more comprehensive field of real {or real algebraic)
numbers, B*. However, Sturm’s test shows that there exists a predicate
@Yoy s ¥n), Tormulated within the language of the lower predicate cal-
culus in terms of the relation of addition, multiplication, equality, and
order, such that whenever @(y,,...,y,) holds in R, for rational yy,...,9.,
@*(¥oy.-,ya) holds in R*, and-conversely, whenever @*Yoy---»yn) holds
in B* for rational %,,...,¥x, @ (¥,,...,%,) holds in R.

*) This paper was written while the author was a Fellow of the Summer Research
Institute of the Canadian Mathematical Congress, Kingston, Ontario, 1956. The author
is indebted to A. H. Lightstone for suggesting a number of improvements in the pre-
sentation,
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Instead of considering such a situation for two particular struct-
ures R and R* as above, we shall be concerned here (section 3, below)
with predicates @,Q* which are defined with reference to two different
sets of axioms, X and K* and which are related in a manner similar
to that just desecribed.

It turns out that the treatment of this subject calls for the exten-
sion of some concepts which have been defined elsewhere. More parti-
cularly, it involves a certain relativisation of the notion of model-com-
pleteness (see [7], [8]). The analysis of this generalised notion oeccupies
the first part of the present paper (section 2).

The various topics detailed above will be investigated partly be-
cause of their intrinsic interest and partly for the sake of the applica-
tions mentioned earlier. We should also point otit that (as is only Da-
tural) the application of some of our general results can be 1ep1amed
by more apeual a,lguments in certain particular cases (e. ¢. in sec-
tlon. 5). , o

We shall use thé formal language of theé lower predicate ‘caleulus,
with the terminology explained in [8]. In particnlar, we use thé terms
statement. for a well-formed formula (“ff) without free va;najbles, and
predicate for any other wif. Relotions are what have heen called else-
where atomz‘c pr edzcatea and by a constant Wwe always mean an individual
constant. A wif, X, is defined in a set of statements, I(, if all the rela-
tions and constants of X occur in K, and X iy defuwd in @ structure, M,
if all the relations and constants of X oceur in M.

For a given structure 3/, the diagram N of M is the set of all ato-
mic statements (e. g. R(a,b,c)) which are defined and hold in M, and
of the negations of the atomlc statements which, are defined but do not
dold in M. A set of statements K is complete if for every statement X
-which is defined in K, either X or ~X is deducible from K. A set K,
supposed non-empby and consistent, is model- -complete if for every mo-
.del M of I the set KN is complete, where N is the diagram of M.
In this context, it is understood here and elsewhele that M contains
1o, relations other than the relations of K. i o

In. section 3 we shall also require the notion of welativisation with
respect to & given one place relation R(z). This syntactical . transforma-
tion, which goes back at least as far as [3] (compaue also [13]), is de-
fined as follows. o

Let X be a given sta.tement In order to obmm the lela,mvmed tl&llh-
form, Xg, of X with respect to R, we consider the quantifiers of X in
turn, and we replace any universal quantifier, (y), whose scope in X is

) the wif Z by (¥ [R(y)2Z]. Similarly, we replace ' ‘any - existential quan-
tlﬁer, (Hy), with scope Z, by (Ay)[R(y)AZ]. We note that the "order
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in which these operations are carvied out does not -affect the, final result.
For example, the statement

. A——(ﬂw (@) [L( ﬂJ)l” 25 Y, 1”)13[( )(r(J: ;“)J] ‘

is m(mnblmmed into . I

'_XR=([*15’IIW)[I'£(U’ [ x)[R ’J[ Q{J)[L i/) A lf'(l',1 ,w)]]
- : D [ R(2) D6 1,0 ]ﬂ”

Correspondingly, for any given structure M which does not include &,
we define the structure My by postulating in addition that B be satis-
fied for all constants @ of M. Then it is not difficult to see that it X holds
in M, X holds in Mg. Conversely, it X is dcfmed in M, for given X
and M and if Xp holds in ]I[ z then X holds also in M. Mmoovm it A7
bolds in M and if M*is any ex’rcnsmn of M such that A+ (loefs not in-
clude R, then Xg holds in the structure M which is obtained l)y postu-
lating, in addition to. the existing relations of *, that R(a) holds in M

for all constants of A and that R(a) does not hold 111 M 101 any 0011~
stant of M which does not helong to M.

It is known that if .\ is provable and does not include any “con-
stants then Xy is deducible from the statement (8z)R(z); while if X
is' provable and contains & number of constants @y, -y, then X is de-
ducible fromthe statement R{a;)A ...AR(a,). We conclnde' that if ‘the
statement X is ‘defined in-a ket of stutements K and is deducible from

‘that set, then Xz is deducible from the set Kg, where Kz iy the st of

Statements- Y for all ¥ e I¥, togethér with all the statements R(a) -for
the constants ¢ which are 1ncluded in K. Howovel, if 7 doex nottcon-

tain any constants then K shall include instead Lh(, statemenit - (6Lu) 'R ().

2. Relative model-completeness. Lot I7 and K* De two nou-
-empty and consistent sets of statements. We shall say that K* iy asso-
ciated with K if the lollowmg conditions ave satisfied ((2. 1)-(2. 3))

-(2.1) If* does not include any relations or comstants which are Lot

.also included in K.

(2.2) ¥ is model-consistent relative to K. ’l‘lm,t i o say, ovory mo-
del M of K can be embedded in (4. e. possosses an extonsion, which i)
4 model of A, An equivalent condition is that for any model M of K,
the set K*ON is consistent, where N is the diagram ol M.

(2.3) Every model of IK* which is an extension of s modol of &

18 itself a model of K. In-deductive terms — if M is a model of ' and N

its diagram, then X must be-deducible from K*UN. Thiy bOlldltl()Il is

“satistied, for example, if K is a subset of I*.
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We note that any non-empty and consistent set is associated with
" itself. ) N
e Let K and K* be two non-empty sets of statement§, I consistent
and K* model-consistent relative to K. Then K* will be Sald, *to be. model-
-complete relative to K if for every model M of K thg sob ,.IL.\:JN 1‘.5 eom-v
plete, where N is the diagram of 3{. For K*=K, this definition reduces
! =
rdinary model-completeness (see [7], [8]). S _ o
” OWe 1‘85(;3,11 that a statement X is said to be primitive (see [8]) if it
is of the form R
(2.4) X=("Ey1) o (y) Z Y1y s¥n) s 720,

where the maitriz Z does not contain any qual'ltifiers and is a eor‘quuc-
tion of atomic formulae and (or) of the negations of su.ch iornmla.el.i ,
The following test for relative model—complebelftess Is a generaliza-
tion of the test for ordinary model-completeness given in [7] and [8].
The proof involves a refinement of the methods wused there. '
(2.5) THEOREM. Let K and K* be two non-empty and const;s;tent
sets of statements, such that K* is associated with IT. I n order that.Ix b'e
model-complete relative to K il is necessary and s.uff.z('nent that for évelry
model M of K, with diagram N, end for every p?‘fnwt'b’l)ﬁ statement X de-
fined in M, either X or ~X be deducible from K*UN. o
Proof. Since the definition of relative model-completen@s rgg‘mrers
that for every statement X which is defined in 3, apd.hence in K*UN,
either X or ~.X must be deducible from K*UN, it is apparent that
the condition of the theorem is necessary. In order to prove that it is
also sufficient, we suppose that there exists a model M of K a.nfl & sba-
tement X which is defined in M such that neither X nor. ~X is dedu-
cible from A*UXN. If so, there exist statements of this kind which are
in prenex normal form, and among these we may chooiie one for which
the number of quantifiers is a minimum (where all possllble J!I are ta.k'en
into account). Moreover, we may suppose that X begnllg with an exis-
tential guantifier. For if X does not include any quantlfllerﬁ at all bh_en
either X' or ~X must be deducible from N alone, wh.lle 1f. X Dbegins
a priort with a universal quantifier then we may consider instead the
statement X' which is obtained by writing ~X in prenex normal form,
in the usual way. ' ) -
Suppose then that X begins with an existential quantifier,

X=("z)V(2),

and tﬁa.t X is defined in a model M of K but that neither. X nror ~X
is deducible from K*UN. It follows that X is consigtent with K*UN —
there exists a model M* of K* which is also a model of ¥ (and hence
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an extension of /) such that X holds in JM* Thus 3* includes a con-
stant ¢ such that V (a) holds in 7. But M* is also a model of K, by (2.3),
and so0, by the minimum property of X, ¥(a) must be deducible from
I*ON*, where N* is the diagram of A7*. It follows that X = (Hz)V (2)
also is deducible from L*ON* and we propose to show that this entails
that X is deducible already from K*ON. Now K*U N+ contains in ad-
dition to the statements of I*GN, only certain atomic statements and
their negations. It follows that there is a conjunction of a number of
these, W(by,...,b,) say, such that

(2.6) W (byyer,by) DX

is deducible from EF*UN. The constants b,...,b, are supposed o be just
those constants of W which do not belong to A and hence, do not oceur
in X or in K*UN. Accordingly, we may infer that

[(Fary) oo (F) W (2, o0y 20)] D X

also is deducible from K*_N. Thus, in order to prove that X s dedu-
cible from K*UN it only remains for us to show that

Y= (E[dnl)...(ﬂfm,,)W(wl,...,w”)

is deducible from K*U¥N. But vV is a primitive statement which is de-
fined in M and which holds in A*. It therefore follows from the assump-
tions of the theorem that ¥V ig actually deducible from K*LN. This
leads to a contradiction and completes the proof.

Instead of applying the above test divectly, it is found convenient
in certain cases to establish relative model-completeness by means of
known instances of ordinary model-completeness. This can be achieved
by means of the following theorem:

(2.7) TumoreM. Let K and K* be lwo nwon-empty sets of statements
such that K is consistent and I* is model-consistent relative to K. Sup-
pose that I'* is model-complete in the ordinary sense. Suppose further that
for every wodel M of K there exists a model My of IK* which is an exten-
ston of M, such that any other model of K* which is an extension of M pos-
sesses @ partial structure which is an extension of M and which is isomor-
phic to ¢ by an isomorphism which centralises the elements of M. Then
K* is model-complete relative 1o I,

Remark. We observe that A s a prime-model of K*ON in the
sense defined in [8).

Proof of (2.7). For s given model ¥ of X, let M3 be a prime-model
of K*¥*UN. (Such an I 5 exists according to the assumption of the theo-
rem). Let X be any statement which is defined in M. Since K* is model-
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-complete, either X or ~X must be deducible from K*UN¥ where N%
is the diagram of M§. It will be sufficient to consider the former case.
We employ the same procedure as in the last part of the proof of (2.5).
Since K¥UN§ containg in addition to the statements of K*ON only
certain atomic statements and their negations, we may conclude that
there exists a conjunction of a finite number of these, W(b,,...,b,),
such that
W(by,...,0,) D X

is deducible from K*UXN. In this formula, the constants are distinguished
in the same way as in (2.6), and we conclude again that

[(Ezy)... (Bw) Wy, ..., 2,)] DX
is deducible from E*ON. And again it only remains for us to show that

Y= (") ... (Can) W {2y, ..., )

is deducible from K*LN. However, at this point the argument diverges

from that used in the proot of (2.5). We have to show that ¥ holds in
all models of K*UN. Let M* be such a model, then M* contains a par-
tial structure M}, which is isomorphic to JI¥ in the manner described
in the statement of the theorem. It follows that ¥ holds in M¥. But Y
is primitive and so it holds also in all extensions of MY, e g. in M*
This completes the proof.

Thus, let K be a set of axioms (7. e. statements) for the concept
of & (commutative) field formulated in terms of the relation of equality,
E(z,y), addition, §(z,y,2), and multiplieation, P(z,y,2), and without
constants, and leét K, be a set of axioms for the concept of a field of
given characteristic p >0, formulated in a similar way. Also, let K%, K}
be corresponding sets which specify in addition that the field is alge-
braically closed. It is known (see [8]) that K% is model-complete, and
1t follows that the same applies to K. Also, K% iy associated with K5
and with X, (although K% is not an extension of K,) and K% is asso-
ciated with K, but not with Kg, for p=0,2,3,... A quick check shows
that the test of Theorem (2.7) applies. Thus, K¥ is model-complete re-
lative to K and also relative to X,, and K} is model-complete relative
to K, p=0,2,3,...

Again, let Ky be a set of axioms for the concept of an ordered field,
containing & relation of order in addition to the relations mentioned
above, and let K% be an extension of Ky, which expresses the concept
of a real-closed ordered field (see [8]). Then K} is model-complete in
the ordinary sense and associated with Ky and, again by (2.7), model-
-complete relative to that set.
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Next we prove

(2.8) TumorEM. Let I, K}, Kf be three non-empty and consistent sets
of statements such that both EY, and K% are associated with K and model-
-complete relative to that set. Then the class of models of E¥ which are ex-
tensions of models of I coincides with the class of models of K¥ which are
exiensions of models of K.

Proof. The conclusion of the theorem is equivalent to the agsertion
that, for any given model M of K, with diagram N, KF is deducible
from KN and K¥ is deducible from IKfON. Accordingly, we only
have to show that if a statement X which is defined in M is deducible
from K}UN then it is deducible also from KFUN. In view of the relative
model-completeness of K¥, and K3 , the alternative assumption is that
for some model 3 of K and for some statement ¥ which is defined in M,
X is deducible from K}oN and ~X is deducible from K*oN. If S0,
there exist statements X of this kind which are in prenex normal form
and we may suppose, as in the proof of (2.5), that the number of quan-
tifiers in X is a minimum and that X beging with an existential quan-
tifier, X= (8=)V (2).

Suppose then that X is deducible from K{UN while ~X is dedu-
cible from K¥UN. Let M¥ be a model of KiUN and let N¥ be the dia-
gram of My. Then X holds in M¥ and so M} contains a constant @ such
that V' (a) holds in M{. But M# is a model of A, by (2.3), and so Kf N?
is complete, and V(a) is deducible from KfUNY. It then follows from
the minimum property of X that V(a) must be deducible also from

($UN¥. This entails that X =(H2)V (2) is deducible from K{ONf. On
the other hand, since N 24 and sinee ~X is supposed to be deducible
from K¥UN, ~X must be deducible also from K%oNT. This is impos-
sible since KFUN¥ is consistent, by (2.2). Accordingly, the thedrem ig
proved.

The situation is simplified in various ways if we add the assumption
that K is deducible from K*, or even that K is a subset of K*. How-
ever, the example K=K,, K*=K% shows that neither of these condi-
tions need be satisfied.

Theorem (2.8) shows that the class of all algebraically closed fields
occupies a unigue model-theoretic position relative to the elass of all
fields. A similar remark applies to the class of real-closed ordered fields
relative to the class of all ordered fields,

8. Some problems in definability, In this section, we shall
discuss the second topic mentioned in the introduection.

Let K and K* be two sets of statements. A statement X* which
is defined in K* will be said to be invariant with respect to K* over X

22%
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if for any given model M of I, X* is either satisfied in all models of K*
which are extensions of A/, or in none.

(3.1) TeeEorEM. Let K and K* be two non-emply and consistent sets
of statements such that conditions (2.1) and (2.2) are satisfied, and let X*
be a statement which is defined in K* and is invariant with respect to K*
over K. Then there erists a statement X which is defined in K such that X
holds in any given model M of K if and only if X* holds in all models
of K* which are extensions of M.

Remark. It is clear that if such a statement X exists then it is
essentially unique, 4. e. if the conclusion of the theorem is satisfied for
X=X, and X=X, then the equivalence X,=X, is deducible from K.
X will be called the projection of X* from K* onto K.

Proof of (3.1). For given K, K* and X* which satisfy the condi-

tions of the theorem, we relativise A (see section 1) with respect to a re--

lation R(x) which is not contained in XK, and hence is not contained
in K* or X* either. Suppose that we can find a statement X which ig
defined in K such that the equivalence

X*EXR

is deducible from the set K* K. Let M and M* be models of X and K*
respectively, such that MCM* Define M as in section 1 by postulating,
in addition to the existing relations of A7*, that R(a) shall hold in M
for all elements a of 1, and R(a) shall not hold for the elements of M*
which do not belong to M. Then M is a model of K* as well as of Kx.

Now suppose that X* holds in M*. It follows that X* holds also
in M. And since X*=X is deducible from K*U Ky we conclude that Xz
also holds in M, and hence that X holds in M. A similar argument shows
that if ~X* holds in M* then ~X holds in M. Thus, in order to prove
the theorem, we only have to find a statement X such that X*= X,
is deducible from K*UKj.

Let P be the set of all statements X which are defined in K and
such that ‘

X*D Xy

is deducible from K*UKg. P is not empty since it includes all provable
statements which are defined in K. Also, P is conjunctive, that is to say,
X eP and Y ¢P together entail X AY ¢ P. Indeed, if X*>X,; and
X*DYg are deducible from .K*U Ky then X*D[Xp AYR] also is dedu-
cible from that set, and Xz Yy is identical with [XA Y.

Let Py be the set of all Xy for X ¢ P and consider the seb

S=K*CKpuPru{~X*},
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Suppose first that this set is consistent and hence, that it possesses
a model M'. Then M’ is a model of *. Also, the constants of M’ which
satisty R(a) constitute a model My of K, and if we disregard the rela-
tions R(a) in My then we obtain a model M of K. Let N be the dia-
gram of M, then the diagram N, of My is obtained by adding to N the
atomic statements R (a) for all constants a of N. The set &' =K*UI rVNR
is congistent since M’ is a model of this set. We propose to show that
~X* must be deducible from §’. )

Suppose on the contrary that 80 {I*=K*CKzpuNx w{X*} is
consistent and hence, that it possesses a model M’’. Then the constants
of M’ which satisfy R(a) constitute a model M% of K r sueh that My
is an extension of Mz. It follows that M’ is an extension of Jf which
sabisfies X* while M’ is an extension of M which satisfies ~ X*. The
same still applies if we remove the relation R(z) from M and M"’ although
the resultant sets are both models of K*. This is contrary to the assump-
tion that X* is invariant with respect to K* over K, and proves that
~X* must be deducible from S§.

We conclude that there exists a statement ¥ which is a conjunction
of a finite number of elements of Nz such that YO~ X* and with it
X*D~Y, is dedueible from K*U K. Now the conjuncts of ¥ ave either
of the form R(a) or they are atomic formulae which are given in terms
of the constants and relations of 3, or the negations of such formulae.
We may write ~Y as a disjunction, or again as an implication of the
form

Rla)A ... A\R(ay)DZ

where Z is a disjunction of atomic formulae of the type just described
and (or) of the negations of such formulae. Moreover, by adding, if ne-
cessary, suitable elements of Ny to the original ¥, we may ensure that
the constants contained in Z are precisely a,...,a,, Z=2 {ey,...,a,). Then

X*D[R(ay)A ... AR(an) D2Z)

is deducible from K*UKp. Furthermore, the conjunction R(a)nr ...AR(a,)
may (possibly) be shortened by omitting from it all terms R(a;) such
that a; is contained in K, for these terms are already included in K,
by definition (see section 1, above). Suppose that this applies for
j=m+1,...,n, then

X*D[R(ay) ... R(an)DZ]

is deducible from K*UKgz. (If m=0, we omit the conjunction. and the
sign of implication which follows it.) Sinee a,,...,a,, are not included in
either K*, Ky, or X* it follows that the statement

(3:2)  X*D[(2) ... @) [R(B)A o e AR(@m) D Z (1 vy By s oo )]
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is deducible from K*CRr. A slight modification of (3.2) then shows
that the statement
(3.3) X*DFV

is deducible from K* Ky, where
V= (ml)[R(wl)D [(xz) [R(mz)l.. [R(#m) D Z (24,... ,mm,a,,,+1,...,a,,,)]...] .
But 1" is the relativised transform of the statement W which is defined by
W= (@) e () Z (g g ove y Ty ity v 3 B
i. 6. V=Wg, and W is defined in K. Referring to (3.3), we now see that
W belongs to P, by the definition of this set, and ¥ belongs to Pz. But

M’ is a model of Py and so M’ satisfies V. We infer that M’ satisties
at the same time

R@)A o AR (@) DZ (g eee y Oy Oyt yenn s B) -

Now E(a;)A...AR(ay,) holds in M’ and so Z(a,,...,a,) also holds in that
structure. On the other hand, Z is a disjunetion of atomic formulae whose
negations hold in M, and hence in M’, and (or) of the negations of such
formulae, if the formulae themselves hold in M and hence in M’. If fol-
lows that ~Z holds in M’ and this contradicts the result just obtained.
We conclude that M’ cannot exist, 7. e. the set

S=K*CKzuPru {~X%

must be contradictory. It follows that there exists a finite conjunction
of elements of Pr and more partieularly (since Py is conjunctive) a single
element Xy of Px such that

XpDX*

is deducible from K*UKgz. But at the same time
X*DXg

is dedneible from K*OG Ry, by the defining property of P. This shows that
X*=X;

is deducible from K*UKy and completes the proof of the theorem.

Next, we consider the corresponding problem for predicates.

Let K and E* be two sets of statements. A predicate @*(ay,...,2,),
n>1, which is defined in K will be said to be invarignt with respect
to K* over K if for any set of constants, €y ..., @y, Which belong to a mo-
del M of K, either the statement @*(ay,...,a,) holds in all extensions
of M which are models of K*, or the statement ~Q*(ay,...,a,) holds in
all extensions of A7 which are models of [*,
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(3.4) TeporEM. Let K and K* be two non-empty and consistent sets
of statements such that conditions (2.1) and (2.2) are satisfied, and let
Q*(Zy1y ey Zs) be @ predicate which is defined in K* and is invariant with
respect to K* over K. Then there exists a predicate Q (x, , ... ,a,) which is defined
in K such that for any model M of K containing constants a,...,a,, the
statement @ (ay,...,a,) holds tn M if and only if Q*(ay,...,a,) holds in all
models of K* which are extensions of M.

Remark. If the conclusion of the theorem is satisfied for Q=0,
and @=0, then the statement

(@1} oo () [Qr(Tr g oo s ) = @ty e, )]

is deducible from K. In this sense, @ is essentially unigue. It will be cal-
led the projection of @* from I* onto K.

Proof of {3.4). Let by,...,b, be a set of constants which are not
contained in K (and hence, are not contained in A*). We adjoin these
constants to K and K*, obtaining sets K, and K respectively. That is
to say (see [7]) we add to K and K* provable statements which involve
by,...,b,. By this device, we ensure that the statement

X*=Q*(by,..., D)
is defined in I,.

We maintain that X* is invariant with respect to K¢ over K,. In-
deed, let M, be any model of K,, and hence of K, and let M¥, M¥ be
two models of K§ (and hence of A*) which are extensions of M. Then
the constants by,...,b, are contained in all three of these structures. Since
Q*(21,...,2,) 18 invariant with respect to K* over K, X*=Q*(by,...,b,)
holds either in both M7 and A7} or it holds neither in M¥ nor in M¥. This
shows that X* is invariant with respect to K§ over K,. Applying (3.1)
we find that there exists a statement X which is defined in K, such
that X holds in any model 3, of K, if and only if X* holds in all mo-
dels of K§ which are extensions of M,. Moreover, we may assume that X
includes the constants by,...,b, effectively for if this is not the case from
the outset then we only have to add a number of provable statements
which include these constants, to X in conjunction. Accordingly we may
write X=@Q(&,,...,b,). We propose to show that the predicate Q (z,...,2,)
satigfies the conditions of the theorem.

Let M be a model of K and let a,,...,a, be a set of constants of 3,
Also, let M* be an extension of M which is a model of K*. We note that
the predicate Q(a,...,#,) is independent of the choice of the b; (except
that these comstants must not be included in K or K*). Accordingly
we may suppose in addition that the b; are not included in M or M*
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either. We now enlarge the structure M by adding the constants b,,...,b,,
and we define that in fthe enlarged structure M,, a relation involving
any of the b; shall hold precisely if the relation obtained from it after
replacing the b; by the corresponding a; holds in M. We also define
a structure M3 which is obtained in the same way by adding the b; to Ar*
and proceeding as before. Then M, is a model of K, and M} is a model
of K. '

Suppose now that @*ay,...,a,) holds in . Then the straightfor-
ward semantic interpretation of this fact shows that X*=@*(b,,...,b,)
holds in 3/,. It follows that X=@Q(b,,...,b,) holds in M, and hence that
@(ay,...,a,) holds in J. A similar argument shows that if ~Q*(ay,...,a,)
holds in M* then ~@(a,,...,a,) holds in M. This establishes the
theorem.

We note that the statement X whose existence is affirmed by Theo-
rem (3.1) is by necessity persistent with respect to K, according to the
definition given in [8]. For if X holds in a model M of K then X* holds
in all models of I* which are extensions of M. Now let M’ be any other
model of K which is an extension of M. We have to show that X holds
also in M.

Let BM* be an extension of M’ which is a model of K* Such an 3*
exists since K* iz model-consistent with respect to K. Then M* is also
an extension of 3, and so .X* holds in M*. It then follows directly from
the defining property of X that X holds in 3.

Since X is persistent with respect to K it can be replaced by a sta-
tement in prenex normal form with existential quantifiers only (see [2],
[4], [9], [14]). Moreover, ~X also is persistent with respect to K, and
so X can be replaced equally well by a statement in prenex normal form
with universal quantifiers only. These results can also be obtained di-
rectly by a suitable restriction on the statements of the set P which
occurs in the proof of (3.1). Similar remarks apply to -the predicate
Q(xy,...,2,) of Theorem (3.4).

The following theorem links the notion of relative model-completeness
with the subject of the present section:

(3.5) THEOREM. Let K and K* be two non-empty and consistent sets
of statements such that (2.1)-and (2.2) are satisfied and such that K* is
model-complete relative to K. Then any statement X* which is defined in K*
possesses a projection from K* onto K. Similarly, any predicate Qg ... )
which is defined in K* possesses a projection from IK* onto K.

Proof. Let X* be a statement which is defined in K* and let M

be any model of K with diagram N. Then K*UN is complete, by as-
sumption and so either Y* is deducible from E*UN and hence holds
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in all models of I* which are exfensions of M, or ~ X* is deducible
from K*O¥ and holds in all models of K* which are extensions of J.
Thus X* is invariant with respect to K* over K. The first part of (3.5)
now follows immediately from (3.1). The second part of the theorem
is proved in the same way.

4. Application to field theory. Let K be a set of axioms for
the concept of a (commutative) field, K=Ky, and let K*=F*% be a set
of axioms for the concept of an algebraically closed field (compare sec-
tion 2 above). It has been shown in section 2 that K% is model-complete
relative to Ky. Moreover, conditions (2.1) and (2.2) are satisfied and 50,
by (3.5), every predicate which is defined in K¥ possesses a projection
from K% onto Kp.

Again, we may take K=RKruN,, K*=KroN,, where N, is the
diagram of a particular field J,. Thus, the class of models of K coinci-
des with the totality of fields which are extensions of M,, and the class
of models of K* is the totality of all algebraically closed fields which
are extensions of M,. (Instead of ineluding the diagram of a particilar
field one might wish to include statements specifying the characteristic
of the field but the same effect can be obtained equally well by inclu-
ding the prime field of the characteristic in question.) A direct check
shows that conditions (2.1)-(2.3) are satisfied so that K* is associated
with K. Furthermore, since K% is model-complete, K¥_ N, is model-
-complete a fortiori, and it will be seen that the remaining conditions
of Theorem (2.7) are satisfied as well. We conclude that K% N, is model-
-complete relative to KrpuN, and, referring to Theorem (3.5), we con-
clude further that every predicate Q*(z,,...,2,) which is defined in KEUN,
possesses & projection from K(uXN, onto KruN,.

In current usage in Algebra, the fact that a particular property
applies, not within a specified field of coefficients M, but within some
extension of 17, is frequently understood implicitly. The following ver-
sion of the theorem of Hilbert-Netto differs only inessentially from that
given in [15]:

(4.1) “Let f(Byyuers@n)y f1{ryeeeyTa)y ooy Fl@yy oo, @) DE polynomials in the
polynomial ving Mlxy,...,x,) for a given field M, such that f vanishes for
all the joint zeros of the polynomials fy,...,f.. Then f¢ belongs to the ideal
(Frse--31s) for some positive integer .

Now this theorem is incorrect if hy ‘all the joint zeros” we mean
“all the joint zeros in M. In actual fact the premiss of the theorem
is supposed to contain the claunse

(4.2) “..., such that / vanishes for all joint zeros of fy,...,7,, in all
(commnutative) fields which are extensions of M :
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— and it is with this interpretation that the theorem is- usually
proved. Since every field can be embedded in an algebraically closed
tield, (4.2) may be weakened, at least formally, by replacing it by

(£.3) “..., sueh that f vanishes for all joint zeros of fiseeesfry in all
algebraically closed fields which are extensions of M.

Again, since the concept of an algebraically cloged field is model-
-complete (or else, by purely algebraic arguments) it follows that (£.3)
is alveady satisfied if we require only

{4.4) “..., such that f vanishes for all joint zeros of fiy.sfr in the
algebraic closure of M.

In [5] and [6], it is shown by arguments which involve a certain
amount of algebra that the premiss of (4.1), when interpreted in the
sense of (4.3), can be formulated as a predicate — in' M — of the coeffi-
cients of the polynomials f,f,,...,7,. Reviewing [6] in [1], one of the lea-
ding authoriies in our field expresses his surprise that such arguments
were employed seeing that there exists a simple and straightforward
way of formalising the clause in question. It appears that this refers
to the statement (or predicate of the coefficients)

(£5) (@) (B [y ey ) = OA oo Ay, ooy ) == 0Df(2y,...,2,) = 0]

when written out in detail within the lower predicate caleulus. However,
it will now be clear that the expression which is actually to be formalised
(i. e. (4.3)) Is not equivalent to (4.5) except when M is algebraically closed.

Nevertheless, the general theory of section 3 shows, without further
algebra, that the predicate in question ean be formulated with reference
to M only, as required. Indeed, let #,f,,...,/, be the general polynomials
of the variables ,,...,2,, and of degrees My My, ..y My, With indeterminate
coefficients. We range all these coefficients in an arbitrary but definite
o0rder, gy,..., %, 8ay. Then (4.5) may be written as a predicate of y,,...,v,
in terms of the relations of equality, addition, and multiplication, and
without constants. We denote this predicate by Q*(y1y.e s Yx).

Now let Q(yy,...,yx) be the projection of Q*y,,...,u) from K%
onto Ky. Then for any given sef of elements dyy.y 0 In an arbitrary
field 21, Q(ay,...,a;) holds in M if and only i (4.5) holds in all alge-
Dbraically closed field which include 3. Q is the required predicate. It is
independent of the characteristic of ).

Consider now the conclusion of the theorem of Hilbert-Netto, (4.1).
This states that there exists a positive integer ¢ and polynomials
9@y, .o, ;) such that

(£.6) (f(‘Tl’ ""‘T"))g=g(w17"- &) F (g oy ) + . + g7y, ey @) iy ) T)
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It will be seen that in this form the conclusion cannot be formu-
lated within the lower predicate calenlus. On the other hand, if we spe-
cify any pair of positive integers ¢ and x then it is not difficult to verify

b

" that the expression

“There exist polynomials ¢,...,4, of degrees not exceeding p such
that the identity (4.6) is satisfied”

— can indeed be formulated within the lower predicate calculus as
a predicate of the indeterminate coefficients of f,f;,...,f.. We denote
this predicate by Quu(yr,--- ¥x)-

Now let ay,...,ar be an arbitrary set of eonstants and consider the
set of statements

S=Kro{Q(ay...,a0)} v {~Qpulay,...,0n)}

where {~Q.(a,...,a;)} indicates the set of all statements ~Q,.(a,...,az),
o,4=1,2,3,... If § is consistent there exist polynomials f,f,,...,7, with
coefficients a,,...,a,; in a field M such that j vanishes for all joint zeros
of f,,...,f, in all algebraically closed extensions of M, although the con-
clusion of the theorem of Hilbert-Netto is not satisfied ((4.6) does not
hold for any p and gi(zy,...,2,)). This is impossible and shows that § is
contradictory. It follows that there exist positive integers o,,...,0r,
Hay---s g, Such that the statement

4.7) QB eey 1) D QoG y vy M)V oV Qo (4 oy )
is deducible from K. Now if

=2 g

1= Y6y

where G;=7%,. We coneclnde that, for all o,u,

then for any positive 1

Qo @y 5oy ) Qo aptrmil@yy -5 )

is deducible from Kz, where m is the degree of f, as before. It follows
that if g, is the maximum g in the implicate of (4.7), then we may re-
place all @y, bY Quutmg—en- Again, if g, is the greatest among the
numbers u;+ m{e,— g;) then we also have tha,t_

Qopastmiag—en( @1y oo 1 Cic) D Qourn(Bn g oen 5 )
iz dedueible from Kp. (4.7) then entails that :
Q(@yyeeey 1) D QG y ey )
is deducible from Kp, and the sdme therefore applies to the statement

(1) cor () [Q (24 -0y V1) D Qg @ry oo s 7%} ] -
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Thus, we have established the existence of upper bounds for ¢ and
for the degrees of the polynomials g, for given degrees of 7,f,...,7,.
These bounds are independent of the particular field of coefficients and
even of the characteristic of the field. The result is not new (eompare [6],
chapter 8) but its derivation has been simplified here considerably by
the use of the projection of a predicate from K% to Kj.

5. Application to ordered fields. In this section we let K =K,
and K*=K%, where Ky is a set of axioms for the concept of an ordered
field formulated. in terms of the relations of equality, order, multiplica-
tion and addition, and withont constants, and K% is a set of axioms for
the concept of a real closed ordered field formulated in a similar way
(compare [8] and section 2 above). It was shown in section 2 that Iy
is model-complete relative to K. The remaining conditions of Theo-
rem (3.5) are also satisfied, and we conclude that every predicate which
is defined in.K} possesses a projection from Kj onto K.

(6.1) THROREM. Let f(2,,...,2,) and g(xy,...,2,) be two polynomials
with coefficients in an ordeved field M, such that §{(®yy...,2,) 18 Of positive
degree and irreducible in M and such that f(zy,...,2,) >0 for all z,...,z,

in the real closure M* of M, for which {2y, 0)=0. Then there exist
polynomials

By yeen s )y Dilyyueny@a)y wory Ry, 2t), k(g y . @),

with coefficients in M, and positive elements ¢, ,...,c, of M such that

(5.2)  (R(@ryeey ) f (@1, .y 20)
———Zci(h,(ml, o s TP K (g ey @) G (2, -.n ,00)
i=1

and such that h(wy,...,x,) does not belong to (g) (i. e. is not divisible by g).
Moreover, there are bounds for the number of squares r required in (5.2)
and for the degrees of the polynomials h,hy,...,h, k. These bounds depend
only on the degrees of f and g, and not on the coefficients of f and g or on
the partieular choice of M.

Proof. Suppose that the assumptions of the theorem are satisfied
for given f and g with coefficients in s field I , but that no identity of
the type of (5.2) exists. It follows that there can be no identity

/= 2 0.'912
i=1

in the field of fractions M’ of the quotient ring M[z,,...,#,]/(g). This
in turn entails (compare [10]) that there exists an ordering of "M’ which
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continues the ordering of M, such that f<0. Let &,..,& be the ele-
ments of M’ which correspond to the indeterminates ux,..,&,. Then,
for the ordering just selected,

f('§17"-7§n)<07 _(j(fl,...,é',‘)=0.

Now the statement ‘‘there exist ay,...,x,, such that f(zy,...,z,) <0
and g(zy,...,&,)=0" can be formulated in the lower predicate calculus
in terms of the relations of A, and the coefficients of f and g. Let this
formal statement be called X. Then X holds in the real closure of 1’ and
since K3 is model-complete, X holds also in ail other real-closed exten-
siong of M, and, in particular, in the real closure of Af. This is contrary
to the hypothesis of the theorem and proves that an identity (5.2) exists.

So far, we have followed the reasoning of [10] and [11]. To prove
the existence of the required bounds, we have to make use of a different
kind of argument. We now let f and g be the general polynomials of »
variables wy,...,2, and of degrees I and m respectively, with indeterminate
coefficients. We range all these coefficients in a definite order y,...,¥s,
in such a way that the coefficients of g, ¥,...,¥; say, are followed by
the coefficients of f. Then the statement X defined above becomes a pre-
dicate of ¥y,...,%x, X=R*(yy,...,¥k). Let R(y;,...,%:) be the projection
of R* from K} onto to K.

Next we formulate a predicate T'(yy,...,y;) which states, in terms
of the relations of equality, addition and multiplication, that g(mz,...,2.)
ig irreducible and of positive degree (¢. e. does not reduce to a constant).
Such a predicate can be obtained without difficulty by means of a con-
junction of formulae which affirm that g cannot be written as the pro-
duct of two polynomials of degrees s and m—s, 1 <s<m—1. Note that
T{(yy,--,y;) implies irreducibility in the given field, not absolute irre-
duecibility. Thus the conjunction Z'(yy,...,¥;) AR(Y1,-..,Yx) states that g is
of positive degree and irreducible in the field under consideration, and
that f>0 whenever ¢=0 in any real-closed extension of the given field.

On the other hand, for given positive integers » and u, it is not dif-
ficult to formulate a predicate Q,..(y,,...,¥x) Wwhich states that there exist
polynomials h,hy,..., %, %k of degrees not exceeding u and positive vele-
ments ¢, ...,¢ such that the identity (5.2) is satisfied and such that b is
not divisible by g. (Note that the ¢ appear as quantified variables in the
formal predicate.) Then for any set of constants a,,...,a, the statement

(6.4) Qi @y oy 0) D Qo @y -y k)

is deducible from X, provided r, v, @y >p.
Now congider the set of statements

S=Io{T(ay,.s0;); B{@y;er s tie) y~ Qrplttyy .ov s i)}
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where r, u vary over all positive integers. 1f § were consistent there
would exist polynomials f(a,...,2,), g(x;,...,2,) with coefficients in an
ordered field M and satisfying the assumptions of Theorem (5.1) yet
not satisfying any identity of the type of (5.2). This is impossible in
view of the first part of the theorem, which has been proved already.
We conclude that § is contradietory and hence, that a finite disjunction
of the statements @,.(a,,...,a;) is dedueible from

Ko {l (@, ), R{ay, ..., az)}.

(5.4) then shows (compare a similar argument in section 4 above)
that 6his disjunction can be replaced by a single statement Qrom( @y ooy i)
Thus

(5.5)

T(al,...,aj)/\R(al,...,ak)DQ,O,,D((LI,...,ak)
is deducible from K,. The integers 7, and u, may serve as the hounds
whose existence was to be proved.

Let us consider in. particular the case n= 1, 3 =u. Since every poly-
nomial is now congruent modulo g to a polynomial of degree less than g5
it is sufficient to consider the case I <m. Moreover, since h is not divi-
sible by ¢ it possesses an inverse modulo g. Accordingly, we may re-
place (5.2) by

f(lf)EEci(}li(w))z mod g(x)

where the number r depends only on the degree of g(r) and not on the
field of eoefficients of f and g. )

We may look upon this result in a different way.

Let I be an ordered field and let ¢(x) be an irreducible polynomial
of degree m>1 with coefficients in M. Let M (a) be the field obtained
by adjoining a root « of g to M, and suppose that M is formally real.
Let 8 be an element of M (a); B#0. Then B can be written as
B=by+biat..+bpd=F(a),
say, where

Hy=bo+ b+ ... +bd,  A<in.

Now consider the following conditions:

(5.6) f(x)>0 for all values @ e M* for which g(x)=0, where Ir* is
the real closure of 7.

(5.7) >0 in all possible orderings of M ().

(5.8) Let M,=M(a), Myy..., My be the subfields of M* which are
conjugate to M(a) with respect to M. Then the conjugates of f i
My s My Br=B, Boyeen,sfs are all positive.
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Thus, if M is the field of rational numbers, the fields M, are the
real conjugate fields of M (a) and the condition (5.8) states that g is to-
tally positive in M (). We shall use the same terminology for the more
general case gonsidered here.

(5.6) entails (5.7). For if there exists an ordering of M (a) such that
£ <0 then this ean be continued into the real closure of A, M*. We then
have, in ¥,

gla)=0, fla)<0.

Thus the statement “there exists an x such that g(e)==0, &) <0 holds
in M* and this contradicts (5.6).

(5.7) entails (5.8). For any ordering of M;, ¢>1, that continues the
order of M induces an ordering of M,=M(a) which continues the order
of M. This ordering of M (a) is obtained by determining the positivity
of any element of M{a) in accordance with the positivity of th‘e cor-
responding element of Af;. Hence f§; <0 entails # <0 in the ordering of
M (a) just defined. This contradicts (5.7). .

Finally, (5.8) entails (5.6). For if (5.6) is not satisfied, then there
exists an element o in the real closure of M such that g(a)=0,
B’ =f(a’)<0. (f(e')=0 is impossible since f ix of lower degree than g and
does not vanish identically.) Then «' is one of the eonjugates of « and
generates a subfield M (o) of M*, while 8% is the correspond.iug con-
jugate of f. It follows that £ is not totally positive, contradicting (5.8).

Combining these results, we see that (5.6) and (5.8) arve equivalent.
Hence, from Theorem (5.1),

(5.9) TeEOREM. Let M’ be o finite algebraic and formally veal exten-
ston of an ordered field B, Then every totally positive element B of M’ can
be represented in the form

(5.10)  f= ek, >0, aeM, M, di=1,.,r.
i=1
The integer v depends only on the degree of M’ over M. It does not depend
on the particular choice of M or of M’ or of .
(5.11) CoROLLARY. If there exists a positive integer o such that every
positive element of M can be represented as the swm of o squares of elements
of M then (5.10) may be replaced by

b

B= )2t peM, i=1,..,s,

J|
I

i

where s (i. e. 8=1p) may now depend on M but not on M’ or f.


Artur


icm

328 A. Robinson

For example, if 3 is the field of rational numbers then o=4. How-
ever, in that case a well-known theorvem of Hilbert's (first proved by
Siegel [12]) states that s is even independent of the degree of M’ over Jf ,
more precisely, s= 4.

Theorem (5.1) overlaps with theorem 3.1 of [11] for certain parti-
cular cases. [11] includes the consideration of a general variety V in
place of the variety (primal) of g single polynomial, 9@, ...,2), with
which we are concerned in the present paper. Also, in [11] we admit
ancillary conditions of the form gi{ey, .., w,) >0, Ib appears that there
would be no difficulty in including the latter Dbossibility also in the pre-
sent analysis. On the other hand, it does not seem an easy matter to
prove the existence of bounds + and # s in (5.1) above for general ir-
reducible ¥, such that these bounds depend only on the degrees of the
polynomials of a specified basis of the prime ideal which belongs to ¥
{but not on their particular coefficients). The reason is that, so far as
the present author knows, it has not yet been established that the pro-
perty of a set of polynomials to generate a prime ideal can be represented
as & predicate of the coefficients of these polynomials within the lower
Dredicate caleulus. The question does not arise in the corollary (3.9) of [11]
because in that corollary the variety V is kept constant implicitly.

The present paper also goes beyond [11] in admitting ordered fields A7
which are not real-closed. Both extensions — to arbitrary ordered fields I/
and to variable coefficients of 9(®y,y...,x,) — were Tequired in order %o
derive (5.9) and its corollary (5.11), which formed the starting point of
the present investigation.
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