On the Weierstrass-Stone approximation theorem

by

B. Banaschewski (Hamilton, Ont.)

1. The Weierstrass-Stone approximation theorem states: If a ring Rof bounded continuous real functions on a compact space E contains (i) the constants and (ii) to any $x, y \neq x$ of E a function f for which $fx \neq fy$, then R is dense in the ring $\mathcal{C}(E)$ of all bounded continuous real functions on E with respect to the uniform topology 1).

In the following, by saying the Weierstrass-Stone approximation theorem is true for a space E we shall mean that any ring of bounded continuous real functions on E for which (i) and (ii) hold is uniformly dense in $\mathcal{C}(E)$. For property (ii) of a ring R of functions we shall also use the expression: R separates the points of E.

A filter $\mathfrak A$ on a topological space E is called completely regularif it has a basis $\mathfrak B$ of open sets such that for any $B \in \mathfrak B$ there exists a $B' \subseteq B$ in $\mathfrak B$ and a function $f \in \mathcal C(E)$ which maps E into the real unit interval, vanishes on B' and equals 1 on the complement CB of B (see [3], chap. IX).

In this note we restrict ourselves to spaces E for which $\mathcal{C}(E)$ separates the points of E. Concerning such spaces we are going to prove:

The Weierstrass-Stone approximation theorem holds for the space E if and only if for any completely regular filter $\mathfrak A$ on E the intersection $\bigcap A$, $A \in \mathfrak{A}$, is non-void.

2. Our first step will be to show that on any non-compact completely regular space E there exist subrings $R \neq \mathcal{C}(E)$ of $\mathcal{C}(E)$ which are uniformly closed, contain the constants and separate the points of E. This will prove that a completely regular space for which the Weierstrass--Stone approximation theorem holds is compact 2).

If the space E is non-compact and completely regular, let a be any fixed point of $\beta E-E$, βE the Čech compactification of E (see [4]), and α_* a fixed point of E. The set of all $f \in \mathcal{C}(E)$ for which $fa_* = \widetilde{f}a$, where \widetilde{f}

¹⁾ See, for example, [3], chap. X. All topological concepts used here will be taken in the sense of N. Bourbaki.

²⁾ As M. Henriksen has pointed out to me, this statement was first given in [5].

denotes the continuous extension of f to βE , is clearly a uniformly closed subring E of C(E) which contains the constants. As the bounded continuous real functions on βE separate the points of βE , there exists a $g \in C(E)$ for which $ga_* \neq \widetilde{g}a$, and one has, therefore, $R \neq C(E)$. Finally, for any given, $x,y \neq x$ in E there are functions $h \in C(E)$ such that hx = 0 and $hy = ha_* = \widetilde{h}a = 1$ as one readily sees by applying Urysohn's lemma to βE . This shows E to be of the desired type.

Another proof, implicitly making similar use of βE , is as follows: If E is non-compact completely regular, then there exists a strictly coarser topology on E for which E is still completely regular 3) and the ring E of all bounded continuous real functions on E which are continuous with respect to this coarser topology is a uniformly closed subring of C(E) which contains the constants and separates the points of E. Furthermore, since the topology of a completely regular space is determined by its bounded continuous real functions, one has $E \neq C(E)$.

3. With any space E there is connected a certain completely regular space \vec{E} , the uniform space which has the same points as E^4) and whose uniform structure is defined by the $f \in \mathcal{C}(E)$ in terms of the relations $|fx-fy| \leq \varepsilon$, $\varepsilon > 0$, $f \in \mathcal{C}(E)$. By definition, one has $\mathcal{C}(E) = \mathcal{C}(\vec{E})$. If \dot{E} is compact and R a subring of $\mathcal{C}(E)$ containing the constants and separating the points of E — which at the same time means: of \dot{E} — then, in virtue of the compactness of \dot{E} , one has $R = \mathcal{C}(E)$.

If, on the other hand, \dot{E} is non-compact, there exist, as shown above uniformly closed rings $R \neq \mathcal{C}(\dot{E})$ in $\mathcal{C}(\dot{E})$ which contain the constants and separate the points of \dot{E} , and R has the same properties relative to E.

Therefore: The Weierstrass-Stone approximation theorem holds for E if and only if \dot{E} is compact.

4. Let \dot{E} be compact and $\mathfrak A$ any completely regular filter on E. Then, $\mathfrak A$ is also a completely regular filter on \dot{E} 5) and as $\bigcap A = \bigcap \bar{A}$, $A \in \mathfrak A$ (the bar denoting closure in \dot{E}), because $\mathfrak A$ is a completely regular

filter, one has $\bigcap A \neq \emptyset$ in view of the compactness of \dot{E} . On the other hand, let any completely regular filter on E have non-void intersection. Then, in particular, any maximal completely regular filter \mathfrak{M} on \dot{E} , being also a completely regular filter on E, has a non-void intersection. This means, there is an $x \in E$ whose neighbourhood filter $\dot{\mathfrak{R}}(x)$ in \dot{E} contains \mathfrak{M} : take $x \in \bigcap M$, $M \in \mathfrak{M}$. As $\dot{\mathfrak{R}}(x)$ is also completely regular in \dot{E}^6), one gets from this $\mathfrak{M}=\dot{\mathfrak{R}}(x)$. In other words: every maximal completely regular filter in \dot{E} is convergent. This, however, implies that \dot{E} is compact: If \dot{E} were non-compact, each point u of its Čech compactification $\beta \dot{E}$ which does not belong to \dot{E} would determine on \dot{E} a completely regular filter by the intersections $U \cap E$, U any neighbourhood of u in $\beta \dot{E}$. It is known that this filter would be a maximal completely regular filter (see [1], also [3], chap. IX) and, of course, converge to u in $\beta \dot{E}$. Therefore, as every maximal completely regular filter on \dot{E} has a limit in \dot{E} , \dot{E} is compact.

5. In order to show that the proposition thus proved actually covers a wider class of spaces than just the compact spaces, we shall now give an example of non-compact Hausdorff spaces for which the Weierstrass-Stone approximation theorem also holds.

Let E be any non-compact completely regular space, βE its Čech compactification and M its maximal completely regular filters. Then, a new extension space $\beta'E$ of E can be defined by taking the collection of sets $M \cup \{u\}$, $M \in \mathfrak{M}$, as new neighbourhood filter of $u = \lim \mathfrak{M} \in \beta E$ and the neighbourhood filter (in E) $\mathfrak{B}(x)$ of $x \in E$ as new neighbourhood filter of x in $\beta'E$. Obviously, $\beta'E$ contains E as a dense subspace. On the other hand, the topology of $\beta'E$ is a refinement of the topology of βE , for all sets open in βE are also open in $\beta' E$: If M is open in βE and $M = M_1 \cup M_2$ its decomposition into $M_1 \subseteq E$ and $M_2 \subseteq \beta E - E$, then M_1 is open in E and M_2 consists of such points u for which $M_1 \in \mathfrak{M}$ where $u = \lim \mathfrak{M}$. As $M_1 \cup \{u\}$ is open in $\beta'E$ for any such u, $M_1 \cup M_2$, being a union of sets of the latter type, is also open in $\beta'E$. In general, this $\beta'E$ will not be compact: Its compactness implies $\beta'E = \beta E$ and therefore discreteness of $\beta E - E$. However, for, say, a locally compact E one would then have finite $\beta E - E$, which, in turn, will not be true if E is also normal 7). In the following, $\beta' E \neq \beta E$ will be assumed.

Now, let f be any bounded continuous real function on $\beta'E$. Then, the restriction f_* of f to E is a function of the same type on E. f_* has continuous extension f_* to βE . The two functions f and f_* , however, are actually equal: If $\lim \mathfrak{M}=u$ in βE , then also $\lim \mathfrak{M}=u$ in $\beta'E$ and

³) For this, see [2]. This is where implicit use is made of βE , by operating with maximal completely regular filters.

⁴⁾ This is only true when $\mathcal{C}(E)$ separates the points of E. Otherwise, the statement must be modified. See [4].

⁵⁾ At has a basis $\mathfrak B$ of open sets in E such that to every $E \in \mathfrak B$ there exists a $E \subseteq E$ in $\mathfrak B$ and an $f \in C(E)$ mapping E into the real unit interval, vanishing on E and equal to 1 on E. For the sets M_n of all x such that fx < 1/n one then has $E \subseteq M_n \subseteq E$. These M_n are open in E, because f is continuous on E, and contained in $\mathfrak A$ because of $E \subseteq M_n$. Furthermore, one can find continuous mappings φ_n of the unit interval onto itself such that the function $\varphi_n \circ f$ maps $M_{1/(n+1)}$ onto 0 and $CM_{1/n}$ onto 1. Therefore, the collection of all these M_n , taken for any pair E, E and one of the corresponding functions E forms a basis of E which shows that E is completely regular in E.

⁶⁾ A direct consequence of the complete regularity of E.

⁷⁾ See [4]. Actually, there is a (much more complicated) process which yields a modification of βE of the desired type for arbitrary completely regular E.

252 B. Banaschewski

vice versa. $\lim \mathfrak{M} = u$ in βE gives $\widetilde{f}_* u = \lim f_* \mathfrak{M}$ and $\lim \mathfrak{M} = u$ in $\beta' E$ gives $fu = \lim f_* \mathfrak{M}$, hence $\widetilde{f}_* = f$. In other words: Any bounded continuous real function on $\beta' E$ is also continuous on βE . From this, one concludes that the Weierstrass-Stone approximation theorem holds for $\beta' E$, which can either be shown directly or by applying the result proved in the previous sections, using the fact that every completely regular filter in $\beta' E$ is also completely regular in βE .

References

- [1] P. Alexandroff, Bikompakte Erweiterung topologischer Räume, Mat. Sborn. N. S. 5 (1939), p. 420-423.
- [2] B. Banaschewski, Über zwei Extremaleigenschaften topologischer Räume, Math. Nachr. 13 (1955), p. 141-150.
 - [3] N. Bourbaki, Topologie générale, Paris 1948.
 - [4] E. Čech, On bicompact spaces, Ann. of Math. 38 (1937), p. 823-844.
- [5] E. Hewitt, Certain generalizations of the Weierstrass approximation theorem, Duke Math. 14 (1947), p. 419-427.

MCMASTER UNIVERSITY, HAMILTON, ONTARIO

Reçu par la Rédaction le 19.4.1956

On the limiting probability distribution on a compact topological group

by

K. Urbanik (Wrocław)

I. Let G be a compact (not necessarily commutative) topological group. A regular completely additive measure μ defined on the class of all Borel subsets of G, with $\mu(G)=1$, will be called a probability distribution. A sequence of probability distributions μ_1, μ_2, \ldots is said to be weakly convergent to a probability distribution μ if

$$\lim_{n\to\infty}\int\limits_G f(x)\,\mu_n(dx) = \int\limits_G f(x)\,\mu(dx)$$

for any complex-valued continuous function f defined on G.

Let $X_1, X_2,...$ be a sequence of independent G-valued random variables with the probability distributions $\mu_1, \mu_2,...$ Put

(1)
$$Y_n = X_1 \cdot X_2 \cdot ... \cdot X_n \quad (n = 1, 2, ...)$$

where the product is taken in the sense of group multiplication in G. Let us denote by ν_n the probability distribution of the random variable Y_n . It is well known that

$$\nu_n = \mu_1 * \mu_2 * \dots * \mu_n : (n = 1, 2, \dots),$$

where the convolution * is defined by the formula:

$$\nu * \lambda(E) = \int_{G} \nu(E \cdot x^{-1}) \lambda(dx).$$

The limiting distribution of the sequence of random variables Y_n is the weak limit of the sequence of the probability distributions $\mu_1 * \mu_2 * ... * \mu_n$.

We say that the sequence of probability distributions $\mu_1, \mu_2, ...$ is normal (by an analogy with normal numbers in the sense of Borel), if for every integer k exists a sequence of integers $n_1 < n_2 < ...$ such that

$$\mu_s = \mu_{n_j+s}$$
 $(s = 1, 2, ..., k; j = 1, 2, ...).$

In particular, the sequence $\mu_1 = \mu_2 = ...$ is normal.