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by
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§ 1. Introduection

1.1, Given a continuous mapping
1)

from the unit square @: 0 <u <1, 0<v<1 into Euclidean 3-space RS,
we denote by A(T) the Lebesgue area of the Fréchet surface determined
by T. The treatise [8] will be used as a general reference for the theory
of the Lebesgue area (numbers in square brackets refer to the Biblio-
graphy at the end of this paper). In recent years, important contribu-
tions were made to the problem of representing A (7 in the form

2) A(T):ffk(m,f)dﬂz,

R3

T: ay=ay(u,v), &= my(u,v), Ty=24(u,v), (u,v)eq,

where dH? indicates integration with respeet to two-dimensional Haus-
dortf measure H?, x is a generic notation for s point in R?, and k(z,T)
is & multiplicity function which describes in some reasonable manner
the number of times the point x is covered by the image of @ under 7.
Far-reaching methods and results in this direction (as well as an exten-
sive bibliography) are contained in the comprehensive paper [2] of Federer.
Quite recently, a remarkable multiplicity function satisfying (2) has been
discovered by Mickle [5]. Subsequent studies by the present writer [10]
and by Mickle [6) revealed that the novel approach initiated by Mickle
in [5] yields, after appropriate modifications; an infinite variety of multi-
plicity funetions satisfying 2). . ‘

The present paper was motivated by the following observations.
For c(?ntinuous mappings from the square @ into a Euclidean plane R?
there is available an essential multiplicity function (see [8], IV. 1) which
plays a basic role in the theory of. such mappings. The researches pre-
sented in [5], [10], [6] may be congtrued as efforts to construct some
multiplicity function k(z,T) which would play a similar role in the
theory of continuous mappings from @ into Buclidean 3-space R It is
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then natural to require that such a multiplicity function should POSsess
properties similar to those of the essential multiplicity function associated
with plane mappings. From this point of view it seems natural to require,
in particular, that the multiplicity function k(z,T) (see (2)) should be
Borel measurable, and that it should be of local origin (see 1.6 (iv)).
The multiplicity functions exhibited in [5], [10], [6] fail, apparently, to
meet these two requirements. Our main objective in the present paper
is to construct a multiplicity function k(r,T) which satisfies these two
requirements and also possesses various other desirable properties already
present in the cases studied in [5], [10], [6]. We proceed to state some
definitions needed to describe our approach and our results.

1.2, Let 7: X—Y be a continuous mapping from a compact me-
tric space X into a metric space ¥ (this is the only case occurring in
the sequel). For each point y ¢ ¥ the components of the set 7-ly are
continua, each of which is termed a maximal model continuum (abbre-
viated to m. m. ¢.) for y under v. The number (perhaps infinite) of those
m. m. c.-§ for y under v which are contained in a subset § of X will be
denoted by N*(y,,8). If § is a subset of X and y is a point of ¥, then
the number (perhaps infinite) of the points of the set S~1-1y will be
denoted by N (y,7,8).

1.3. All the multiplicity functions k(x,7) occurring in [5], [10], [6]
were obtained by means of the following general scheme. For each point
z e B3, some of the m. m. ¢c.-s for x under T were designated as signi-
ficant for ¢ under 7T, and then k(z,T) was defined as the number (per-
haps zero or infinite) of the significant m.m. c.-s for z under 7. Ap-
parently, this scheme is not sufficiently flexible to produce a multi-
plicity function %{z,T) which satisfies the additional requirements sta-
ted in 1.1 (Borel measurability and local origin). We shall describe pre-
sently a more general scheme which is adequate from this point of view,
and which includes as special instances all the constructions nsed in [5],
[10], [6]. The new feature of this scheme is that the significant sets are
a0t required to be m.m. ¢.-s under 7.

1.4. For each continuous mapping 7': @R (see 1.1) and for each
point e B lot there be assigned certain sets SCQ as significant for x
under 7. On denoting by @ the law which is used to effect this assign-
ment, the symbol £ may be thought of as a functional £(T,x) whose
arguments are T and x and whose value (for each choice of T aJndAm)
is & family of subsets of @ (namely, the family of those sets SC.Q Whlc.h
are significant for 2 under 7' in the sense of the Jaw £). In this fermi-
nology, the statement that a set §CQ is significant for » under T accord-
ing to the law @ is equivalent to the inclusion § e £(T,x).
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Given & law g in the sense just explained, we shall use the symbol
&, T,8) as a generie notation for a finite (perhaps empty) system of
Dair-wise disjoint sets of the family Q(T,#), and we shall denote by
N[S(z,T,2)] the number of the sets of the system &(z,7,8). Thus
N[S(z,T,8)] is always a non-negative (finite) integer. We define

(3) k(@,T,8) =1 b.N[S (z, T, Q)] X
=4

where the letter & under the 1L m.b. symbol indicates that the least
upper bound is taken with respect to all the systems &(x, T, 8) for fixed
T and .

Note that once the law £ has been agreed upon, the preceding scheme
yields for each continuous mapping T': @ —R® a function k(x,T,2) of
the point # ¢ R%. This function k¥ will be termed the multiplicity fune-
tion gencrated by the law Q. Clearly, each value of k(z,T,8) is either
a non-negative integer or 4 oco.

1.5. An important special case arises if the law R is of disjoint cha-
Tacter in the following sense: If §,,8, are distinct sets in. @ which are
significant for z under 7 according to the law 2, then 8, 8,=0. All
the laws 2 used in [5], [10], [6] are of disjoint character, and all those
laws are such that only m. m. ¢.-s for # under 7 can be signiticant for z
under T. The new law to be exhibited in this Paper will not he of dis-
joint character, and the significant sets will not generally be m. m. c.-s
under 7.

It a law £ happens to be of disjoint character (as in [5], [10], [6]),
then it is clear that k(z,T,8), as defined in (3), is merely the number
of those sets SCQ which are significant for # under T according to the
law £ However, if € is not of disjoint character, then significant sets
must be counted according to the scheme indicated by the formula (3).

1.6. Definition 1. Let 71,72 be continuous mappings from the
topological space X into the topological space ¥, and let § be a subset
of X. Then v,t, are said to agree in the vicinity of 8 if there exists an
open subset O of X such that 0D§ and =1, for xeO.

Definition 2. Let 71,7, be continuous mappings from the topo-
logical spaces X, » X, respectively into the metric space M. Then 1,,7,
are termed F-equivalent (equivalent in the Fréchet sense) provided that
for every >0 there exists a homeomorphism %, from X, onto X, such that

(v, vha)<e  for T e Xy,
where d denotes distance in Jf (for a detailed study of this basic con-

cept, see [8], part II).
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We can now formulate our problem as follows: find a law € (see 1.4)
such that the following requirements are satisfied (see 1.1).
(i) For every continuous mapping I': Q-—E? (see 1.1) we should have

A(T):J’fk(w,fr,ﬂ)dﬂz.
R3

Explicitly: for fixed ¥, the function %k(z,T,2) should be H?*mea-
surable as a function of the point x e R? and the preceding formula
should hold. In particular, this requirement implies that k(x,T,8) is
Hz-summable if and only if A(T)<co (for the theory of measure and
integration the reader may consult the treatise [11] of Saks).

(ii) The law £ should be F-invariant in the following sense: if t-h'e
continuous mappings 1: @—R? T,: Q-—+R® are F-equivalent (see Defi-
nition 2 above), then we should have

Ic(m,Tl,Q);—jk(w,Tg,ﬂ)
for all points x e B3 .

(iil) The law £ should be invariant under dista,nce—preservlmg tramns-
formations in the following sense: if v is any distance-preserving trans-
formation in R3, then we should have

k(z,T,8)="TFk(zx,zT,L)

for every continuous mapping 7': @—E* and for every point 'xeR3.
(iv) The law £ should be of local character iP the following sense:
if a set SCQ is significant for @ under T a.ccor.d_lflg to the law &, and
if T* agrees with 7 in the vicinity of 8 (see DeﬁJ':nmon 1 above), (?hen 8
should also be significant for » under I* according to the law L.
(v) k{2, T,2) should be (for each fixed 7') a Borel measurable func-
i he point @ e B3 )
e ((zrfi)tgthf?;ﬁ? jlr ;hould be of covering chamcter' in the following sellllse:
if a set §CQ i significant for z under I' aceording to the law Q, then
¢ 8 ave weT8S. )
e ;f:;’t“ii ?(:Yﬁl Jtlem.ta regardless of the choice of the law 52,/ each value
of k(xz,T,) iy either a non-negative integer or + co (see 1.4).

1.7, The requirement (i) in 1.6 is of course ,funda,me.nta.;‘m tl};ﬁ:};
sent context (see 1.1). Let us recall that if Tl,.l‘2 are two ‘-e%z}:a pent
mappings from ¢ into B3 then T,,7, are corllmdered a8 repl-?s o
of the same surface (see [8], IL 3]). Accordmgl'y, the rquue?:“ld 0
in 1.6 merely means that the multiplicity- function k(m,fT,‘ t)hz e o
independent of the particular representation T chosen o;h;t k(r p 0;

A The requirement (iif) in 1.6 may be interpreted to mean 2, T8
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should be independent of the choice of the Cartesian coordinate system
in R?. Let us pote that the original law  used by Mickle in [5] satisfies
the requirements (i) and (ii) bub (apparently) fails to satisfy the inva-
riance requirement (iii). Infinitely many of the laws £ exhibited in [10]
satisfy, beyond (i) and (ii), the requirement (iii) in the following appro-
ximate sense: )

If A(T) < oo, then for fixed 7 and 7 one has

k(r, T,0)=Fk(rx,rT,R)

with the possible exception of points x which constitute a set of H2-mea-
sure zero. The significant advance achieved by Mickle in [6] was the
discovery of & law £ which satisfies (beyond (i) and (ii)) also (iii) in the
strict sense. All the laws € studied in [5], [10], [6] satisfy (trivially) the
requirernent (vi) of being of covering character. As mentioned above,
none of these laws seem to satisfy the requirements (iv) and (v).

1.8. We proceed to state the definitions needed to formulate the
new law £ which satisfies all the requirements (i) through (vi) in 1.6.

Let 7 be a continuons mapping from the unit square §: 0 <u< 1,
0<v<1 into a plane. Let us use the complex variables W=+ 1iv,
2=x+14y to identify points in § and in the image plane respectively.
Let R be a finitely connected Jordan region in ¢. The exterior boundary
curve of R is oriented eounter-clockwise, the interior boundary curves
(if any) of R are oriented clockwise. Let C,...,C, be the boundary cur-
ves of R, oriented in the manner just explained. Let ¢ be a point in the
image plane and let C;.be one of the (oriented) boundary curves of R.
One introduces then an index-function w(z,7,C)) as follows. If 2 e (),
one puts u(z,7,0)=0. If z ¢ 10;, then u(z,7,C;) is equal to the topo-
logical index of z with respect to 7C; (see [8], II. 4.34]). Finally one defines

I it ¢ ! i
H(Z,T,m): ! ngI#(z7T,CJ) it N;G'L'(Clu...ucm))

l 0 if 2et(Cru...uly).

If plz,7,R)5£0, then R is termed an indicator region for z under 7. An
m. m. e. y for z under t is termed an essential maximal model continunm
(abbreviated to e. m. m. ¢.) for 2 under 7 if the following holds. (i) yC@®
(where @° denotes the interior of (). {ii) For every open set 0 such that
yCOCQ° there exists an indieator region R for z under v such that yCRY,
RCO, where R indicates the interior of R. For each point z of the imaze

Dlane, the essential multiplicity funetion #(2,7,Q) is defined as the number

(perhaps infinite) of the e. m. m. c.-s for z under 7.
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If D is & domain (connected open set) in Q°, then E(t,D) denotes
the union of all the e. m. m. c.-s under 7 contained in D. The set & (z,D)
is 2 Borel set (see [8], IV. 1.56, where this set is denoted by ). If O is
an open set in @°, then similarly E(7,0) denotes the union of all the
¢.m. . ¢.-8 under 7 contained in 0. Since the components of 0 con-
stitute a countable family of domains, it follows from the preceding
statement that E(r,0) is a Borel set.

For a detailed study of the concepts introduced in this section, the
reader may consult the treatise [8).

1.9. We shall describe presently the law £ used by Mickle in [6].
We shall denote this law by L. The following definitions are used in
stating the law £7. The class of H:-measurable sets in Buclidean 3-space
R? is denoted by I. For B eI, H2E is the two-dimensional Hausdortf
measure of E. The unit sphere 2;+af+a3=1 in R® is denoted by U.
For each point P e U, B*P) denotes the plane through the origin which
is perpendicular to the line through the origin and the point P. Tp de-
notes the orthogonal projection from R? onto RXP). The class of those
sets B ¢ I” for which L,TpE =0 is denoted by I'» (here and in the sequel,
L, refers to two-dimensional Lebesgue measure in the plane indicated
by the context). For x ¢ R® and » >0, s(,r) denotes the interior of the
sphere with center x and radius ».

For sets F « I', Mickle introduces an auxiliary measure Hp by means

of the formula
HpE=gr.1. b.HYE—8),

For Eel', e R? Pe U, Mickle defines:
Hyls(x,7) n E]

@,
127 !

SGFP.

hp(e, B) = Hm - DpE={z| hp(x,E)>0}.

For positive integers n,m, for S e and P e U, let us denote by &G(n,m,8,P)
the set of those points » e .R* for which

for some » such that O<ir<l/m.

Let there be given now a continuons mapping I: ¢—R* (see 1.1).
For each open set OC¢, Mickle defines a corresponding set D*(T,0)CR®
by the formula (sce 1.8)

DHT,0) =N Gin,m, T[O~B(T;T,Q%)], P,

nomop
where n=1,2,..,m=1,2,..,P e U. The law £, used by Mickle in [6]

may now be described as follows. A set SCQ is significant for a point
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re R under T (according to the law £,) provided that the following

holds:

(i) 8 is an m. m. ¢. for x under 7.

(i) For every open set O such that SCOCE, one has the inclusion
x e DXNT,0).

In view of (i), this law L, is clearly of disjoint character (in the
sense of 1.5). Accordingly, the corresponding wmultiplicity function
k(x,T,8y) is equal to the number of those m.m. ¢.-s » for x under T
which are significant for x in the sense just explained. Mickle proves
in [6] that k(x,T,Q) is H2measurable and

A = ke, T, Q00082
RS

Mickle also proves that the law £, is F-invariant. The invariance of Q,,
under distance-preserving transformations in R? is readily deduced from
the observation that no point P e U plays a privileged role in the for-
mula for the set D*(T,0). Thus the law Q, satisfies the requirements
{i), (i), (iii) in 1.6 and (trivially) also the requirement (vi). As regards
the requirement (iv), note that the defining formula for the set D*(T,0)
involved the sets E(Tp7,0% vwhich depend upon the behavior of 7 in
all of @, and thus the law 2, cannot be expected to be of local character
(ih any case, the present writer was unable to prove that Q,, is of local
character). :

1.10. In trying to enforce the requirement (iv) in 1.6, a plausible
idea is to replace, in the defining formula for D*(T,0), the set O~ E(T+T,Q°)
by the set E(TpT,0) which depends only upon the behavior of 7 in O
itself (see 1.8). One obtains in this manner the set

A4,(T,0)= %} Q E)_J G{n,m, TE(TRT,0),P],

where again n=1,2,..,m=1,2,..,P e U. By a general remark in [6],
the sets & oceurring in the preceeding formula are open sets, and hence
4(T,0) is a Borel set. On replacing in the definition of the law Qu
{see 1.9) the set D*(T,0) by the set A,(7T,0), one obtains a law which
we denote by 2j,. An argument entirely similar to that used by Mickle
in [6] shows that the corresponding multiplicity function k(x,T,8%)
satisfies the requirements (i), (i), (iv), (vi) in 1.6, and that

(D) = [[ (e, T, 00 AH? & A(T)<oo.
R3

However, there is no evidence to indicate that the preceding formula
holds it A4 (T)=oo.
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1.11. We shall define presently a new law 2, to be denoted by &,
which satisfies all the requirements (i) through (vi) stated in 1.6.

The law 8. A set SCQ is significant for @ under T
the law £y provided that the following holds:

(i) 8@, SCQ* (where §° is the interior of Q).

(ii) § is compact.

(iii) § is a union of m.m. c.-s under 7T (however, these m. m. c.-s
are not required to be m.m. ¢.-s for the point x under consideration).

(iv) For every open set ) such that SCOCQ® one has zed,(T,0)
(see 1.10).

The fact that the requirements (i), (i), (v) stated in 1.6 are satisfied
by this law £, will he verified in §§ 7, 4, 3 respectively. Noting that the
defining formula for 4,(7,0) (see 1.10) involves only the sets B(T,T,0),
which depend solely upon the behavior of 7' in O itself, it is immediate
that the law £, is of local character (and thus the requirement (iv) in 1.6
is satisfied). Noting further that no point P« U plays a privileged role
in the defining formula for A.(T,0), it follows easily that the law 2,
is invariant under distance-preserving transformations in R, in the sense
of the requirement (i) in 1.6. We proceed to check the requirement (vi)
in 1.6. Consider & non-empty compact subset § of @9, and let z e R?
be @ point such that x ¢ I'S. Then there exists an open subset @ of R*
such that T8CH, x ¢ G (where @ is the closure of @). Hence there exists

according lo

a positive integer m, such that s(z,7)~ G=0 for 0 <r<1jm,. Now since

T is continunouns, we have an open set O such that SCOCQ® and TQCG.
1¢ we select now any point P « U, then (see 1.8) E(TpT,0)CO0, and hence
TE(TeT,0)CA. Consequently

8@, 1)~ TE(TT,0)=8 for 0<r<lim,
and thus a fortior:
Hpls(w, 7y ~ TE(TpT,N]=0 for 0<r<l/mg.

It follows (see 1.10) that @ ¢ A,(1',0), and hence § cannot be significant
for @. Tt is thus shown that the law £, satisfies the requirement (vi) in 1.6.

1.12. The basie pattern of the argument used in the present paper
is analogous to that in the initial paper of Mickle [5], and full advantage
has beon taken of the improved methods developed in the subsequent
Dapers [10] and {6]. However, due to the general character of the defi-
nition of the new law £,, few of the results of the papers [5], [10], [6]
could be used in the present paper without more or less substantial mo-
difications, and several issues (including measurability questions and
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F-invariance) required more elaborate treatment. Also, for various tech-
nical reasons, the notations in this paper differ occasionally from those
used in the previous papers [5], [10], [6]. As we shall see in the conelu-
ding § 8, various intriguing problems still await solution in the line of
thought initiated by Mickle, and accordingly the exposition in this paper
is designed to facilitate the task of the reader who may wish to enter
this field of research,

§ 2. Preliminaries

2.1. For convenient reference, we first summarize various simple
facts about mappings. Let X, ¥ be arbitrary sets, and let ¢: X —Y be
an arbitrary mapping (single-valued transformation) from X into Y.
If 8 is any subset of X, then »8 denotes the set of those points y ¢ ¥
for which there exists some point 2 ¢ X such that y=g@x. If U is a subset
of ¥, then ¢~'T denotes the set of those points z ¢ X for which gxe .
A set SCX is termed an inverse set under @ if there exists a set UCY
stch that S=g¢=1U. The mapping @ is said to be onto ¥ if pX =Y.

Lemma 1. If S is any subset of X, then SCop=p8. The relation
S=g~'98 holds if and only if 8§ is an inverse set under .

Lexna 2. If U is any subset of Y, then UDgo=1U. If ¢ is onlo, then
U=@pU for every subset U of Y.

Lemua 3. If A, B are any two subseis of X, then

p(4 ~B)CpAd ~¢B.
However, if at least one of the sets A, B is an inverse set under g, then
N 5
¢(A~By=¢d ~¢B.

LEymA 4. Let X, X,,Y be arbitrary sets, and let g, : X, —Y, s Xy—>Y
be arbitrary mappings from X,, X, respectively onto Y. Let A1, 4y be sub-
sets of X, which are inverse sets ynder @. Put
Then Ai= ¢§1¢71A{; A= ¢51‘P1A¥ .

Al AY =gip (A1 AD).

LEMds 5. Let gy,
be a subset of X, which ¢
the following holds:

have the same meaning as in Lemma 4. Let A,
§ an inverse set under p,. Put Ay=qi ' A,. Then

(1) 4 is an inverse set wnder [
(i) %AI:’P&Az-
(1ii) A1=¢1_1‘P2Az-

The simple proofs of the preceding lemmas arve left to the reader.
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2,2. Let X, Y be compact metric spaces, and let p: X ¥ be a con-
tinuous mapping from X onto Y.
Lemma 1. A subset U of Y is open if and only if p1U is open.
LemMa 2. Let S be a subset of X which is an inverse set under @-
Then 8 is open if and only if ¢S is open.
LeMMA 3. Let ¢ X,-Y, ¢ X,—»Y be continuous mappings from
the compact metric spaces Xy, X, respectively onto the compact metric space Y.
Let A; be a subset of X, which is an inverse set under ¢,. Put

‘42=‘F{1‘P1A1 .

Then the following holds:
(i) A, is an inverse set under g,.
(i) prdi=g@pd,.

(itl) A= i pad,.

(iv) A4, is closed if and only if A, is closed.

(v) 4, 48 open if and only if A, is open.

LemMmA 4. Let Z and Y be metric spaces, let X be a compact metric
space, and let ¢: XY, p: Y —Z be continuous mappings from X into ¥
and from Y into "Z respectively. Put t=vyp. Let C be an m. m. c. under ©
(see 1.2). Then C is a union of m.m.c.-s under g.

The simple proofs of these lemmas are left to the reader.

2.8. A continuous mapping m: X —Y from a compact metric space.X
onto a compact metrie space Y is termed wmonotone if for every point
yeY the set m~'y is connected (and hence is a conthn‘mm). AAS an ob-
vious consequence of the definition, a subset 4 of X is an inverse set
under m if and only if A is a union of m. m. e¢.-5 under m.

2.4, LEMMA. Let my: X =M, my: Xy,—>M be monotone mappings
from the compact Hausdorff spaces X,,X, respectvi‘vely o;gto the compact
Hausdorff space M. Let A, be a subset of X, which is a union of m.m.c.-s
wunder my. Pwl Ay==mzm,A,. Then the following holds:

(1) Ay 48 @ wnion of m. m.e.-s under My.

(i) md,=mad,.

(i) Ay= my  mgd,.

(iv) A, is closed if and only if A, is closed.
(v) 4, is open if and only if 4, is open.

(vi) A, is connected if and only if A, is connected.

Proof. By 2.3, 4, is an inverse set under m,. Thus (i), (ij‘i), (iv), (Vt)_‘
follow directly from 2.2, lemma 3. Since A, is clearly an inverse se
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under m,, by 2.3 it is a union of m.m.c.-s under m,, and (1) follows.
As regard (vi), note that if 4, is connected, then m, 4, is connected
(since m, is continuous). Since the inverse of a connected set wnder g mo-
notone mapping is connected (see [8], IL. 1.2),'it follows that Ad,=my 1(mlAl)
is connected. Conversely, if 4, is connected, then it follows by the same
argument that A,—mi m,4, is connected.

2.5, Lavma 1. Let my: XM, my: X,—IN be monotone mappings
from the compact metric spaces X, X, respectively onto the compact metric
space M, and let p be an arbitrary continwous mapping from M into a me-
tric space ¥. Put vy=ym,, T,=ym,. Let O, be an m.m. c. under 7. Then
the set Cy=mz'm,Cy is an m.m.c. under ,.

Proof. By 2.2, lemma 4, ¢, is a nnion of m.m. c.-§ under my. Hence,
by 2.4, we have the following facts at our disposal:

(a) myCy=m,C;.

(b) C; = ml_l’mzoz-

(¢) €, is a continnum. )

Now since () is an m.m.c. under T;, we have

(1) nli=y,

where y is a point in Y. On applying v to the relation (a), we obtain
730y=1,(;. Hence, by (1), 7.C,=y, and consequently C,Cr;%. In view
of.(c) it follows that €, is a connected subset of 73 lg/, and thus O, is con-
tained in & (unigue) m.m.c. €% for ¥ under 7,. We have then

(2) €.CCCrly .
Let us put
(3) Ci=m maC5 .

The.a,rgument used above in connection with the m.m. e, C, yields, if
applied to the m.m.e. (3, the relation

(4) Ci= m‘z—l/”hoi 1
a3 well as the fact that €} is a continuum, From (b), (2), (3) we infer that
(3) C,CCICmi myrs Yy .
Now since Ty =PM,, we have
M maTy Y = mT mgmy "y = my'y My =1y,

where we used the fact that

Mgy Ty =yl
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gince m, is onto (see 2.1, lemma 2). In view of (5) it follows that
(6) : C,COCHy.
Now since ¢, is & component of 77’y and ¢ is connected, (6) implies
that €,=C{. By (1) we conclude (on applying ms'm,) that C,=C3, an
m.m.c. under z,, and the lemma is proved.

Lemma 2. Under the assumptions of lemma 1, consider a subset §,

. . 2
of X, which is a union of m.m. c.-¢ under t,. Put Sy=mz my8,. Then the
following holds:
(i) 8, is @ union of m.am. -8 under z,.

(ii) my B8y ==mgS,.

(i) 8, =i maSs.
(iv) 8, is closed if and only if S, is closed.
(v) Sy is open if and only if S, is open.

(vi) Sp is connected if and only if S, is connected.

Proof. Let #, be the class of those m.m.e.-s under 7, whose union
is 8;. Thus
(N S;=U0,
It follows that

C,eF,.

Sy =Jmi'm,C,, G, eF,.

By the preceding lemma 1, each one of the sets msg I, O, is an m.m.c.
under 7,, and thus (i) is established. Note now that by 2.2, lemma 4,
each one of the sets C, ¢F, is a union of m.m.ec.-s under 7)1‘1..“Hex%ce,
by (7), &, is also a union of m.m.e.-s under m,, and thus (ii), (iii), (iv),
(v), (vi) follow directly from 2.4.

2.6. Let m: X9 be a monotone mapping from the eompaet me-
tric space X onto the compact metric space M, and let 1 bfz a light map-
ping from 9 into a metric space ¥ (the assumption that 1 is light I.nea.ns
that for every point ¥ e ¥ the set Il is either empty or totally discon-
nected). Then (see (8], IT. 1.19) a set SCX is an m.m.c. under the map-
ping r=Dn if and only if it is am m.m.c. under m.

2.7. Consider now two continnouns F-equivalent mappings ot X1—+Y:
¢2: X,—Y from the compact metric spaces .X,, X, into the metric space ¥
(seé 1.6). The following two lemmas are immediate consequences of the
definition of F-equivalent mappings.

LEMMA 1. There exists a sequence h, of homeomorphisms from X
‘onto X, such that the mappings gsha, ¢:1hn 1 converge uniformly to the map-
pings @, @, respectively.
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Tor each positive integer n, let 0, be the (1/n)-neighborhood of §
(the set of those points (u,v) whose distance from 8 is less than 1/n).
Since 8 is compact and lies in Q°, there exists a positive integer N such
that the closure 0, of 0, is contained in Q° for n>=N. Also, since § is
compact by (2), we have

(3) 8§=N0,.
We assert that
(4) ].(S,T,Q{)) =HQA*(T7011)'

Indeed, consider apy point xeA(8,T,8). Then S e 2(T,), and since
8C0,CQ° for n>N, it follows that @ e 4,(T,0,) for n>N. Hence

o
(3) ze A8, T,Q4) implies zeM 4, T,0.).
n=N
Assume, conversely, that
(6) meONA*(T,O,,) .

Take any open set O such that §COCQ®. From (3) we conclude that
0,CO for n»>N', where N’ is a properly chosen positive integer. Thus
clearly (see 1.10)

A44T,0,)CA4T,0) for

On taking » >N + ', there follows in view of (6) the inclusion % € 4,(T,0).
Since SCK, by (2), we conclude that S is significant for 4 under 7' ac-
cording to the law &, and hence € A(8,T,8). Thus (6) implies that
z € A(8,T,82), and in view of (3) the relation (4) is proved. Now since
A4,(T,0,) is a Borel set (see 1.10), we conclude from (4) that M8, T, &)
is a Borel set, and the lemma is proved.

8.4. For ACR?, let ¢(x,4) be the characteristic funection of A (that
is, ¢(z,4)=1if x ¢ A and c(z,A)="0 if z¢A). Let the continuous map-
ping T be fixed. Let F be a generic notation for a finite (perhaps empty)
system of sets of the class K* (see 3.1). We put (see 3.3)

(1 p@,F) = o[z,4(8,T,2)1,
(8) O(2)=1ub.p(@F).

n>N'.

SeF,

LeyMa 4. O(x) is a Borel measurable function of the point e RP.
Proof. By lemma 3 the sets 1(8,T,8) are Borel measurable, and
hence by (7) the functions ¢ («,F) are Borel measurable. Sinee the class K*
is countable (see 3.1) the class of all the systems F is also countable.
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Thus @(z), as the least upper bound of a countable class of Borel mea-
surable functions, is also Borel measurable.

LeMMA 5. & (z)=k(z,T,%).

Proof. Consider a system F and a point 2 e R%. Those sets SeF
which are significant for = under T' according to the law R constitute
a system &(z,T,8), and clearly

¢, F)=N[&(z,T,2)]-

Since N[G(z,T,8)]1<k(z,T,2), and since the system F was arbitrary,
we conclude (see (8)) that

(9) O(z)<k(@,T,%).

Consider now any system &(z,T,%). In view of 3.2 (b), this is also a sys-
tem F, and clearly :
N[S8(z, Taﬁa)]=¢(‘”7F) .

Since p(z,F)<®(z), and since the system S(z,T,Q4) was arbitrary, it
follows that
k2,7, <P,

and thus in view of (9) the lemma is proved.

8.5. TuEOREM. k(x,T,L,) is ¢ Borel measurable function of the point
r e RE.
This is a direct consequence of the lemmas 5, 4, and 2.

§ 4. F-invariance

4.1. The following proof for the F-invariance of the law 8, (see 1.6,
1.11) is similar to the corresponding proof of Mickle [6] for the F-in-
variance of his law £, (see 1.9). The heart of the prootf is the following
fundamental lemma of Mickle (for the proof of this lemma, the reader
is referred to Mickle [5]):

Lemya 1 (of Mickle). Let py,Ha be F-equivalent monotone mappings
from the square Q (see 1.1) onto & Peano space M, and let 1 be a light map-
ping from M into a plane R Put vy=1luy, Ta=lpg. Let Oy be an e.mM.M.C.
wnder 7, (see 1.8). Then the set 02=p;1p101 is an e.m.m.c. under Ta.

4.2, In view of the general character of our scheme for defining
the law £, (see 1.4, 1.5, 1.11), it will be a matter of convenience to use
a generalization of the lemma 1 of Mickle (the generalization consists
in replacing the light mapping 1 occurring in lemma 1 by an arbitrary
confinunons mapping).
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LEMMA 2. Let my, m, be F-equivalent monotone mappings from the
square Q oito a Peano space M, and let v be a continuous mapping from IN
into o plane R2. Put 1,=ymy, 1,=ym,. Let C; be an e.m.m.c. under ..
Then the set Cy=m; "m0, is an e m.m.c. under 7,.

Proof. It is convenient to divide the proof into three steps.

Step 1. We note that C, is an m.m.c. under, 7, by 2.5, lemma 1.

Step 2. We take a monotone-light factorization yp=1Im (see [8],
II. 1.17) of o, where m is a monotone mapping from M onto a Peano
space Vi’ and [ is & light mapping from M’ into the plane R On setting

A A A

we have then

1) n=lu, To=lu,.

Since m, ,m, are F-equivalent, clearly u,,u, ave also F-equivalent. Further-
more, u, and g, are monotone (see [8], I1. 1.4). Hence by lemuma 1 the set

& Ci= /‘2—1.“1 0y
is an e.m.m.ec. under r,. By (1) and (2) we have
3) Ch=mz m  mm, O, .
Now by 2.1, lemma 1, we have the inclusion
m~Yinan, C; Dm, Cy ,
and hence (see (3))
{4) LD mytm, Cy=C, .
Step 3. We note that €} is an m.m.c. under 7, (see Step 2), and C,

is also an m.m.c. under 7, (see Step 1). Since C3DC, by (4), it follows

that C,=C;. Since (i is an e.m.m.c. under 7, (see Step 2), the lemma
follows.

4.8. Let m,,m, be F-equivalent monotone mappings from the square ¢
onto a Peano space 9N, and let y be a continuous mapping from M into
a plane R2. Put tr,=ym,, 1,=pm,.

Liemna 3. Let O, be an open set in the interior Q0 of Q which is @ union
of m.m.c.-s under my. Put Oy=my my0,. Then the following holds:

(1) 0, is open.

(ii) 0,CQ°.

(iii) O, is a union of m.m.c.-s under m,.

(iv) Op=m3"m,0,.

(v) mE (11,0,)=m,E(1,,0,) (see 1.8).
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Proof. (i), (iii), (iv) follow directly from 2.4, and (ii) follows di-

rectly from 2.10. In view of (i), (i), (i}, (iv) the relation between O,

and 0, is symmetric, and bence in verifying (v) it is sufficient to prove

the inclusion

(5) n B (1, 00)CmoE (15,0,) .

Congider any e.m.m.e. ¢ under 7, such that C;CO,. Clearly (5) will
he established if we show that

(6) m, C,CmeB{1,,0,) -
Let us put
(") , Co=mz 1, (.

Since My, m, are oito, by 2.1, lemma 2, we have then

(8) My Cy=m,C, .

Now sinee €,C0,, by (iv) above (which is already verified) we con-
clude that

9) - Cy=ms myC,Comg 'm,0,=0s .

By lemma 2, (; is an e.m.m.c. under ,. Hence we infer from (9) that

(10) C,CE(1:,0,) -

Clearly (8) and (10) imply (6), and the lemma is proved.

4.4. LEMyA 4. Let my,m, be F-equivalent monotone ma]{pings from
the square @ onto a Peano space N, and let 1 be a light mapping from M
into Buclidean 3-space R*. Put

(11) To=1lmy,, Tey=1lm,.

‘Let 0,CQ° be an open seb which is a wnion of m.m.c-s under T,. Put

¥ 1]
O,=mi " my0y. Then O, is an open subset of Q° and

(12) T,E(TpT1,0,)=T:E(TrT>, 00)

for every point P el (see 1.9). . B

Proof. By 2.6, a subset of @ is an m. M. C. und.er T, it and only if
it is an m.m. ¢. under m,. Hence lemma 3 applies (with p="T5pl). We con-
clude from lemma 3 that O, is an open subset of Q° and

my B(TeTy,0y)= 1 B(TpTs, 0,) .

On applying the mapping I to the preceding relation, we ohtain (12),
and the lemma is proved.
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LEMMA 5. Under the same assumptions as in lemma 4, we have the
relation
(13) A*(T1701)=A*(T2702)-

Proof. In view of the definition of 4, (see 1.10), the formula (13)
is an immediate consequence of (12).

4.5. Again, let m,,m, be F-equivalent monotone mappings from the
square ¢ onto a Peano space M, and let I be a light mapping from 9
into Euclidean 3-space R®. Put Ti=1my, Ty==1lm,.

Lemma 6. Let 8, be a subset of @ which is significant for a point
x e R under T, according to the law L, (see 1.11). Put

Se=mi m,8, . -

Then 8, is significant for the point x wnder T, according to the law 2.

Proof. The assumptions imply (see 1.11) that 8, is a non-empty
compact subset of @° which is a union of m.m.e.-s under T,. By 2.5,
lemma 2, it follows that 8§, is non-empty and compact and ig the union
of m.m.c.-s under T,. By 2.2, lemma 4, §, is also a union of m.m.c.-s
under m;, and since 8,CQ° we infer from 2.10 that §,CQe.

Now consider any epen set 0 such that

8,COCQo.
In view of the facts already established, the lemma will be proved (see 1.11)
If we show that
(14) wed(T,,0).

Now let 0, be the union of all those m.m.c.-s under m, which lie in 0.
Since 8, is a union of m.m. c.-s under T, and hence also under my (see 2.2,
lemma 4), it follows that

8,CQ,COCQo.

Furthermore, 0, is open (see [8], II. 1.12, IL 1.13). Hence on setting

-1
Or=mi 'm0, ,

we infer from 2.4 and 2.10 that 0, is open and 0,CQo. Also, it follows
© by 2.4 that

) 8y =mi m,S, .
Since 8,C0,, we conclnde that
SlCmf1m202:01 .

Since §, is significant for z uader T, according to the law Ry, it follows
(see 1.11) that
(

15) zed(T1,0,).
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Note that O, is a union of m.m.c.-s under m, and hence (by 2.6) also
a union of m.m.c.-s under T,. Hence, by lemma 5,

(16) A*(Tuol):A*(Tz:Oz) .
Since 0,CO, we infer from (15) and (16) that
Le A*(T2702)C4*(T210) .

Thus (14) is verified, and the lemma is proved.
TuEOREM. If T,: QR T,: Q—+R* are F-equivalent continuous
mappings, then
’ B2, Ty, 0) =k (2, T, @)
Proof. SBince T,,T, are F-equivalent, there exist (see [12]) mono-
tone-light factorizations of the form

Ty=Ilmy, Ty=Im,,

where m,,m, are F-equivalent monotone mappings from ¢ onto 1‘3he same

Peano space M and ! is a light mapping from I into RE Consider now

any system &(x,T,,Q,), consisting of sets S%,...,87 (see 1.11, 1.4). Put
S=mims8, j=1,..,n.

By lemma 6, the sets 8i,...,85 are significant for & under T, according

to the law 8,. We proceed to verify that

S~ Rk=0 for j#k.

(17)

Note that S8, 85 are unions of m.m.c.-s under T, and hence (jbyk2.2,
lemma 4) also under m,. Since m, is monotone, it follows that S8z,8: are
inverse sets under m;. Thus, by 2.1, lemma 4, we have

; - k
T~ S = g (S~ 85 .

Since the sets 67,...,8) are pair-wise disjoint, (17) follows, and we con-
clude that 8%,...,8% constitute a system S(z,7T.,8,) such that

NSz, T,,8)]=N[S(x, T, )] .
Since N[ (x,T,,8)]1<k(z,T,,8,), it follows that
NSz, Ty,2)]1< k{2, T2, L) -
Ag the system &(x,T,,2,) was arbitrary, we conclude (see 1.4) that

k(x, Ty, Q) < k(x, Ty, ) -
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Exchanging the roles of the subseripts 1 and 2, we obtain by the same
argument the complementary inequality

k(myTzaQo)<k(wyTu£o);
and the theorem follows.
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§ 5. An inequality

Consider a continuous mapping 7: Q -R? (see 1.1), Denote by 9’
the family of those open circular discs d° in the (w,v)-plane which satisty
the following conditions:

(i) The eoordinates of the center of d° are rational numbers. (ii) The
radius of d° is a positive rational number. (iif) 4° is contained in the in-
terior @° of ¢).

Let 2" be the family of those sets which are finite unions of open
circular dises d°e'. Clearly, 2 is a countable family.

LeMMa 1. For every point PeU we have the inclusion (see 1.9,
1.10, 1.8)

1) DeTE(TrT,0)CAL(T,0),

where O is any open subset of Q.

Proof. The set B(T:T,0) is a Borel set, and hence TE(T»T,0)
is an analytic set. Thus TE(T:T,0) is H*-measurable (see for example [4]).
Accordingly, (1) follows directly from 2.11, lemma 4 (applied with
8=TE(TeT,0)), in view of the definition of the set 4,(T,0)
Lenwvia 2. For every point Pe U, put
2) ep=1_J [TE(TPT,0”)—DPTE(TPT,0”)] y  07e0V.
Then HpEp=0.

Proof. If § is an H2-mesasurable subset of B?, then (see 2.11, lemma 3)
we have

Hp(8—Dp8)=0.

As we noted in the course of the proof of lemma 1, each one of the sets
TE(TpT,0") is H2-measurable (note that the sets 0 ¢ 0" are clearly
open). Hence

HP[TE(TPT,O”)—DPTE(TPT,O”)]z0 for  0"eQ”,
and since 2 is a countable family, the relation H rep=10 follows.

LeEmMMA 3. Let € be an e.m.m. c. under TpT (see 1.8), and let x ¢ K?
be a point such that (see (2))

(3) =meTC,
(4) xéep.

Then C is significant for & under T according to the law Q.
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Proof. By the definition of an e.nm.m.ec., C is non-empty and com-
pact, and CCQ°. Also, ¢ is a union of m.m.ec.-s under T by 2.2, lemma 4.
Hence (see 1.11) there vemains to show that if 0 is any open set such that

ccocge,

then & e A,(T,0). Xow observe that since ¢ is a compact subset of the
open set 0CQ° clearly we can seleet an open set 0" € Q" such that

¢Co"Co.
A8 ¢ is an e.m.nne. under 77, it follows that
CCE(T-T,0").
Hence, in view of (3), we have
re TE(TRT,0").
By (4) and (2) we conclude that

(3) xeDpTE(TpT,0).
Now DpTE(TpT,0")YCA(T,0") by lemma 2, and
AT, 0'YCALT, 0),

since 0" CO. Hence (5) implies that .« e 4(T,0), and the lemma is proved.
THEOREM 1. If P is any point of U, then (see 1.9, 1.8, 1.11, 1.4)
(6) #(ae, ToT,Q) < D k(2,T,80),  Tpr=1iz,
almost everywhere in the plane R¥P) (where xp is a generie notation for
a point in R¥DP)).
Proof. Since Hpep=0 by lemma 2, we have L,Tpep=0 (see 2.11,
lemma 6). Hence it is sufficient to establish (6) for the ease when
(7) . xp € Tpep.
As (6) is obvious if x(xp, TpT,Q)=0, we can also assume that
#(xp, TpT,Q) > 1. Let m be any integer such that .
(8) 1<m<z(xp, TpT,0Q).
‘Then we can select m distinet e.m.m.c.-s (y,...,(%, for rp under TpT.

Let us put
g=T;1.rp.

Then ¢ is a straight line which passes through xp and is perpendicular
‘to the plane R¥P). Clearly

€9) Nk, 1,00 = Y k(2,1,2,).

Tpx=xp x€g
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Now TpT'C;=ump by assumption, and hence

(10) TC;Cqg, j=1,..,m.
Also, by (7),
(11) gnep=0,

For each point 2 ¢ g, let n(z) denote the number (perhaps zero) of those
of the integers j=1,...,m for which ¢ 7C;. Note that*in view of (10)
and (11) the inclusion # ¢ 7'C; implies, by lemma 3, that (; is significant
for » under 7' according to the law €,. Hence

kz,T,8)=n(x) for weg.
Since obviously
Zn (x)y=m,
X€g
it follows that
(12) 7n<2k(myT:20)a reyg.

Since m was an arbitrary integer satisfying (8), clearly (12) and (9)
imply (6).

Remark. In 1.10 we noted that the law Bis seems to be inadequate
in the case when A (T)=oc. The reason is that the preceding theorem
does not seem to hold for the multiplicity function k(z,T,R%).

Levma 4. For every point P e U, we have the inequality

[ #ten, o, @)L, < [ [ h(w,1,2,) 2822 .
RS

R(p)

This follows directly from theorem 1, by integrating the inequality (6)
(see the references in [5], [10], [6] for the corresponding inequalities
relating to the laws € used there).

§ 6. Differentiable mappings

6_.1. We assume throughout the Present § 6 that the continuous
mapping T': @—R? (see 1.1) satisfies the following conditions.

(1) The first partial derivatives Ty, t=1,2,3, exist almost every-
where in Q. ‘
Accordingly the Jacobians

Iy = Tty — Doyl s

as well as the function

Jz == Laul1y ~— Lgpllyy, J3 = L1l — LypToy

W= (Ji+J3+J3)"
are defined almost everywhere in (.
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(ii) W is summable in Q. Thus

Wdudp < oo, |Jijdudy <oo, i=1,2,3.
0 2

(i) A(7)=[ W audo.
4]

6.2. Given T as in 6.1, select a point P « U (see 1.9) with coordinates
z ,a:f ,wﬁ' . Let us introduce a new Cartesian coordinate system af,xs,x3
(with the same origin) such that the positive direction of the w:-axis
coincides with the direction from the origin to P. Then T appears in
the form
(1) T =xi{u,v), ©=1,2,3,

(u,0) €@,

where z;,x5,2; are related to x,,z,2; by an orthogonal transformation.
Hence the partial derivatives zj,, i, exist almost everywhere in @, and
the function W' corresponding to the representation (1) of T is equal
to W almost everywhere in Q. Since A(T) is independent of the choice
of the coordinate system, in view of 6.1 (iii) it follows that

@) A(T)=[[Waudv.
Q

The mapping T»T (see 1.9) is now given by the formulas
(u,v) eQ,

and the Jacobian Jp= s, —ri2h, of TpT is given by the formula

(3) TpT: xy =xi(%,0), Xz=xs(u,n),

(4) Jp= g+ whT s+ 25T 5 .

By [8], V. 2.64 we infer from (2) that the mapping TpT is eA.C .( essen-
tially absolutely continuous) in @. For our present 1)urp-oses,.1t is con-
venient to use the characterization of eAC mappings given in [9], ac-
cording to which the eAC mapping 7T has the following properties:

(i) The essential multiplicity funetion %(xp, TpT,Q) (see 1.8), cor-
responding to the mapping TpT, is summable in R*P). Thus

[ [ 20, ToT,@) Ay <00 -

RP)
In the preceding formuls, xzp is & generic notation for a point in R2(P).
(i) If & is any subset of B(TpT,Q°) (see 1.8) such that L,8=0,
then L,T1pT8 =0.
(i) [ [ Weldudv=J [ (ap, ToT,Q)dLs.
Q R¥(P)
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6.3. Given T asin 6.1, let (u,,%,) be a point in the interior Q° of @
such that the partial derivatives x, &, i=1,2,3, exist at (u,,7,). For
(u,2)e@, i=1,2,3, we put

&1, 7, Uy, ) = T2, 0) — 2 Ug, Vo) — Lo 3 ) (U — o) — 22, 0) (v —1,) .

For k>0, let s(h,mu,,7,) be the perimeter of the square with center (u,,v,),
side-length 2k, and sides parallel to the u and ¢ axes respectively. Since
(19,0) € Q% we shall have s(h,u,,v,)CQ® for h sufficiently small. - As-
suming that s(k,u,,7,)CQ° we denote by M (h,u,,7v,) the maximam of
the funetion

3
[_y.]:j &i(u 77’:”071’0)211(’2

i

[0 =0 F (o= v, P

Tl vyug,vy) =

for (u,7) e s(h,ug,7v4). We shall say that the mappi ng T possesses a weal:

total differential at the point (u,,v,) if there exists a sequence of num-
bers h, such that :

(3) ha>0,  h,—0, M (hyytty,20) —0.

As a consequence of the assumption 6.1 (i) we have then (see [7], 10.8
through 10.12) the following statement:
. Lemus 1. The mapping T (given as in 6.1) possesses a weak total
differential almost everywhere in Qo.
6.4. The mapping T of 6.1 is given (see 1.1) by equations of the form
(6) T: wy=au,v), i=1,2,3, (1,0) 0.

Let us introduce, in terms of thege functions i {u,v), the auxiliary
mappings )
Ty Ty== (1, 0}, 2y= 24(tt, ), (u,v) €@,
To: 2g=2o(u,v), n=um(u,v), (4,v)eQ,

v Ta: m=ony(u,v), Ty=a(1,9), {u,0)eQ,
fr.om @ into the three coordinate planes respectively, Consider the map-
mng 7, for example. Let (160,9) € Q° be a point where T possesses a weak

total differential. We have then a Sequence of numbers %, satistying 6.3 (5).
Let us denote by My(hayttg,v5) the maximum of the function

3
[i;; Eu,v s Ugy 1'0)2_|”2

Filu v, 04,0.)=
R (TN ey g7
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for (u,v)es(hayug,%,) (see 6.3). Since clearly
O < My (hnyittg, v9) < M (Ttny g, 0,)

and M (ky,%uy,%,) 0, we have I (h,,2,,7,)—0. Let us now assume that
Ji(ug,v0) 50 (see 6.1). On denoting by Q(h,,u,,v,) the square whose
perimeter is $(hn,%,,7,), we have then by [8], IV. 3.35, the relation
(see 1.8) .

#LTo(100,v0), T Q (has g, 00)] =880 T (2,,,) 50

for » sufficiently large. Thus, for » sufficiently large, Q(h,,u,,n,) is an
indicator region for T'(u,,v,) under 7,. Since h,—0, we conclude that
the point (u,,%,) is an e.m.m.c. under T,. Similar considerations apply
of course to the mappings 7., 7,. Furthermore, it is clear that if T pos-
sesses a weak total differential at a point (u,,v,) € @°, then this property
is preserved if T is represented in the form 6.2 (1) in terms of a new
coordinate system ;,xs;,x;. The mapping T»7 takes then the place of
the mapping 7, and we obtain thus the following statement:

Leyvma- 2. Let (ug,%,) < Q® be o point where T (given as in 6.1) pos-
sesses a weak total differential, and let P be any point of U. If Jp(ttg,vg) 70
(see 6.2), then the point (ug,v,) is an e.m.m.e. under TpT.

Consider now a point (ug,7,) ¢ Q° where T possesses a weak total
differential. Assume that W(wu,,v,)>0 (see 6.1). Then Ji(uy,v,) %0 for
at least one of the integers i{=1,2,3, say for i—2. By lemma 2 it fol-
lows that (u,,7,) is an e.m.m.c. under T»T for P={0,1,0), and hence
by 2.2, lemma 4, the point (u,,%,) is an m.m.c. under 7. We obtain thus
the following statement:

LeMMA 3. If (uy,%,) €Q® is a point where W {ug,v,)>0 and T pos-
sesses a weak total differential, then (ug,v,) is an m.m.e. under T.

Combining the lemmas 1, 2, 3, we obtain the following statement:

LEMMA 4. Given T as in 6.1, the square @ can be represented as the
union of three pair-wiseé disjoint Borel sets B,,B,,B such that the fol-
lowing holds:

(i) LBy =0, B,CQ° BCQ.

(H) W exists and is equal to zero on B,.

(iil) W exists and is positive on B.

(iv) T possesses a w eak total differential at every pgint of B, B.

(v) Every point of B is an m.m.c. under T.

(vi) IF (ug,v5) € B, Pe U, and Jp(uq,v,) 70, then (iy,1,) is an €. m.m. ¢.
under TpT.

6.5. LEnmMA 5. Given T,B,,B,,B as in lemma 1, let X be the set
of those points x e R® where N(z,T,B)=0c0 (sée 1.2). Then H2X =0.
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Proof. Since W exists on B and is sum
§ summable A1 i
we have (see [2], p. 309) on B (see 6.1 (ii)),

fst(m,T,B)dm:ffWdudv <oo.
R B

Thus N (z,T,B) i3 H*-summable, and hence H2X . =0,

Lemma 6. Given T,B,,B,,B as in lemm
) ma 4, let rel s
of B such that L8 =0. Thé;n }-’IZTS=O. et b a Borel subse

Proof. By [2], p. 309, we have
0 fafN(J’:T,S)dEZfo Wdudy.
R S

Now since L,8=0, the integr i i i
5 gral on the right in (7) is equal to zepo. As
Nz, T,8)>1 for zeT8, it follows that H'?-TS=(O.) sl o zero. As

LEM MA 7. G TN 'l _B B B as ¥ mimna 4, let A; be a B()) 1
2 9 s in lem; 4
. ( y Dy ,) * ¥ ) el subse

(i) HpTS=0,
(ii) Jp 40 on 8.
Then H2TS==0.
Proof. (i) implies (see 2.11, lemma 6) that

(8) LTpT8=0.

By [2], p. 309, we have

(9) { JWeludv={[ ¥(@p, 1,7, 8)az, ,
R¥(P)

‘where &p is a generic notation for int i
‘ T & point in the plane R2 3
From (8) we infer that the integral on the right iI:iJ (9)e S e 9

Hence, by (9), is equal to zero.

{f [Jp|dudv=0.

In vitaw of (i) it follows that Ly8=0, and thusg H2T8=0 by lemma 6
Y a4 - ,

Elm 8. (@iren T,By,B,,B as in lemma 4 d

of those points (u,v) e B where Jp£ ’
such that HpTs = 0. Then H2Ts =),

Proof. The assumption HpTs=—=0 implies (
{10) - L,TpTs=0.
Hence we have a Borel 8et G such that

enote by Sp the set
0. Let s be an arbitrary subset of S

see 2.11, lemma 6) that

GDTPTS, L2G:0,
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Let us put

8=8p~ (TpT)7'G .
Then & is a Borel set, and clearly

sC8, T»TS8CG.
Hence L,T»T8=0, and thus (see 2.11, lemma 2) HpT§=0. Since SCSp,
we have Jp=£0 on §. By lemma 7 we conclude that H*TS=0. Since
sCR8, it follows that H2Ts=0. )

LEMMA 9. Given T,B,,B,,B as in lemma 4, denote again by Sp
the set of those points (ug,v,) € B where Jp£0. Let (ug,v,) be a point in Se,
and let O be an open set such that (uy,,) € 0CQ°. Then (uq,2,) ¢ B(TpT,0).

Proof. Since (ug,v,) is an e.m.m.c. under TpT by part (vi) of
lemma -4, this statement is a direct consequence of the definition of the
set E(TpT,0) (see 1.8).

LeyMa 10. Given T,B,,B.,B,8r as in lemma 9, let sp be the set
consisting of those points (u,v) which satisfy the following conditions:

(1) (u,v) e Sp.

(ii) (u,v) is not significant jor T (u,v) under T according to the law £,
(see 1.11).

Then H2*Tsp=0.

Proof. Note that each point (u,v)esp is an e.m.m.e. under TpT
by part (vi) of lemma 4. Since, by (ii), (%,v) is not significant for T'(u,v)
under T according to the law €,, we conclude from 5.1, lemma 3, that
T(u,v) € ep. Since this inclusion holds for every point (u,v) € 8p, it fol-
lows that TspCep, and hence HpTsp=0 by 5.1, lemma 2. Since $CSp,
by lemma 8 it follows that H2Tsp=0.

LemmA 11. Given T,Bo,B,,B as in lemma 4, let s, be the set of those
points (u,v) which satisfy, the following conditions:

(i) (u,v)eB.

(i) (u,v) is not significant for T (u,v) under T according to the law L.

Then H2Ts,=0.

Prootf. Let s;, i=1,2,3, be the set of those points (u,v) which
satisfy the following conditions: (a} (%,v) € B; (b) J{u,v)7=0 (see 6.1);
() (,v) is not significant for 7'(u,v) according to the Jaw 2,. We have then
(11) H2Ts; =0, i=1,2,3,
by lemma 10, applied successively with P =(0,0,1), P=(0,1,0),
P=(1,0,0). Since W exists and is positive on B, clearly
(12) Sg=8 v Sy 8.

From (11) and (12) it follows that H2Ts,=0.

Fundamenta Mathematicae, T. XLIV. 16
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Lesnva 12, Given T,B,,B,,B as in lemma 4, put (see lemma 5
and lemma 11) .

(18) ‘ X =Tewu Ts,.
Then (see 1.11. 1.4)
(14) ke, T,8) >N(z,T,B) for zelX.

Proof. Since (14) is obvious if N(x,T,B)=0, we can assume that
N(ax,T,B)>1. The assumption ¢ X implies (see (13)) that & ¢ X, and
hence XN (r,T.B)<oco. On setting
(13) m=2X(x,T,B),
we have therefore 1 < <co, and there exist m distinct points (wy,9),...,
(tm,tm) In B such that T'(u;,v5)=wa, j=1,..,m. Since x¢ Ts, by (13),
we conclude from lemma 11 that (u;,v;) is significant for » under T ac-
cording to the law €, j=1,...,m. Hence clearly k(x,7,8,) >m, and (14)
follows in view of (15).

6.6. As we noted in 1.10, in our approach we replace the sets
O~E(TsT,Q% used by Mickle in [6] by the sets E(TpT,0). The lem-
mas in the present section 6.6 constitute corresponding modifications
of certain fundamental portions of the argument employed by Mickle [6].

Lexnia 13. Given T,B,,B,,B as in lemma 4, let § be a Borel sub-
set of Q° such that

(16) HpT(8—B)=0,
and let 4 be a Borel set in R®. Then
(17) Hp(A ~TS)=HplA ~T(B~RS)].

Proof. We have the decomposition
8={(8—B)w(B~A),
and thus
(18) Ar\TS:[A/‘\T(S—B)]U[AAT(BmS)].
By (16) we conclude that
HpfAd A T(8§—B)]=0,
and thus (17) follows from (18).
Lexnas 14, Given T,B,,B,,B as in lemma 4, let O be an open subset
of Q° and let A be a Borel subset of RS. Then, for every point Pe U,
H A~ TE(TpT,0)]<HY{A ~T(BA~O).
Proof. We first verify that

(19) HpT[E(TpT,0)—B]=0.

icm
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Indeed (see lemma 4), we have the decomposition
TIE(TeT,0)—Bl=T[E(TpT,0) ~ By]w T[E(TsT,0) ~ B,].
Now sinece L,By=0, we have also

LLE(T,T,0) ~ B]=0,
and hence, by 6.2 (ii),

L TpTE(TpT,0) A B =0.

(20)

By 2.11, lemma 2, we conclude that

(21) HpT{E(TpT,0) ~ B,]=0.
Let us put
G=E(T:T,0)~ B, .
By [2], p. 309, we have

[ ¥@ r,e)am=[[ wavan.

RS G

Since W= 0 on B, and hence on &, and since X (x,T,@)>1 on the set TG,
it follows that H2TG =0. Thus

HT{E(T:T,0) ~BJ]=0,
and hence also (see 2.11, lemma 1)
HPT[E(TPTyo)"B*]zo 1

and (19) follows in view of (20) and (21). Thus we can apply lemma 13
with S=E(TpT,0), obtaining the relation

Hp[A ~ TE(TpT,0)]=Hp{4 ~ T[B ~ E(TT,0)]} .

Since always Hp<H? (see 2.11, lemma 1) and E(TpT,0)CO, the in-
equality asserted in the lemma follows.

Leaia 13. @Qiven T,By,B,,B as in lemma 4, let 0 be any open
subset of Q°. Then (see 1.10 and 2.11, lemma 3)

(22) 4T, 0)CDT(B~O0).
Proof. We have

(23) A(T,0)=UNUY Gln,m, TE(TT,0),P],
n m P

where n=1,2,..., m=1,2,..., Pe [. By lemma 14 we have

HYs(z,r)~ T(B~0)] > Hpls(w,7) ~ TE(TT,0)]
7 72

16*
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for »>0, and hence (see 1.9)
(24) &[n,m,TE(TpT,0), PICG[n,m,T(B ~ o),
where G[n,in,T (B~ 0)] denotes the set of those points » e B® where

H2[s(x,r) ~ T(B~O)] . 1

7 n

for some » such that 0<#<1/m. Since clearly

DT(B A~ 0)=NGn,m,T(B~ O}, n,m=1,2,..,

the inclusion (22) follows from (23) and (24).
6.7. Using the symbols €', Q7 in the sense of 5.1, we put (see

lemma 4)

(25) e=J[DT(BA~O")—T(B~O")],

0" eQ".
Lemva 16. Given T,B,,B,,B as in lemma 4, we have H2e=0.
Proof. By [2], p. 309, we have, in view of 6.1 1(ii),

[ ¥, 1,B)am= [ Windo <oco.
w B

As N(z,T,B)>1 on the set TB, it follows that H2TB < co, and hence
a fortiori H2T(B ~0")<co. By 2.11, lemma 3, we conclude that
HIDT(B~0")—T(B~0")]=0.

Since Q" is countable, the relation H2¢==0 follows in view of (25).

LemvA 17. Given T,B,,B.,B as in lemma 4, let 8 be @ subset of Q°
and = a point of R® such thai

(@) zée (see (25)),

(i) 8 is significant for & under T according to the law L, (see 1.11).

We have then jor every set O’ €' such that SCO' the inclusion
(26) zeT(BAO").

Proof. From (ii) it follows that z e 4,(7,0"), and hence x e DT (B ~ 0"')
by lemma 15. Since ¢ ¢, the inclusion (26) follows.

LeMMA 18. Given T,B,,B,,B as in lemma 4, we have
(27) k(z,T,8)<N(z,T,B) for =xée.

Proof. Since (27) is obvious if k(x,T,8,) =0, we can assume that
E(x,T,L,) >1. Choose any integer m such that

(28) 1<m<kiz,T,L).

icm
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We can then select (see 1.11, 1.4) m padir-wise disjoint sets §,,...,8, in @°
which are significant for ¢ under 7 according to the law £,. Since these
sets are compact, we can further select pair-wise disjoint sets O07,...,0n
from the class Q" such that §;CO7, j=1,...,m. By lemma 17 we have
then, since x ¢ e, the inclusions

xeT(B~0OY), j=1,..,m.

We have therefore points (u;,v;) such that
(uj05) e B, (45,7;) €05,

T(uj,v;)=2, Jj=1,...,m.

Since the sets 0f,...,0;. are pair-wise disjoint, it follows that the points
(21301) ey (Um,y V) are distinet, and hence
m<N(z,T,B).
As m was any integer satisfying (28), the inequality (27) follows.
THEOREM. Given T as in 6.1, we have

(29) AT =] ke, T,20)dH=.
R3

Proof. From the lemmas 18 and 14 we infer that
(30) k(x,T,))=N (2, T,B) for wéXwe.

Now H:X=0, H?%=0 by the lemmas 5, 11, 16 (see (13)). Hence (30)
yields

(31) [[ %z, 1,80 dB82 = [ N (2,T,B)dH?.

RB RZ

By [2], p. 309, we have

(32) [ N, 1,B)am2=] [ Wande.
I B

Now (see lemma 1) recall that

QzBouB*uB, LgB‘,::O, W=0 on B*.

Thus
(33) [[Wwawae=[[ Wauar.
- ),
Finally, by 6.1 (iii),
[[Waav=4(1),
Q

and (29) follows in view of (33), (32), (31).
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§ 7. The integral formula for A(T)
TEEOREM. For every continuous mapping T': Q—E° (see 1.1) we have
the relation
) A(1)=[ [}z, T, 80) dH2.
RS

Proof. By lemama 4 in § 3 we have the inequality

[

@) [ #an,TpT, Q)AL < [ f (, 7,80 B2
R¥%P) R*
Let us put
®) a(P)=[ [ #(xs, T+T,Q) L.
R¥(P)

By [3], 0.3, we have

1 -
(4) A(T):;Ejfa(P)dap,

u

where dop is the area-element on the unit sphere U: wf+w§-|—x§=1.
From (2), (3), () we conclude that

[[ k@, T,80) a2 > 3 A(T) .
RS

Tt follows that (1) holds if 4 (T)= co. Hence we can assume that 4 (T) < co.
But then, by a fundamental result of Cesari [1], there exists a conti-
nuous mapping T*: Q—R* which is F-equivalent to 7 and satisfies the
conditions stated in 6.1 (and which possesses further properties not nee-
ded in the present context). Since T* is F-equivalent to T, by the theo-
rem in 4.5 we have
Ea,T,Q)=k(@,T* L),

and hence a fortiort

() f!ﬁ(x,T,Q@dHﬂ:ffk(x,T*,Qo)dﬂz.
R R
By the theorem in 6.7 (applied to T*) we have
(6) A(T*):fsfk(w,T*,Bo) aHz.
R
Since T and 7* arve F-equivalent, we have (see [8], V. 2.3)

(7) A(TYy=4(T*).

Since (7), (6), (3) yield (1), the theorem is proved.
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§ 8. Conclusion

8.1. SNince the Hausdorff measure H? was designed to evaluate area
(two-dimensional extent) of fignres in R}, a very natural approach in
surface area theory is to consider the quantity (see 1.2) :

A Dy=][ ¥ (e, T,Q)amH>
RS

as the area of the surface represented by I (see 1.1). Due to various
disadvantages of this definitiom, 4;(T) has been replaced: by various
authors by the quantities (see 1.2)

A(Ty=[ [ ¥, T,Q) a2, Ao T)=] [ N*(x, T,Q") B
R ¢ R

respectively, where in the last formula @° denotes the interior of Q.
Noting that if a set SCQ is significant for a point z under T’ according
to the law £,, then (see 1.1) SCQ° § is the union of m.m.c.-s under T,
and e T8, it is obvious that we have the inequalities

(1) ki, T, 20) < Nz, T,Q0) < X*z, T,Q) < N (&, T,0)
and hence also (see 1.1)
(2) AN < 4T < AT < 4(T)-

Simple examples show that the sign of equality generally fails to hold
in (2). Thus it appears that the most plausible choices for a multiplicity
function %k(z,T) (see 1.1), namely Nz, T,Q), N*(x,T,Q), N¥=z,T,Q°,
generally fail to satisfy 1.1 (2). Actually, the construction of k(z,T,L),
a5 well as of the multiplicity functions occurring in [51, [10], [6], is based
on the idea of reducing the plausible multiplicity funetions N, N* to
the precise extent necessary fo satisfy the formula 1.1 (2). In view of
the rather involved character of these reduction processes, it may be
of interest to point out that the problem of finding a multiplicity fune-
tion satistying 1.1 (2) admits of an altogether trivial solution. Indeed,
given T as in 1.1, let us define a multiplicity function kxz,T) (where
the subseript ¢ stands for trivial) in the following manner:

(a) It A(T)=rco, then lot kiz,T)=1 for every point 2 e R:.
(b) If A(T)=0, then let k(z, T)=0 for every point re R,
(e) Tt 0 <A(T)< oo, then put

. [%@]112
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and denote by U, the sphere «i + a5+ 253 = g% Define k(z,T)=1 if we U,
and k{z,T)=0 if z¢ T,.
We have then obviously

A(T) = [ ke, TyaE2,
R3

and furthermore, the reader will readily discover the trivial law £, that
will produce this trivial multiplicity function, in the sense of 1.4.

8.2. It is now apparent that if trivialities are to be excluded, then
the laws £ (see 1.4) should be subjected to some set {R} of reasonable
requirements R. This observation leads to an interesting problem which
we proceed to formmulate.

Definition 1. A set {R} of requirements R, relating to the laws £
(see 1.4), is termed categorical if we have

k(m,T,,{l’):k(w,T,ﬁ”)

identically in # and T for any two laws £, ' which satisfy all the re-
quirements of the set {R}.

Definition 2. Two laws £, &, (in the sense of 1.4) are termed
equivalent if

ke, T,84)="Fk(z,T,8)

identically in # and 7.

In terms of Definition 1, the problem is to find a categorical set {R}
of requirements.

8.3. There arises the question whether the set of requirements (i)
through (vi), stated in 1.6, is categorical in the sense just explained.
In this connection, the following remark may be of interest. On repla-
cing, in the definition of the law £, (see 1.11), the condition (ii) by the
condition that § should be a continuum, we obtain a law to be denoted
by £5. An argument entirely analogous to that employed for £, reveals
that 8F also satisfies all the requirements (i) through (vi) in 1.6. How-
ever, this fact alone does not imply that the set of requirements (i)
through (vi) in 1.6 is not categorical. As a matter of fact, a simple ar-
gument (based on Zorn's lemma) shows that £f and £, are equivalent
{in the sense of 8.2, Definition 2). Thus the problem of discovering a ca-
tegorical set {R} of requirements is still open.

8.4. In view of the role played by the set 4,T,0) (see 1.10) it pro-
bably occurred to the reader to consider the following law £: a set SCQ
is significant for x under 7 provided that
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(i) 80, SCQe.

(ii) S is open.

(iii) 8 is the union of m.m.c.-s under 7.

(iv) we AT, 8). .

However, the present writer was unable to show that the corres-
ponding multiplicity function k(x,T,2) is H?-measurable, and the F-in-
variance of £ is also a doubtful issne. An interesting situation arises,
on the other hand, if one modifies the construction deseribed in 1.4 by
requiring that the elements of the systems G(x,T,2) should be T-disjoint
in the following sense: two subsets 8,8’ of @ are T-disjoint if no m.m.c.
under I' intersects the closure of both §8', §". After this modification,
one sees readily that the requirements stated in 1.6 are met with the
following qualifications:

(a) The requirement (vi) is satisfied in the weaker form that if §
is significant for x under 7, then » is contained in the closure of T'S.

(b) The requirement (iv) is satisfied in the stronger form that if §
is significant for » under 7 and if 7™ agrees with 7 on § itself, then §
is significant for x under T* also.

Thus it would seem that this modified construction yields a satis-
factory situation. However, it is clear that the concept of 7-disjoint
sets involves the behavior of T in all of @, and hence the resulting multi-
plicity function cannot be properly said to be of local origin (even though
the above law @ itself is strongly of local character, in the sense of (b)
above).

Thus there arises the question whether there exists & law £ which
is strongly of local character in the sense of (b) above and satisfies the
requirements (i), (ii), (iif), (v), (vi) in the sense of the original scheme
deseribed in 1.4. In fact, it may be satisfactory to replace (vi) by the
weaker version stated under (a) above.

8.5. We noted above (see 1.5) that in the initial paper [5] of Mickle,
as well as in the subsequent papers [10] and {6], only m.m.c.-s under T
were admitted as significant sets, while in defining our law 8, (see 1.11)
we admitted also sets whiech were nnions of m.m.c.-s under 7. Thus
there arises the question whether there exists a law £ (see 1.4) which
satisfies the requirements (i) throungh (vi) stated in 1.6, plus the addi-
tional requirement that if § is significant for x under 7, then § should
be an m.m.c. under 7T. )

8.6. The Lebesgue area A(7T) is eyclicly additive (see [8], V. 2.55).
Accordingly, one may want to add (to the list of requirements stated
in 1.6), the further requirement that the multiplicity function k(x,T,%)
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should Dbe, for each point x ¢ R?, a cyclicly additive functional of 7', in
the sense of [8], IT. 2.104. A rather trivial approach would be to define
2 multiplicity function % as the sum of multiplicity functions correspon-
ding to the eyelic partial mappings associated with T (see [8], II. 2.94).
A non-trivial answer to the problem so raised would have significant
applications.

8.7. In view of the infinite variety of multiplicity functions studied
in [5], [10], [6] and in the present paper, there arises the question whe-
ther there exist simple relationships between these multiplicity functions.
To formulate a partial answer, we need the following

Definition. Two functions f(x), f,(z) of the point x ¢ R® are termed
H2-equivalent if the set of those points & where f,(z) #f,(x) is of H*mea-~
sure zero.

Inspection of the proofs in [5], [10], [6] and in the present paper
reveals that in the case 4(T)<Cco all the multiplicity functions %(z, T, Q)
in question are H-equivalent to N (x,7,B), where B is defined as in 6.4,
lemma 4. Accordingly, it follows that any two of these multiplicity func-
tions are H:-equivalent if 4 (T) <co. This observation yields two further
problems. First, of course, there arises the problem of clarifying the
situation in the case A(I)=oco. Second, it is now natural to relax the
problem stated in 8.2 as follows. Let us say that a set of requirements
{B} is H?-categorical if for any two laws €,,8, satistying all the require-
ments of the set {R} it is true that the corresponding multiplicity funec-
tion k{z,T,8,), k(z,T,8,) are H?-equivalent. The problem is then to
discover an H?-categorical set {R} of requirements.

8.8. While we operated with H2-measure, it would be quite natural
to use integral-geometric measure (see [2]) in this line of thought. The
approach suggested by this remark will be studied on another occasion.
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