On a generalization of quantifiers
by
A. Mostowski (Warszawa)

In this paper I shall deal with operators which represent a natural
generalization of the logical guantifiers?). I shall formulate, for the ge-
neralized quantifiers, problems which correspond to the classical pro-
blems of the first-order logic. Some of these problems will be solved in
the present paper, other more interesting ones are left open.

Most of our discussion centers around the problem whether it is
possible to set up a formal caleulus which would enable us to prove all
true propositions involving the new guantifiers. Although this problem
is nob solved in its full generality, yet it is clear from the partial results
which will be discussed below that the answer to the problem is essen-
tially negative. In spite of this negative result we believe that some at
least of the generalized quantifiers deserve a closer study and some de-
serve even to be included into systematic expositions of symbolic logic. This
belief is based on the convietion that the construction of formal caleuli is
not the unique and even not the most important goal of symbolic logic.

1. Propositional functions and guantifiers. Let I be an
arbitrary set and I*=1 xI x... its infinite Cartesian power, 4. e., the
set of infinite sequences (xy,a,...) with #yel for §=1,2,... We denote
by V and A the truth-values “truth” and ‘“falsity”. The Boolean ope-
rations of join, meet, and complementation are denoted by v, A and ~;
we use these symbols for all Boolean algebras which we shall have to
consider and, in particular, for the two-element algebra consisting of
the truth-values A and V/.

A mapping F of I* into {\/, A} is called a propositional function
on I provided that it satisfies the following condition: there is a finite
" set K of integers suech that if

T= (1, %a,...) € I*,
then F(x)=F(y).

) Parts of the results contained in this paper were presented to the Toruxi Sec-
tion of the Polish Mathematical Boclety in January 1954. Other parts were included
in my paper [5], which, however, contains no proofs.

Y= el*,  and  ay=y; for je K,
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This condition says, of course, that ¥ depends essentially on a finite
number of arguments. The smallest set K with the property stated above
is called the support of F; if it has only one element, then F' is a func-
tion of one argument and can be identified with a subset of I2).

Let ¢ be a one-one mapping of I onto a set I’ not necessarily dif-
terent from 1. If = (#;,&,...) ¢ I*, then we denote by ¢(z) the sequence
{p(2)),@(x3),.-.}; if F is a propositional function on I, then we denote
by F, the propositional function on I’ such that Fy{p(z))=F(z).

A quantifier limited to I is a function Q which assigns one of the
elements V, A to each propositional fanetion ¥ on I with one argument
and which satisfies the invariance condition

QE)=Q(F,)

for each ¥ and each permutation ¢ of 7.

The fivst part of this definition generalizes the elementary fact that
quantifiers enable us to construct propositions from propositional fune-
tions with one argument. The second part expresses the requirement
that quantifiers shonld not allow us to distinguish between different
elements of I3).

Let (me,m:) be the (finite or transfinite) sequence of all pairs of car-
dinal numbers satisfying the equation mg+n;=1I*). For each function T
which assigns one of the truth-values to each pair (mgmn:} we put

Q) =T(F (), F YA %) -

The following theorem is easily provable:

THEOREM 1. Qr is a gquantifier limited to I; for each quantifier limi-
ted to I there is ¢ T such that Qr=Q.

Tt Q =Qr, then we shall say that the function T’ defermines the quan-
tifier Q; there is evidently exactly one such flmct-iox.l.for each Q

Let us put T*(me,ng)=~T(ng,mg). The quantifier determined by
T* is said to be a dual of Qr and is denoted by QF. )

An unlimited quantifier (or simply a quantifier) is a_functiqnhwhlch
assigns a quantifier Q; limited to I to each set I an_d which satlsﬁles the
equation Q[F)=Qn(¥,) for each propositional functlonl F on I with one
argnment and for each one-one mapping of I onto I'.

) In connection with these definitions compare Halmos [1].
3) (f. in this conneetion Lindenbaum-Tarski [3] and Mauntner [4].

4 X denotes the cardinal number of X and Eﬂ; [T ()] the set of elements z in X
X€ .
satistying the condition W(x). If f is a mapping of X into ¥, then f-1(y) denotes the
set [, [f () =y).
xeX
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It is clear how to define Boolean operations on limited and unlimi-
ted quantifiers; they will be denoted by the usual symbols vV, A, ~.
Thus e. g. QivQY is a function Q; such that Q{F)y=Qi{F)vQi(TF) for

. each propositional function F.

2. Examples of quantifiers. (a) If {T (e, me) =V } = {me £ 0},
then Qr is the existential quantifier & limited to I ; the dual of Qr is the
general quantifier ¥ limited to I.

(b} Let m, n be non-negative integers and 7", 7" functions such that

{(T(meym)=Vi={me=m), {T"(mene)=\/}=(n=1).

- ‘ ) (0
Quantifiers Q7> and Qr~ will be denoted by Y and |]. The unlimited
I I

- ‘ o ow ) - (m )
quantifiers which assign 3 and [] to I will be denoted by 3 and [].
i I
m  m
Boolean polynomials of quantifiers X, [] (m,n=0,1,2,..) are called
numerical guantifiers (cf. Tarski [8], p. 63)
Examples of such quantifiers are

(n)  (mg) (m) m)  (my) ()
Q‘”:Z VZ_V...VZ‘, Q(2’=nvnv...vn

If I'is an infinite set and F a propositional function on . .. .th the
support {13, then the formula QP(F)=\/ (or the formula QP(F)=\/)
is equivalent to the statement: the set of elements z in I such that
F(z,..)=V % (or such that F(z,..)=A) has exactly m, or exactly m,
or ... or exactly m; elements.

(¢) Let T, and T, be functions such that

Tulmesme) =V} =(me <o), {Tolme,mg)=A}=(me <8 OF 11z < 8) .

We denote by S; and §9 the quantifiers Qr, and Qr, and by S and S°
the unlimited quantifiers assigning Sy and S to each I. T F is a pro-
positional function on I with the support {1}, then the formula S;(#)=\/
(or the formula S}’(F):\/) is equivalent to the statement: there are at
most finitely many elements # e I such that F (#,..)=V (or to the sta-
tement: there are at most finitely many elements # in I such that
F(z,...)=V or at most finitely many elements o in I such that ¥ (z,...)= A )

(d) Let T be a function such that {T(meymg)=V}=(ms <x,). The

quantifier Q7 will be denoted by P; and the corresponding unlimited

’) {@,..) denotes a sequence whose first term is « while the remaining terms are
arbitrary elements of I.
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quantifier by P. If F is again a propositional funetion on I with the sup-
port {1}, then the formula P/ F)=V is equivalent to the statement:
there are at most denumerably many elements x e I such that #(z,...)=V.
(e) Let I be a denumerable set. A guantifier Qr limited to I is wholly
characterized by the values T(m,N), T(8q,n), yr=T(8y,8), 2=10,1,2,...
We are going to disecuss the Boolean algebra A of quantifiers Qr
such that 7'(n,8,)=const and 7 (%,,n)=const from certain »,m on.
For the purpose of this discussion we consider the ideal I of finite
subsets of N where N is the set of non-negative integers. Let A be the
Boolean algebra generated by JI and let € be the Cartesian product
AxUAX{A, V} The algebra € is an isomorphic image of A under the
mapping Qr=={Ar, Br,yr> where Ap=[[T(n,x)=\]and By— ]?[T(so,n)

=\/]. The quantifiers S, }“,S'} correspond to the elements

X1= <—Ng0;/\>y X:).: <1\7707\/>; X3=<«N;-N7/\:"

of € (the symbol 0 denotes here the void set).

The product J;=T XIJ x{A} is obviously an ideal in €. The quan-
tifiers Qr whose images are in J, form an ideal 4, of A4; it is easy to see
that all these quantifiers are numerical.

Each element of § is congruent mod J, to one of the 8 elements
Xo=<0,0,A), X1, Xy, Xy, ~X,;, ~X;, ~X;, ~X;. TFor quantifiers Qr
of A this result means that Qr is either numerical or congruent mod A4,
to one of the quantifiers S;,S%,S7, ~S;, ~Sf, ~S87. Hence we obtain
the result that if a quantifier Qr of A iz wot numerical, then one of the
quantifiers 8;,5%,8) is definable in 1 of Qr and of the numerical
quantifiers ).

8. A formal calculus and its interpretation. Let (S) be
a formal logical calculus whose structure differs from the usual func-
tional calculus of first order (with identity) only in the following: In-
stead of the usual symbols for the existential and the general quanti-
fiers (S) contains s symbols Q,Q?...,Q°. The rules of building formulas
by means of the symbols H, V are replaced by the rule: if F is a formula
and x a variable, then (Q'x)F is a formula (j=1,2,..,s).

The variable x is bound in the formula (Q’x)F; a formula containing
exclugively bound variables is called closed.

We shall define in the usal way the notion of satisfaction for for-
mulas of (8)7). ‘

%) The simple proof given above is due to J. F.0é; my former proof of this theo-
rem was much more complicated. .
") For the subsequent definitions see Tarski [7].
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Let Q%,...,Q° be s unlimited quantifiers and I a set. We shall con-
sider functions which assign an element of I to each individual variable
of (3) and a propositional function on I with the support {1,2,...,k}
to each fumctional variable of degree %k of (S). Functions of this kind
will be called I-valuations. If I/ is an I-valuation, then [x;],, and [F1mr
denote the element of I and the propositional function assigned by M
to x; and F;.

Each I-valuation 3/ determines a mapping valy, of formulas of (S)
into the set {\/, A}. If Z is the formula F(xi,...,%;), then we put

vl (Z)= (FIar([=1,Taes 9% TSR [ a0 (X0 Jar s [xilagy.00)

If Z iz the formula X=X, then {valy(Z)=V}={xlu= [=;]a)
It Z is the formula Z)|Z,, then Valyi(Z) = ~valy (Zy) \ ~valy (D).

Now let us assume that Z is the formula (Q'x)%,. Let I (¢,z) be
an I-valuation differing from I only by assigning x to the variable x;
and let F be a propositional function on I with the support {i} such that

Fy1,Ysy...) = valyg,y,1(Z) -

We put valy((Q'x;) Zy) =Qj(F). The mapping valy, is thus defined by
induction.

It is easy to prove that valy(Z) depends not on the whole 37 but
only on those values [x;]; and [F;]n for which x; and F; are free in Z.
I xq,.s%y, Fjyyeo, By, are all the variables which are free in Z, then
instead of saying that waly(Z)=)/ we shall sometimes say that the

elements [x; lar, ..., [XyJar, and the propositional functions [F; J,-..., [F Py
satisfy Z in 1.

A formula Z is

{a) true in I, (b) satisfiable in I

if the equation valy(Z)==\/ holds

(a) for each 1, (b) for at least one 1.

The formula Z is

{c) ftrue, (d) satisfiable

it it is

{c) true in I for each I, (d) satisfiable in I for at least

one I.

All these notions depend, of course, on the quantitiers Q,Q2,...,Q°
Our expression “Z is true (or satisfiable) in I is therefore not exact
and ought to be replaced by a more complex one “Z is true (or satis-
fiable) in I with Q' interpreted as Q, =1,2,...,§”. Since, however,
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the quantifiers @%...,Q° will be held constant throughout the rest of
the paper, there will be no occasion to wse this complex expression.

Many other semantical notions can be defined with the help of the
notions of truth and satisfaction. In what follows we shall need the ne-
tion of definability of quantifiers.

The quantifier @} is definable in I in terms of the quantifiers
Q},...,07 if there is a formula Z of (S) not containing the symbol Q*
having F as its unique free variable and such that the equivalence
(Q'x)F(x)=2Z is true in I. If this condition is satisfied for each I and Z
is the same for all I, then we say that the unlimited quantifier Q! is de-
finable in terms of Q%...,Q"

4. The completeness problem. The completeness problem for
quantifiers Q*,...,Q° (or the completeness problem for quantifiers Q%,...,Q}
limited to I) consists in answering the question: is the set of true for-
mulas (or the set of formulas true in I) recursively enumerable? No ge-
neral solution of these problems is known. We shall formulate only some
partial results.

Definition. A quantifier Q has the property (E) if for each de-
numerable set I the function T determining @, satisfies the condition:
the sets F[T(n,5)=Al, F[T(n,8)=V] are both denumerable.

THEOREM 2. If among Ql,...,Q‘ oceur the general and the existential
quantifiers and at least one quantifier Q with the property (BE), then the
completeness problem for these quantifiers has a negative solution.

Proof. We denote by A, the conjunction of axioms of the elemen-
tary theory of non-densely ordered rimgs (cf. Tarski [9], p. 69). In A,
occur 4 predicate-variables Fy,F,,F;,F, and the formulas Fy(x),Fy(x,7,2),
Fy(x,¥,2),F4x,¥) are to be read thus: x is the zero of the ring, x is the
sum of y and z, x is the product of y and z, x is less than y.

We abbreviate (Fu)[F(u)aF,(u,x)] as P(x) (to be read as: x i3
positive) and denote by B, the formula '

(V=) [B(0) 2 @) (Fulx, ) A[(Q2) (P (2) A Fi(2, )
= (Qz) (P(2) A Fy(z,7))] A
AVE{P(x,5) AF(5,7) D [(Q2) (P(2) AFy(2,x)) = (Qz)(P(2) AF,,(z,t))]})] )

The intuitive meaning of B, is this: for every positive x there is
a smallest y such that the value assigned by the guantifier Q to the set
Er0<z<x] is different from the _value assigned by Q to the set

E’[O <z<y]. {Em
Z " EJ..
Jﬁ/

Fundamenta Mathematicae, T. XLIV.

15
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Finally we denote by A the conjunction of A, and B,.

Let I be a set and M an JI-valuation such that [F la,...,[F s 52~
tisty A, in I. It is evident that the supports of [T]u,...,[F,lx are {1},
{1,2,3}, {1,2,3}, {1,2}. From the properties of A, it is easy to derive
the following facts:

(a) There is exactly one element 6 in I such that [Fy]u(6,..)=Y 8).

(b) For every x,y in I there is exactly one element 2=x @y in I such
that [Folu(z,2,y,..)=V 8) and exactly one element t=wQy such that
[Fa]M(t;$7" 3 "')2\/'

(¢) The binary relation < defined by means of the equivalence (x-<y)
E([F4]M($,g/,...)=\/) orders the set I.

(d) The set I is a non-densely ordered ring with respect to the opera-
tions @, O, and the ordering <; 6 is the zero of this ring.

We shall now prove

(e) The ring I as described in (d) is isomorphic to the ring of integers;
i this isomorphism 68, @, O, < are mapped onto 0, addition, multipli-
cation, and the “less-than” relation.

A non-densely ordered ring is isomorphic to the ring of integers
if and only if for each positive . there are finitely many elements bet-
ween 0 and x. Hence it is sufficient to show that for each @ in I such
that §<a the set Z,=J,[0-2y—=a] is finite. Let us assume that this is

yel

false and choose x so that the cardinal number m of Z, be infinite and
a§ small as possible. Since [Fylu,...,[Falar satisfy B, in I there is an ele-
ment ¥ in 7 such that « <y and QA Z,)7#Q:i(Z,) (we have identified here
subsets of I with the propositional functions of one variable). This im-

plies that one of the equations Z,=Z,, I—Z,=1—2Z, must be false.

Now the complements of both Z, and Z, contain the set [ [z 6], whose -

- —— z€l
cardinal number is I; hence I —Z,=1I—Z, and therefore

Z.,<Z,<1I.

Denoting by T the function which defermines Q; we obtain further
(2., 1) # T (Zy, D). = =

Now let ¢ be the antecedent of y in I. It is evident that Z,=Z, and
-5 t<y. The assumption that [Fy]u,...,[FJy satisfy B, in I yields there-
fore QUZ)=Q{Z), i.e., T(Z,,[)=T(Z,,I). We have thus arrived at
a contradiction, which proves (e).

8 (f,...) denotes here a sequence of eleﬁents of I with the first term 6.
) (r,y,2,...) denotes a sequence of elements of I beginning with r,y,z.
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As the last auxiliary statement we prove
() Let I, be the set of integers and let M, be an I,valuation suech
that [Filagy..r,[Fyals, satisfy the equivalences

{F a2y, 25 )=V y=(3,=0),
{[Folage(2y, 5.0 ) =V }= (=@ + ) ,
{[Fa]M.,(mu%,-‘-)=V}E (®= @st25)
{IF Jarol @y 00,0 ) =V p= (2 < @) -

Then [Fylagy - [Faln, satisfy A in I,.

Indeed, wvalasr(Ag)==V since I, is a non-densely ordered ring. In
order to prove that waly,,(B,)=Y we choose an integer >0 and put
Q,O(E; [0 <z<m])=a. Since @, has the property (E), there must be

Z€Ilp

in I, a smallest y sueh that z<y and Qi ([0 <z<y])#a. Henece, if
. zelg
x<t<y, then Qrf [} [0 <z <t]=c. This proves that valy,;(B,)=V .

z€ly

In order to prove theorem 2 we consider the set X of formulas X
in which there oceur no quantifiers other than I, ¥, and no free va-
riables other than Fy,...,F,. If ADX is true, then (by (f)) valy,,(X)=V.
I, conversely, valy(X)=V/, then, by (e), ADX is true since the unique
model of A is a model of X. Hence, if the set of all true formulas of (S)
were recursively enumerable, then so would be the set of all X in X sa-
tisfying vala,,(X)=V. It is known, however, that this set is not re-
cursively enumerable: it is not even arithmetically definable. This accom-
plishes the proof of theorem 2.

The condition given in theorem 2 is not necessary for the solution
of the completeness problem to be negative. In fact neither of the quan-
tifiers #,%,S,8° satisfies the condition (E) and yet we have

TeEEOREM 3. If among Q...,Q0° occur the gquantifiers H,V,S or
the quantifiers H, ¥, S° then the completeness problem for these quantifiers
as well as the completeness problem for these quantifiers limited to a de-
numerable set have both a negative solution.

Proof of theorem 3 is similar to that of theorem 2. The only dif-
ference is that we have to take as A the conjunction of A, and of one
of the following formmulas:

(VNP (x) 2(S2)[P(2) AFy(z,%)]} ,
(Vx){P (x) D(S°2)[P (2) AFy(2,x)]} .
The completeness problem for quantifiers limited to a denumerable

set can easily be solved in all its generality:
2%
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TaEoREM 4. Let the quantifiers H, ¥V occur among 04..,Q° and
let 1 be o denwmerable set. A necessary and sufficient condition for the com-
pleteness problem for quantifiers Q%,...,Q7 to have a positive solution is
that the quantifiers Q%,...,Q7 be numerical.

Proof. The sufficiency is obvious. Let us now assume that one of
the quantifiers Q},...,Q7 is not numerical. If there is a quantifier de-
finable in I in terms of QF,..,Q} and satisfying the condition (E),
then the result follows from theorem 2. If there is no such quantifier,
then the final result of section 2(e) proves that one of the quantifiers
Sy, 8% is definable in- I in terms of Q},..,Q}, and hence the result
follows from theorem 3.

The general case of the completeness problem as well as the com-
pleteness problem for quantifiers limited to non-denumerable sets remain
open. We see no way of solving this problem even for the quantifiers
q,¥,P (see section 2(d)). The following result shows that the method
used in previous theorems is not applicable to that case:

THEOREM 5. If Q is a quantifier definable in terms of the quantifiers
q, ¥, P, then Qr+S; and Qr# S for each denumerable set I.

Proof. If S; or S} were definable in terms of H;, ¥, and Py,
then they would be definable in terms of H, and F; alone since Py is
identical with a constant quantifier which assigns the value V to each
propositional function. Theorems 3, 4, and the classical completeness-
-theorem show, however, that none of the gquantifiers §;,8) is definable
in terms of &; and ¥;.

5. The Skolem-Léwenheim theorem. Let @ be an unlimited
quantifier.
Definition. We shall say that Q does not distinguish infinite powers

if for any two infinite sets I,,I, the functions T,,7, which determine
Qr, and Qy, satisfy the equations:

T1<7151;1)=T2(’L7-i_;)3 n=0,1,2,..,

Tl(Tl:n):Tz(fzyn)y n=0,1,2,..,
To(my )= To(meyme)  fOr mi'HTi';I:i; 0,1, > 8, t==1,2.
THEOREM 6. If none of the quantifiers Q,...,Q° distinguishes infinite

powers, then each closed formula satisfiable in an infinite set is satisfiable
in a denwmerable sef.

Proof. Let Z be a closed formula satisfiable in an infinite set I

and let M be an I-valuation such that waly(Z)=)\. We enlarge the
calculus (8) by adding to it an infinite number of individual constants o,
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each element z in I determining exactly one constant o,. Formulas not
containing the new constants will be called proper.

Semantical notions which we have introduced in section 2 can be
extended so that they become applicable to improper formulas. The
only change which is needed is the stipulation that [oy]luy=a for each
I-valuation 2.

The following lemmsa can easily be proved by induction:

LEMMA (a). If A is a proper formula with the free variables Fyyers Fiy
Xy, X1, then valydA)=V if and only if [Fila,...,[Felu satisfy in I
the improper formula A’ resulting from A by a substitution of opg,, for
5 (j=1,2,...,0).

We choose an arbitrary denumerable subset I, of I and denote
by U the set of proper formulas beginning with one of the symbols
Q4...,.Q".

Let us assume that %>1 and that a denumerable subset I of I
has been defined. We are going to define a set I;.y. To this end we ar-
range in a sequence
(1) Vi Vapon

all closed (proper and improper) formulas resulting from formulas X
in ¥ by a substitution of symbols ¢, (# in I,) for the free variables of X.

Each V; determines a set I; in the following way: Assume that
V; is the formula (Q*x)W. We denote by W(o,) the formula resulting
from W by the substitution of o, for x and consider the sets

@ S=EpdmWe)=V], J=E [ealslW o) =l
Let my,m, be the cardinal numbers of these sets.

If m,,m, are both infinite, then we take as Ix; & denumerable sub-
set of T having infinitely many elements in common with both J; and J,.
If m, is finite and m, infinite, then we take as I;; a denumerable sub-
set of I having infinitely many elements in common with J; and con-
taining all the elements of J;. If m, is finite and m, infinite, then we
take as I;; a denumerable subset of I having infinitely many elements
in common with J, and containing, all the elements of J,.

We now put Ipwa=\JIy;. The sets I, (k=1,2,..) are thus de-
i=1
fined by induction.
We now put I,= CJIk and obtain a denumerable subset of I. We
k=1

shall show that Z is satisfiable in I,.
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For each I-valuation M we define an I,-valuation M,. M, differs
from M by assigning to x; an arbitrary element of I, whenever [x;]x
is not in 7, and by assigning to F; the propositional funetion [Fsls ve-
stricted to I,. If #,a,... are in I, we have therefore

(3) [Ff]Mo(w11$27-~-)=[Fj]M(w1’w2y~--)'

LevMA (b). Let M be an I-valuation satisfying the conditions
(4) [Xmel, for i=1,2,..,
(5) [Filu=[Fls for j§=1,2,..

If V is a proper formula and V' results from V by a substitution of sym.-
bols o, (a in I,) for some or for all free wvariables of 'V, then walp (V')
= vl (V).

. If V is an atomic formula Fyxi;.. %) Or xy=x;, then our asser-
tion follows immediately from (3) and (4). If the lemma holds for for-
mulas V; and V,, then it is clear that it holds for the formuls V[ V,.
It remains thus to show that if the lemma holds for a formula V it doés
so for the formmula (Q"x,)V. ’

Let (Q"x,)V’ rtesult from Q') v by a substitution of symbols o,
(e in I,) for some or all free variables of (Q"x)V. Let Yis---,¥x be the
free individual variables of (Q"x;)V'. We substitute Oy, (0T, wWhat is
the same, Olylu,) f0r y; in (Q'x) V' (}=1,2,...,%) and obtain a closed
formula (Q"x,)W. We can assume that this formula oceurs in the se-
quence (1) and is identical with V,.

According to lemma (a), p. 21,

valy [(Q %)) V'] = valy [(Q'x)) W1,
by, 1,[(Q"%)) V'] = vailyr, 1, [(Qx:) W] -
Thus it is sufficient to show that ’
(6) valarl(Q" %) W] = valysy 1[(Q"x;) W1 .

. We sha,l‘l fnst caleulate the left-hand side of (6). According to the
d.eflmtlons given in section 2 we have to define a propositional fune-
tion F on I with the support {i} such that '

F (4,9 -y =00l 5,1 (W)
and then take the value Q¥F). According to lemma (a) V005,39, { W)

is \/hor A according as valys(W(a,,)) is \/ or A. Hence if we denote
by Tr the function which determines the quantifier Q% and put

m1=£[walM1(W(aa))=\/] ) m2=E;[valM,(W(ga)):/\] ,

On a generalization of quantifiers =
we obtain
(7 valyl(Q" <y W]=Ti(my,m,) -
Similar considerations show that
8) 0l 1 [(Q"S)W1=To(ma, m3)

where T}, is the function which determines the quantifier Qf, and

mg:a El] [valar1o{W (00)) =V ] mg:a ]? [valar,r(W (aa)) = A] -

We observe now that if ¢ is in I,, then W(o,) results from V by
a, substitution of symbols o, (x in I,) for all free variables of V and that
we can therefore apply the inductive assumption to the formula W{s,).
This gives valyr,(W{oa))=7raly{W(oa)} for ael,. Furthermore W(c,)
is a closed formula and thus valy (W (c,)} depends only on [F;]a, which
in view of (5) proves that

valMI(W(a,,)) = UalﬁI(W(O‘a)) .

This equation holds for arbitrary « in I, not only for a in I,.
Taking these observations together we obtain the equations

mi=[ [valiz (W (0.))=V] , m2=a§; [palsz (W (ca)) = A 5

aely

= F, [oalizr(W (o)) =V ], me=L [oalin(W (cal) = A]

We now use the definition of sets Ip; given above. Remembering
that (Q"x,)W is the jth term of the sequence (1} we see that my,m, are
the cardinal numbers of sets (2). If m,,m, are hoth infinite, then I.;
has infinitely many elements in common with both J,,J, and hence
ml=m)==s,. If my=n is finite and m, infinite, then J,CI, and hence
mi=mn, and mp=s,. Similarly if my=n is finite and m, infinite, then
ma=n and 11 = &,. This proves that

Ty my)= Th{m?, ms)

since the quantifier Q" does not distinguish infinite powers.

Comparing the last equation with (7) and (8) we obtain (6), which
proves lemma (b).

We can now conclude the proof of theorem 6. Sinee Z is a closed
formula, the value of waly;(Z) does not depend on [x;]y. Hence we can
assume that [x;J5z is in I, for all ¢. Using lemma (b) for M =M and V=12,
we obtain valy(Z)=valsz,(Z) and hence valss,,(Z)=\/ since valir;(Z)=V
by the definition of M. This proves that Z is satisfiable in I,.
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We shall now prove that conditions given in theorem 6 are not only
sufficient but also necessary for the validity of the Skolem-Liwenheim
theorem.

TueoREM 7. If H and ¥ ocour among the gquantifiers oY...,Q°
and if at least one of these quantifiers distinguishes wnfinite powers, then
there are closed formulas satisfiable in non-denumerable sefs but not satis-
fiable in denumerable sets.

Proof. Let us assume that the quantifier Q'=Q distinguishes in-
finite powers, 7. e., that there are infinite sets 1,1, such that one of the
following cases holds:

(a) there is an n such that Tl(n,Izl)#T‘_,('n,,fg),

(b) there is an n such that Ty(I,,n) s TyTa,n),

(¢) there are infinite cardinals my,m; (i=1 ,2) such that wy+n=1;
(i=1,2) and Ty(my,m) 5 To(my, ).

Here T, is the function which determines the quantifiers @y,
i=1,2. '

Case (a). Let m, be the least infinite cardinal such that if I:gzmg,
then there is an infinite set I,CI, satisfying the conditions given in (a)
Evidently m,> x,.

We can assume that Ty(n,my)=V and Tyn,m,)= A for all cardinal
numbers m, satisfying the inequality s, <m, <tm,.

Let A be the formula

~(#2)G (2,x) A (VX,7)[~G(x,7) vV ~G(y,3)] A

A (VX7Y:Z)[G(X7Y) /\G(Y,Z)DG(X,Z)] A (vxsy)[G(Xy)-) VX=yV G<Y7X)A
A (dx,) {(Cv[xl,...,x,,)(K,-<,~(X,-7~éx,-)/\(Vz)[(}(z,xo) =(z=xV...Vz=x,)]A

A (@3 (G (2o, ) A(V8){G (5, 7) D (At) [ G (s B AG (6, 7)T AQu)G(n,x,)} .

In this formula the symbol Kic; (x:#x;) denotes the conjunection.
of all formulas x;+x; where i,j=1,2,...,n and i<j.

The meaning of the formula A is this: the relation G orders the wni-
verse of discourse and there is an element X, such that 1° there ave exactly
7 elements preceding x,, 2° the set of elements following x, containg
a limit point (and hence is infinite); the quantifier Q assigns the value \/
to the set of elements Preceding x,.

Formula A is satisfiable in I,. Indeed, it < is a relation which de-
termines a well-ordering of I, and ¢ a propositional function on I, such
that G(y,,9s,...) =y < Y2, then & satisfies A in 7,. If A were satisfiable
in a denumerable set I, then I would be an ovdered set having a seg-
ment § with exactly n elements and with the corresponding rest R in-
finite (since B would contain at least one limit-point). Moreover, the
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segment § would satisfy the equation Q(8)=Y/. This, however, is im-
possible, since S=n, I —S=x, and Tr{n,85)=A.

Case (b) can be treated similarly as Case (a).

Case (c). Let I, be a set of as small power as possible such that there
is a set I;CI, and infinite cardinals my,n; satisfying the conditions m.+
=1, (i=1,2) and Ty(m,,m) 7= To(ty,11s). Hence if I'<I,, I;CI’ and
mi,ni,m’,n’ are infinite cardinals such that

mFni=I, w4n'=I,
then Ty (wmj,nj)=Tr(m',w'). In particalar, if T=1s,, then I{x;,%)
#T(m,,1,). We can assume that Tp(s,,8)=A and Tp(m.,m)=V.
Now let A be t.. formula

~(A) G (X, D) AV, 7)) [~G(3,7)V ~G(r,x)]A

AV Y, 2)[G(x,7) AG(y,2)06G(x,2)]A

AV, PG E,F)VE=yVG(y,x)]A
AEx) Q)G X) A (Ayy) [ G{(F1,X0) A (VS){G(3, ¥1) D(EE)[G(5,£) AG{t,¥0) I} A
NG (30, 72) AVEIG (5, 72) AL [G (5, £) AG(t, 7)] } -

The intuitive meaning of this formula is: the relation G orders th.e
universe of discourse and there is an element x, such that 1° the quanti-
fier Q@ assigns the value \/ to the set of elements preceding x,; 2‘: both
the set of elements preceding x, and the set of elements following x,
possess limit-points (and thus are infinite). )

If < is a relation which determines a well ordering of I, such that
I, has a segment of power m, and the corresponding rest of power 1,
then the propositional function @ defined thus:

G132y} =H13 Y2
isfi in I,.

sams?fesAAwere ;a,tisﬁ:nble in a denumerable set I, then I would be an
ordered set having a segment § and the corresponding.rest such that
Q:«(8)=V and §=R=y,. This, however, would contradict the formula
Talsg,80)=A -

Theorem 7 is thus proved. .

The Skolem-Lowenheim’s theorem has been generalized by Tarski
(see Skolem [6], p. 161) in the following way: if a formula (otf tpe elgf-
sical funetional caloulus) is satisfiable in an infinite set, then it is satis-
fiable in every infinite set. This theorem cannot be e?ztended to the case
of arbitrary quantifiers. We have in faet the following
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TEEOREM 8. If d and ¥ occur among QY...,Q° and if each formula
of (8) satisfiable in an infinite set is satisfiable in every infinite set, then
for each set J the quantifiers Q5,...,Q3 are all definable in terms of A and V.

Proof. It follows from theorem 7 that the quantifiers Q',...,Q° do
not distinguish infinite powers. Since there exist formulas A involving
no symbols for quantifiers other than #, ¥, @ and such that if Q pos-

sesses the property (E), then A is satisfiable in denumerable sets only -

{cf. the proof of theorem 2), we can assume that quantifiers definable
in terms of Q,...,Q° do not have the property (E).

In section 2(e) we have shown that if 7=y, and Q; is a non-nume-
rical quantifier such that neither Q; nor its dual Qf has the property (B),

then one of the quantifiers S;,S3,S% is expressible as a Boolean poly-
()] {m)

nomial in @y, ;‘ , and J] (n,m=1,2,..). Tt will be sufficient to con-
I

sider only the case when S; is thus expressible. Let us therefore as-
sume that
{n1) (1) (m) (my)

9) SI:QD(QHZ?W;Z:”:“':H)
1 1 I I
where @ is a Boolean polynomial. For an arbitrary XCJI we have thus
() (ng) (my) (my)

s,<X>=¢(QI(X>,; (X, ey (X, [1(X),..., | (x).

5 mo ~ ~ . .
Let T7, 07, T%,..., T%, 07, ..., T be functions determining the guan-
() () (mp (m)

tifiers 8, QJ,;’,...,JE ,]J7 ""’U (J — an arbitrary set). Substituting

in (10) for X a set with exaetly # elements we obtain

{10)

{11) @(TIQ()L,RO),T'P(H,NO),...,T?”(M,NO),T}"l(n,h'o),...7T7"(nr,2\'0))=\/.

If we take for X a set whose complement containg exactly n ele-
ments and a set which is infinite together with its complement, we ob-
tain similaxly

(12) B(TP(80;7), TS0, 1), ey TS0, 2), T80, 2) on, B30, 1)) = A\
(13) B(T2(5%5 80)s TF(S0, 80) - TH(S0, o), TFy, 8)yors, T80, S0l = A -

Asspmjng .tha)t Q does not distinguish infinite powers, we have for an
arbitrary infinite set J and for arbitrary infinite cardinals m,n with
m-n=J

(14 TP, %0) =T (n,J),

PP(so,) = THT,n),  TR(xg,%0) = T(m,m) .

icm
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Similar equations hold for functions 7% and 7% (n,m=1,2,...) sinee
(] (m)
the quantifiers > and [] do not distinguish infinite powers. Formulas
{11)-(13) yield now

B(TH (0, )y T30y T ) gy T, TY, TP, T )y eon s T5n, ) =V =T3(n,J)
D(THT yn), THT 1) yoeey THT ), TPUT ), e, TOHT, m)=A=T5J,n),
(TP (m,n), TP(m,n), ..., TFm,m), T an,m), ..., Tigm, m))= A=T3(m,n),

which proves that formula (9) holds for every infinite set 1. B
Let us apply this result to Q=¢Q’ (j=1,2,...,s). If Q7 (where I==,)
were a non-numerical quantifier, then according to the result obtained
above formula (9) (or a similar formula with S replaced by S° or S*)
would hold for every infinite set I. Since in the proof of theorem 3 we
have exhibited formulas involving exclusively the quantifiers S, &, ¥
{or §% d, V) satisfiable in denumerable sets only, we see that if Qi
(with f=1,) were non-numerical, then there would be formulas satis-
fiable in some infinite sets but not satisfiable in all of them. Hence @]
() (g} (my) ()
must be numerical for IT=sq.: Q/=¥(> ,.., >, IT ,..., []) where ¥is
I I i I -
. (53 (m)
a Boolean polynomial. Since neither @’ mnor Y mnor [] distinguishes
infinite powers, formulas (14) hold for these gquantifiers, whence by the
(n) () (mny) (m)
same method as above we obtain the formula Qj=¥(> ,.... >, [T, [1)
J J J I

for every infinite set .J.

Our theorem is thus proved for infinite J. For finite J the assertion
of the theorem is evident since for J < %, each quantifier Q, limited to J
is definable in terms of ¥ and V.

Remark. The above proof gives in fact a little stronger result than
that stated in the theorem: we have shown that under the assumptions
of theorem 8 each Qf with an infinite J is expressible as a Boolean poly-

m  m
nomial in the quantifiers 3, [| (»,m=1,2,...) and the form of this
J J

polynomial is independent of J. It is not true, however, that under the

assumptions of theorem 8 the unlimited quantifiers @,...,Q° are neces-

sarily definable in terms of &, ¥. For let Q be the unlimited quantifier

snch that Qy=_ for infinite I and Q;=]] for finite I. If Q*=H, Q*=V,
I I

Q'=Q'=...=@'=Q, then the assumptions of theorem 8 are satistied
but @%,...,Q0° are not definable in terms of ¥ and ¥,


Artur


28 A Mostowski

6. The monadic calculus. Let (3") be the subsystem of (%)
whose formulas contain only monadic functional variables (i. e., functio-
nal variables with one argument). (S2) will denote the subsystem of (8%)
whose formulas contain only the functional variables F,,...,F,.

THEOREM 9. There are quantifiers Q,...,Q° such that the set of those
formulas of (S™) which are satisfiable in a denumerable set is not recursive.

Proof. For each set 4 of integers we denote by H(4) the set of
integers p with the following property: there are ,,%,,...,7, in 4 such
that 2, +n,+...+n,¢ A, We shall show the existence of an A such that
the set H(A) is not recursive. Since there are only demumerably many
recursive sets, it is sufficient to prove that there are more than x, sets
of the form H(4) and this results immediately from the

LiewniA 1), If A, 1s the set of integers 1,2,28,2°,...,2% . then H(A4,)
=H (4,) for arbitrary subsets A;, A, of A, such that A;5=A, and 1 e A,,
1led,.

Indeed, assuming that p=2"eAd,—A4, we have 2" ¢ H(4,) for
2=1+1-+..+1and 1¢4,. From p ¢ H(4,) it would follow that in A4,
there are integers ny,7;,...,0, (%, <n,<...<n,) such that n,=n,4+n,+
+ ... +n,. Not all n; are 1 since otherwise we should have ny=p and p
would be an element of 4,. Hence n,>1 and we can assume Ny = 33
with 0. Since p >1 we have also n,=2% with t>0. Evidently n,>n,
whence 3°>3" and {—1>s. Sinece n,<pn,, we obtain P 3 Ngfn, == 233
>28¥7= 932 On the other hand p<n,—2% and, since p=2", we
obtain the inequalities 29 < 2" <98 which entail a contradiction.

Let A be a set such that H(4) is not recursive and let Q; be a quan-
tifier limited to a denumerable set I such that Q{(X)=\/ if and only
if X ¢A. We take as Q* and Q? the quantifiers ¥ and & and as @°,...,Q°
such quantifiers that Q{—=...—Qi=0Q;. ’

We consider now an infinite sequence of monadic functional va-
riables Fy,Fy,... We shall write Fj(x) for Fy(x) and Fj(x) for ~F,(x).
The 2" formulas Fi'(x)AFE(x)A ..AF(x) we call constituents of order u.
The lexicographical ordering of the n-tuples (ij,...,%,) determines the
similar ordering of the constituents. The first n constituents of order »
will be denoted by 8,(x),...,S,(x).

Let W, be the formula of (S™)

H@* )8 (x)] AN =)B(T)] A v A
N(Q@R)Su=)TA[(Q5)(Syx) VS (x)V ... vEL(x))] -

%) The proof of this lemma has been kindly communicated to me by J. Myecielski.

It remains an open question whether there are recursive sets 4 such that & () is not
recursive.
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It is evident that this formula is satisfiable in a denumerable set
it and only if » is in H(4); this proves that the set of formulas of (3%)
satisfiable in I is not recursive.

Theorem 9 is thus proved. It follows of course from this theorem
that there ave quantifiers @,...,Q° such that the set of formulas of (8™
true in & denumerable set is not recursive.

The characterization of quantifiers for which the set. of true for-
mulas of (S¥) is recursive remains an open problem. In the next theorem
we give examples of non-trivial quantifiers satisfying this condition:

THEOREM 10. Let 11, <ws<...<m, be s eardinals such that my, ...,
are infinite and my either is 1 or is infinite. Let Q',Q%,...,Q" be quantifiers
such that for each I

{Q{(F)=\/}E(ﬁ‘__> m;),

Then the set of true formulas of (8™) is recursive).

Remark. If my=1, then Q'=; if my=1,, then @>=~S; if my=1,,
then @*=~P.

The proof of theorem 10 will be based on some lemmas:

(a) Quantifiers QY satisfy the equations

Qi(F v &)=QiF)V QUE) QA=A -

W) If Zy,...,Z, arve formulas of (8) containing the free variable X;
and if Wi,...,W, are formulas of (8) not containing x;, then the formula

j=1,2,...,8.

(additivity),

Q=) [(Za AWV oV (ZaAWa)]
=[Wy AMQI) Zi] v oV [Wa A (Qx1) 2]
is true.

TWe abbreviate the left-hand and the right-hand side of this equi-
valence as I and R respectively and denote by I an arbitrary set and
by M an I-valuation. Finally we denote by F the propositional fanction
on I with the support {i} such that

F (i Yz ,s--) = valaggppa{Zy AWV ..V (Zy A W)Y
and by F and G4 (h=1,2,...,n) propositional funetions on I with sup-

ports {i} such that
Bl Y2, )= ZWJM(I‘,J’(),I(ZJI) y

Gl s Yay--r) == Vlaggiy).s (W) -

1y This theorem presents a generalization of the classical theorem of Liwenheim.
For our proof see Hilbert-Ackermann (2], p- 101,
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Since W, does not contain x;, G, has a constant value Wi == valn (Wp).
Now we have

F(:”l; Ya, "')= [wl A 2’a/lM(i,y;),I(Z].)] VoV [wn A valM(i,yi),I(Zn)]
=L A By Y1y Ya0- )TV oV [0 ATy, 905, ...)]
and hence, by (a),

2alyes(L) = QUE) = Qilew, APV ...V Qi1 AT, .
Similar calenlations yield
ol R)=[20, A QUE)]V ...V [w, A QYF,)].

It remains thus to verify that w, A Q)(F),) :Q{(F,,/\w,,). But this
is evident if w,=1\/ and follows from (@) iIf wy=A. Lemma (b) is thus
proved.

Let Fy,...,F, be n monadic functional variables. We put

Ay, = (Q'R)[F(x) A ... AF(x)]

where, as before, F?(X):Fi(x) and F}(X):~F,~(X) and denote by
ER(XI,..._,X,,,) the least class of formulas that containg the formulas Fu(x1)
and A7 . (h=1,2,..,n, i=1,2,..,s, 1=1,2,..,m, 4=0 or 1 for
t=1,2;...,n) and that satisfies the condition: if Z,,7, are in R(Zyyeeey X)),
then so is Z,|Z,. We do not exclude the case m=20. In this case we de-
note the class simply by R; of course R containg only eclosed formulas
built from formulag A{;iz,_,,-n by means of the stroke.

(¢) For each formula % of (8™) COMAining xi,...,X,, as s unique free
individual variables and Fi, By as its unigque functional variables there
s a formula U in R(Zyy ey X)) such that the formula Z=1U is true. For-
mula U can be found explicitly if Z is explicitly given.

I Z contains no symbols QI,...,Q’, then the assertion of (¢) is evi-
dent. Let us assume the validity of (c) for formulas containing at most
P—1 of these symbols and let 7 contain p of them. It is clear that the
lemma will be proved in general if we show that it holds for the case
when 7 has the form (Q'x)%, with 2, in R(%,...,%,,X). From the de-
finition of this class it follows that Z; ean be represented in the form of
& logical sum of formulas Fi(x) ... AFMZ) AW with W in R (%o s Xpn)-
Using (b) we obtain therefore an U in R(x4y-..,X) such that the for-
mula Z=T is true.

We now have to find the eriterion of truth for formulas in R. This
criterion will he expressed by means of some auxiliary notions.
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Let @ be a Boolean polynomial in the variables af_, (j=1,2,...,s,
4,=0,1 for t=1,2,...,n). A function y assigning the values \/, A to'
these variables is called an allowable valuation if

¥ (a’{:.li,,) <y (G{I...i,,)

for §j=1,2,...,5s—1, 4=0,1 for t=1,2,...,n. The number of allowable
valuations is obviously finite. We shall say that @ has the property (T)
if each allowable valuation gives it the value \/.

(d) A formula Z in R is true if and only if it results by a substitution

of A?r--r‘n for a{l,._,-n from a Boolean polynomial with property (T).

In order to show this lemma we first assume that & has the pro-
perty (T) and that the formula Z resulting from & by the substitution
dese}ibed in the lemma is not true in a set I. If I is an I-valuation such

that valy(Z)= A, then the function

}’(G{I...in) = ’MIMI(A{I...:‘,,)

is an allowable valuation. Indeed, if valpy(AL})=V, then the set
of elements # in I such that [Fyily,...,[Folu,x satisfy the fqrmula;
Fix)A...AFx(x) in I has the cardinal number >>m;4q; hence this car-
dinal number is >wm; and hence 'valM,(Afl__,,-»)z\/. The allo_wable va-
Ination y gives to @ the value wvalp[(Z) against the assumption that &
has the property (T). . _

Let us now assume that Z results by the substitution deseribed in
the lemma from a polynomial @ without the property (T). We are going
to define a set I and an I-valnation such that wvaly,(Z)= A.

To this end we consider 2" disjoint sets X, each of power m,.
If j=j.;, is the greatest integer < s such that 7/((1/',!1"_,'”)';‘\/, then
we remove from Xj ; as many elements as to leave a set X’.i“'[
of power my;. Now we take as I the union of all sets X, aind define
an I-valuation 3 by taking as [X;]y an arbitrary element of I{(j=1,2,...}
and as [FiJar the union of those X; ; for which #4,=0 (k=1,2,...,%).
It is easy to see that

{valy,p L F: ;I(Xh) A bBHE)] =V ]=(y e Xiiy)
and hence
ralyi(A]..) =V}={Ty, > m}={my, , >m}

= {jiln-in >it=vy (a{ru"n) =V .

Lemma (d) is thus proved.
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Theorem 10 results immediately from lemmas (¢) and (d) since the
set of polynomials with the property (T) is recursive.

We conclude with a diseunssion of the systems (S¥) with #=1,2,...
In contrast to theorem 9 we have the following

TEROREM 11. For each n>1 the set of true formulas of (S)) and the
set of formulas of (S)Y) which are true tn any given set I are recursive.

Proof. Let the m=2" constituents FXx)A..AFrx) be denoted
by 84x),...,8,(x). Each Boolean polynomial W({x) in Fy(x),...,F.(x)
which does not vanish identically has a ‘“canonical representation”

85, () V 84y (X) V ooV S (5)

which is unique up to the order of summands. We put

A =(Q5) S (x)V ... V8 (x)]
and

A= (Q'x)[Fy(x) A ~Fy(x)].

() If A and B are formulas not containing the free variable x and
M(x) and N(x) are formulas in which x occurs free, then the equivalences

(QAAM () v (BAN(x))]={(~AA~BArA} v (~AABA(Q'x)N(x))v

VAA~BA(Q)M(x))V (AABA(Qx)[M(x) VN (x)])}

are true (j=1,2,...,s).
Proof of this lemma is evident.
Let ns now consider a formula Z of the form

My(x) V [Cy A Ny(%)] VooV [Cp A Np(x)]

where C,...,C, do not contain x. For each set t1y.0y8p Of Indices (=0,1)
we denote byz (x) the sum MD(X)Vkal(x)v...vN,-k‘(x) where ky,..., %

{senip

are all integers k<p for which 4 =0. Denoting by \ the Boolean
Tyenn

.....

P
sum over the sets of 27 indices we have

(b) The equivalence
(Q'x)Z= V [Cia - AGPAQx) Y (x)]
is frue. e o
We show this by indnction on -p. I p=1, then we take in (a)
A=(QD) RV ~(QX)Fy(x)=14,, B=C;, M(x)=M(x), N(x)=Ny(x).
If the lemma holds for the number p—1, then we take in (a) A=A,,
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B=0Cp, M(5)=M®))V[CAN()]V...v[Cor AN, 1 (x)], N(x)=N,(x) and
obtain the (true) equivalence

(Q'x)Z=Cp AQ/ )M (x) V[CAN ()] V ...V [Cpa AN, ()T} v
VoA Q) {IM(x) VN, ()T VIC, AN (X)]V oo V[ A N,_a(x)]} .

Lemma (b) results now immediately if we use twice the inductive
assumption.

We introduce now the class R(xy,...,x,) in much the same way as
in the proof of theorem 10 (cf. definitions preceding lemma (¢) on p. 30).
The only difference is that we require from the present class R(x;,...,%X.)
that it should contain the s formulas Al and the §(2" —1) formulas A
instead of the former 2" formulas Af:l...f,.- Lemma (¢} of the proof of
theorem 10 holds in the present case and will be referred to as lemma (c,).
In order to prove this lemma it is sufficient to show its validity for Z
having the form (Q'x)Z, where 7, is either the formula Fyx)n ~Fy(x)
or the formula [C;A Skl(x)]v...v[Cp/\Skﬂ(x)] with C, independent of x.
In the former case it is sufficient to take U= A and in the latter (Cn)
results immediately from (Db).

We introduce now the concept of a valnation allowable for a set I.
This is a function y which assigns the truth-values to the s-27 formulas
Al and A{ in such a way that there exists an assignment of eardinal
numbers my to constituents Sy(x) (k=1,2,...,m) satisfying the conditions:
1o my 4+ 1o+ o+ M =1,

20 if W(x) is a Boolean polynomial in Fi(x),...,F,(x) and
Sh(X)V e VSkP(X) s

(158) Sp(x) V... v8(x)

are the canonical representations of W(x) and ~W(x), then y(A{)
. Ed a .

=T7( 2 gy, D) m,i) where 17 is the function which determines the quan-
i=1 i=1

tifier Qf.

Of course one of the sums (15) disappears if W(x) or ~W(x) va-
nishes identically; the corresponding sum of cardinals is then 0. Our
definition covers the case when W is identieally /\ if we agree that Al
is then to be interpreted as Aj. This we do tacitly in the rest of the proof.

(d) If M is an I-valuation, then the function
v (A%y)=val(Ax)

is an allowable valuation for I.
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Proof. We set
Re= F [valan1(Se(x:)) = V],

xel

k=1,2,...,m

and assign to S(x) the cardinal number wy=FK,. The condition 1o ig
obviously satisfied since the R, ate disjoint and I is their union. Now
let (15) be the canonieal representations of W(x) and ~W(x). We have
then

E; [UaZM(i’x),I(W(X,‘)) = \/] :Rkl"-’ oo VRkp’
X€
E] ['zfalM(,-,xu(W(x,-)) = /\] =R11u URI,
and hence, by the definitions of section 2,
¥ (A) =valyrs(Ady) =valaer ((Q'x) W (x,)

=T}(_Rk1u uRkp,:RT_lu \JRI,) =1 ( ij i, Zq: m,i) .

i

=1 f=1

This proves that y satisfies 2°.

{e) For each valuation y allowable for I there is an I-valuation M
such that y(Al)=valy{Ak) for each W.

Proof. Let mg be the cardinal number correlated with the kth con-
stituent 8,(x) in accordance with conditions 1° and 2°. Let further
I=Ryv...oRy be a partition of I into m disjoint sets such that Ry = m,
(k=1,2,...,m). We take as [x/]ys an arbitrary element of I (i=1,2,...)
and define [Fy]y as the union of sets R, corresponding to constituents
Si(x) contained in Fyx) (i=1,2,...,n). It is then easy to show that

(16) {valM(;.,y),I(Sk(x;,)) = V} = {y € Rk} .

If W(x) is a polynomial in Fl(x),...,F"(x) and (15) are the cano-
nical representations of W(x) and of ~W(x), then it follows from (16)
that

{UaZM(h,y),I(W(Xh)) =V}={ye Byv..wRe )},
{ralaopdW (i) =A\) = ¢ Byo...vR,},
and hence, by the definition of the function val,
r q
valyg(Ady)=T' (21’ M 21] ).

Since y is an allpwabfe valuation, the right-hand side of this equa-
tion is equal to y(A{). Lemma (e) is thus proved.
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We are now able to prove theorem 11.

Let I be a set. The set of formulas in R which bave the value \/
for a single fixed valuation y is of course recursive and so is the set of
formulas which have the value V for a finite set of such valuations.
Since the set of valuations allowable for I is finite, it follows by lem-
mas (d) and (e) that the set of formulas in R which are true in [ is re-
cursive. By lemma (c,) for each closed formula % of (8¥) we can find
effectively a formula in R which is true in T if and only if Z is true in I.
Hence the set of formulas which are true in I is recursive, which proves
the second half of the theorem.

Now denote by 8 the set of valuations allowable for I. The number
of such sets is of course finite (since so is the set of functions assigning
truth values to formulas AJ and Aly). Let & be the union of all different
Ris. Replacing in the previous proof the words “valuations allowable
for I” by ‘“valuations which belong to K", we obtain the proof of the
first half of the theorem.

In spite of its genérality (or perhaps just becaunse of its generality)
theorem 11 has no practical applications. We illustrate this by means

of the following example: let @, @® be quantifiers such that for each
infinite set I and for XCI

{QUX) =V} ={X is a prime}, {QHX) =V} =(X has the form 22" +1}.
The problem whether the fbrmula

@ ()
HQ=F @A (QX)F DY IJFE)v(Y x)F(x)
17) {257) (65537

VIZHFE VY IR @ v( Y )x)F(x)] )

is true in an infinite set 7 is equivalent to the famous number-theoretical
problem whether there are more than 5 Fermat primes. It is, however,
impossible to solve this problem on the basis of theorem 11 in spite of
the fact that theorem 11 asserts the existence of a finitary method for
testing whether an individually given formula is or is not true in I. Such
a test would indeed be possible if we knew effectively the recursion equa-
tions for the characteristic function of the set of formulas which are
true in I. Unfortunately our proof of theorem 11 does not provide ug
with those equations. We have merely proved their existence (in & non-
-effective way) and cannot therefore draw any practical consequence fro

our result. ’

™
%) Symbols occurring in this formula denote quantifiers defined in section 2 (b).

3%
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On computable sequences
by

A. Mostowski (Warszawa)

A real number a (0 <a <1) is said to be computable (cf. Robinson [9],
Rice [8]) if there is a general recursive function ¢ such that

(1) la—gm)n]<1jn for n=1,2,..

This definition is equivalent to each of the following ones?):

(ii) There is a general recursive funetion p such that

o
a=21p('n)/10" and p)<l0 for =w=1,2,..

n=1

(ili) The relation B which p bears to ¢ if and only if p/g<a is ge-
neral recursive. (Tn other words the function ¢ such that #(p,q) <1 and
B (p,q)=1}={pjg <d} is general recursive ?).)

Several other equivalent formulations of (i) are known.

Let us now pass from numbers to sequences. If we replace in the
definitions given above a by o and ¢,p,9 bY @x,Px,9% where the index k
runs over integers and if we further require that these functions be ge-
neral recursive in all variables (including “k”), then we obtain three
definitions of what may be called computable sequences. Xt will be proved
below that no two of these definitions and of a couple of others, which
we shall formulate later, are equivalent.

There is no doubt that of these various definitions the one which
best expresses the existence of an algorithm permitting one to caleulate
uniformly the terms of a sequence with any desired degree of accuracy
is that which corresponds to (i). The other definitions represent merely
a mathematical curiosity. It seems to us, however, that the following
cireumstance deserves emphasis: if we replace in the definitions (i)-(iii)

1) The equivalence of these definitions has been first observed by Robinson [9].
Cf. further Rice [8] and Myhill [6].

%) These definitions have heen formulated by Mazur [3]. The definition given
by Rice [8] is equivalent to the first of these definitions.
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