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On homotopically stable points and product spaces
by
Yukihiro Kodama (Tokyo)

§ 1. Introduction

Let X be a topological space. A point z, of X is called homotopically
labile in X whenever for every neighbourhood U of 2, there exists a con-
tinuous transformation f(x,t) which is defined in the Cartesian product
X xI of X and of the closed interval I= <0,1> and which satisfies the
following conditions:

(1) flz,t)e X for every (x,5)eX xI,

(2) He,0)=2  for every wmeX,

(3) fle,t)y=2a for every (x,t)e(X—T) xI,
(4) fo,t)e U for every (z,0)eU xI,

(5) flz, )5z, for every weX.

A point z, of X is called homotopically stable if it is not homotopically
labile. K. Borsuk and J. W. Jaworowski [5] introduced this notion and
studied the various properties of labile and stable points.

In this paper, we shall study first a certain characteristic property
of homotopically labile points in ANR’s for metric spaces. This shows
that “homotopical stability” is equivalent to “n-homotopical stability
for some integer »1)”. The main theorem, which states that the homo-
topical lability or stability of a point in a product space is determined
by the local conunectivity groups at that point?), is proved in § 4. This
theorem gives a generalization of H, Noguchi’s theorem [21] to the case
of ANR.

Let X and ¥ Dbe two topological spaces. The equality dim X x ¥
=dim X +dim ¥ does not generally hold; for example, K. Borsuk [4]
has proved that there exist 2-dimensional Cantor manifolds whose Car-
tesian produet has dimension three. In § 5 we shall show that this equa-
lity holds in the following two cases:

') For these definitions, sec §§ 2 and 4.
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1. X is a locally compact fully normal space and Y is a 2-dimen-
sional locally compact ANR for metric spaces.

- X and ¥ are locally compaet ANR’s for metric spaces satistying
certain conditions.

| &

§ 2. Some characterizalions of homotopically labile points

A topological space X is called an ANR for metric spaces if when-
ever X is a closed subset of a metric space ¥, there exists a continnous
transformation from some neighbourhood of X in ¥ onto X which
keeps X point-wise fixed (ef. [14], Definition 2.2).

We introduce the following definitions:

A point i, of a topological space X is called homotopically n-labile
in X, n=0,1,2,..., when, for every neighbourhood U of x,, there exists
4 neighbourhood V of i, which is contained in U and satisfies the fol-
lowing condition: Let E"** be an (n-+1)-cell whose boundary is an
n-sphere 8”. Then every continuous mapping f: 8"V —x, is extended
to a continnous mapping 7': B U—g,. A point x, of X is called
Tomaotopically n-stable in X if it is not homotopically n-labile in X.

For convenience, we shall use the following abbreviations:

ANR=ANR for metric spaces,

HL=homotopieally labile,

n-HL=homotopically n-labile,

HL"= homotopically i-labile for each integer i=10,1,2,...,n,

- HB=homotopically stable,

n-H8 = homotopically n-stable. -

Moreover, we shall understand by “mapping” a continuous transforma-
tion and denote by “dimension” the covering dimengion of Lebesgue.
We shall establish the following theorem: -

THEOREM 1. Let X be an m-dimensional ANR. Then a point xy of X
is HL in X if and only if x, is HL™™" in X.

To prove this theorem, it is convenient to

state the following
lemmas:

LeMMA 1. Let X be an ANR and Xy @ point of X and let U be a neigh-
bowrhood of x,. Then there exists a neighbourhood U, of wx, contained in U

with the following property: If 1:9 are two mappings of a metrie space ¥
into X such that

=gy for

g(y)e U,

yeY—fU(U,),

for  yej {(U,),
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then there exists a mapping F: ¥ xI—-X such that

F(y,0)=fy) and F(y,l)=g(y) for ye¥,
Flyty=fy)  for ye¥ YT,
Ft)e U for  yef™(T,).

Proof (c¢f. [12], p. 40). According to a theorem of Wojdystawski
([25], p. 186), X can be imbedded as a closed set of a convex subset D
of a normed vector space B. Since X is an ANR, there exist a neigh-
bourhood W of X in D and a retraction h: W-»X. Let U be a neigh-
bourhood of xz, in X. We can find a spherical neighbourhood V of x,
in D such that VCVCA™Y(U). Put Uy=V~X. Let ¥ be a metric space
and let 7,4 be two mappings of ¥ into X satisfying conditions of Lemma 1.
Since D is a convex set, V is a convex set. Hence, there exists a homo-
topy ki ¥—X OV such that k(y)=f(y) for ye YUy, ko(yy=1y),
k(y)=g(y) for ye¥Y. Then the homotopy F: ¥ xT-+X defined by

F(y,t)=hk{y) is the required one.

LeMMA 2. Let X be an ANR. If U is an open subset of X, then U is
an ANR ((10], Lemma 3.1).

Proof of Theorem 1. 1) Sufficiency. Let x, be 2 point of X
which is HL™™". There exist two neighbourhoods U, U7, of &, which sa-
tisfy the condition of Lemma 1. Since 1, is HL™™, we can construct
a decreasing sequence of neighbourhoods U; of x, such that z,e U;CU,CU;_,
and every mapping f: 8’—U,—x, has an extension f: Ei+1U;_1~xo
fori=1,2,..,m+1landj=0,1,2,...,m—1.Put M=U, 4, N=T,1— Upsr.
Since M is a metric space and N is a closed subset of 3, we can econ-
struct a space ¥ and a continuous mapping h: M —¥ ([8], Theorem 3.1)
such that .

1° 2|¥ is a homeomorphism and h(¥) is closed in Y,

2° P=Y —h(N) is an m-dimensional infinite complex with the weak
topology and h(M — N)CP.

Moreover, by [8], p. 357, there exists a continuous extension g,:
PO R(N)+N of a mapping g==h~': h(N)-N, where P’ is the i-ske-
leton of the complex P. Consider g, as a mapping P*UA(N) into U, —uz,.
Since U,—xz, is an ANR by Lemma 2, we can find a mapping g and
a neighbourhood V of A(N) in ¥ such that gj: PPOVUM(N)—=T,y—z,
and gg| PPUh(N)=y¢, (cf. for example, [12], p. 40). Let @ be a subcom-
plex consisting of closed simplexes of P contained in V. Then Qo k(N )
forms a closed neighbourhood of #(¥) in ¥. Consider the mapping
Ji=g6Q  h(N): QUR(N)=U,—z, By the constructions of U;, we can
find a continuous extension g;: P'uQ U h(N) =Ty —x, of g, since P has
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the weak topology. By a repeated application of this process, we can
see that there exists a mapping g, of ¥ into U,— &, such that g.|A(¥N)=r"",
Define a mapping f of X into X —ux, as follows:

o)==
1 (@)= gmh (x)

If 7 is an identity mapping of X into X, then we can find a homotopy F
between f and I whose existence is proved by Lemma 1. This homotopy
means the homotopical lability of .

2) Necessity. It is sufficient to prove that, if a point z, of X is
#-HS for some n such that 0 <n<{m—1, then z, is HS. Let x, be »-HS.
By the definition of #-HS, there exists a neighbourhcood U of x, satis-
fying the condition that, if ¥ is a neighbourhood of #, contained in T,
there exists at least one mapping f: S§"-»V —z, such that f has no ex-
tension f': E"V' U —z,. Since X is an ANR, we may suppose that V is
contractible in U ?). Therefore we have an extension g: '™ —T such
that g|§"=/. Sinee 7(8") is compaet, we can find a positive number &
such that O<e<@(f(S"),mo), where ¢ is a metric in X. Assume that z,
is HL in X. Then there exists a mapping F': X xI-»X such that F(x,0)=
for € X, F(z,t)=2 for e X—8(x,,8), F(x,t)eS(zy,8) for xe S(xzy,e)
and F(x,1)7#x, for 2 ¢ X, where §(x,,¢) i§ the spherical e-nei; rhood
of z, in X. Put F(s F(g ),1) for s € B"*. We have f'(s)=f( , sed”
and {(E"T)C U —a,. This con’madlcts our hypothesis that f has no ex-
tension {': B"™* U —=,. This completes the proof.

It follows from Theorem 1 that, in an m-dimensional ANR, a point
o is HL if and only if z, is HL* for %>m—1. Moreover, in the same
way as in the proof of the sufficiency of Theorem 1, the condition “z, is
HL* for k¥ >m” is equivalent to the condition “for every meighbourhood
U of z, there is a neighbourhood V of z, contained in U such that V—z,
is contractible in U -x,?)". Therefore we have the following theorem:

THEOREM 2. Let X be a findtely dimensional ANR and x, a point
of X. Then x, is HL in X if and only if, for every neighbourhood U of w,
there exists a nezghbomhood V of xy contained in U such that V —x, 15 con-
tractible in U —

Theorems (3.1)—(3:4) of [20] are consequences of Theorem 2.

Remark 1. We can replace the condition “X is finitely dimen-
sional” by the condition “X is finitely dimensional at the point x, in

for 2eX—Unpr,

for e Upp-

2). We say that a subset 4 of a topological space X is contractible in a subspace B
of X, if there exists a homotopy f such that 7,: 4B, t€<0,1), and f, = the inclu-
sion mapping: 4 ¢ B and f,{4) is a point of B.
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the sense of C. H. Dowker (cf. [7], p. 103)” in Theorems 1 and 2. For
the homotopical lability and stability are local properties in ANR’s and
if dim ¥ <#u, then dimV <a by [19], Theorems 5.1 and 8.6.

§ 3. Kiinneth’s theorem

Let (X,4) and (Y,B) be pairs of topological spaces and let J be
a commutative field. The following homomorphism % is naturally defined:

ZH,,(X,A: J)o H(¥,B: J)—>H,{(X,4) x (Y,B): J),

e n=0,1,2,..,
where H,(X,d:J) means the p-dimensional Cech homology group of
(X, A)with coefficients J, £ means the direct sum of the groups, ® means the
tensor products of the groups and (X, A)x (¥, B)=(Xx Y, XxBuwA4AXY).
The Kiinneth’s theorem ([1], ». 308) shows that h is an jsomorphism if
(X,A) and (Y,B) are pairs of finite complexes. K. Borsuk ([3], p. 293)
proved that % is an isomorphism if X and Y are compact ANR’s and
A=B=9,

We shall state the following generalization of the theorems quoted
above, but omit its proof, since it is proved by a straightforward com-
putation:

THEOREM 3. We have the following isomorphism:

S HX,A:J) 0 H{Y,B: J)~

pra=n

HA(X.4) x(¥,B):J),
n=0,1,2,...,

(i) (X,4) and (Y,B) are pairs of compact Hausdorff spaces?),
(ii) (X,4) is a pair of compact Hausdorff spaces and (Y,B) is a pair
of (finite or infinite) complexes,
Gil) (X,4) is a pair of S-spaces?) and (¥,B) is a pair of finite com-
plexres.

§ 4. Homotopical stability in product spaces

Let X he a topological space and x, a point of X. Let V and U be
two neighbourhoods of x, such that VCU. If we denote by IIy the in-
clusion mapping (X,X—U)C(X,X~—V), we have the homomorphlsm
IY),: HyX,X —U:R)—H,(X,X—V:R) induced by 17y, n=0,1,2,.

3) Professor K. Morita proved the case (i) in his lecture at the Tokyo University
of Edueation.

1) A topological space X is called an 8- -space if every open covering has a star
finite open refinement. Cf. [16] and [2]
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The system {H,(X,X— U:R); (IT ‘J)*IV and U range over
hoods of x, such that PC U} forms the direct system of groups. Pug
Hy(zo: R)=1im H(X,X - T :R). We shall call thig group an n-dimen-
sional local Eonneetivity Cech group at @, with coefficients R. Tt R is
a commutative field, the rank of the group H,(x,: R) is the n-dimen-
sional local Betti number (over R) at x, (cf. [24), p. 1
the Cech group by the singular group, we have the
connectivity singular gronp at 2y with coefficients.
by S.(xy: R). .

THEOREM 4. Let X be a locally compact Hausdorff space and &y be
a point of X. If x, is HL in X, then we have H,,(;Z*O:R)=5:),,(;I‘0:R)=0
for each integer n and any abelian group R.

Proof. Let z, be HL in X. Take a neighbourhood U of &, with
compact closure. We can find g homotopy f,: X —X such that folx)=u
for e X, f(z)=a for zec X—U, flz)e U for ze U, and f(z)#x, for
2 eX. Since U has compact closure, f,(X) is closed in X and does not
contain g,. Since X is regular, there exists a neighbourhood V of 2, such
that VCU and WI)AV=0. Let us denote the inclusion mapping:
(X-ZT,X—V)C(X,X—V) by j. Congsider a mapping jf,: (X, X —U) >
(X, X~V). We easily see that T ~jf, : (X, X—T)—>(X,T~V)5).
Therefore they induce the same homomorphisms (f)e= T ‘,5)*; H (X, X
—U:R)~H,(X,X—V:R). Therefore (17%), = 0. This shows Hy(y: R)=0.
In the same Wway we can prove Dy : R) =0.

Since the Cech homology theory satisfies the excision axiom (cf. for
example, Eilenberg and Steenrod [93, p. 243) by Theorem 3, we can
easily prove the following theorem:

THEOREM 5. Let X and ¥ be locally com
ToyYo be points of X and ¥ respectiv
and integers n, n’ such that H,(
(2o,¥0) is HS in X % Y.

Corollaires 2 and 3 of [5], p. 17

all neighbony-

). If we replace
#-dimensional local
We.denote this group

pact Hausdorff spaces. Let
ely. If there exist a commutative field J
Ty} 20 and H(yo:d) 70, then the point

3, are consequences of Theorem 5.

THEOREM 6. Let X and Y be finite dimensional locally compact
ANR’s, and let Zy and y, be points of X and Y respectively. Moreover,
assume that X and Y are arc-wise connected and non-degenerate. Then
the point (xzy,y,) is HS in X XY if and only if there exvists a non-negative

integer n such that H,,((.ro,yo):Z);éO where Z is an additive group of
tutegers. .

*} Let g, and ¢: be two mappings of (¥ »4) into (¥,B). Then “o~ga:
~(T,B)” means that there exists a homotopy 2
(X,A)~>(I’,B) for each te0,15

(X, 4)—
;. sueh that ho=g,. k=g, and Ry
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Since the sufficiency is a consequence of Theorem 4, we have
only to prove the necessity. Therefore, by Theorem 1, it is su.ffi?ient
to i)rove that if H,((a,50): Z) =0 for n=0,1,2,..., then (xo,5,) is -HL
in X xY for i=0,1,2,... We shall prove this statement in the following
three stages:

L. (2g,y,) is 0-HL.

I1. (xg,%,) is 1-HIL.

I, (xy,y,) is k-HL for k>1.

At first, we need the following  lemmas:

Ledxaa 3. Let X be an ANR and (X, 4,), i=1,2, be two pairs O:f
closed subsets of X such that X, and 4, are closed neighborm'hoods of 1.1
and Ay, respectively. Then there exist a pair of compleres ({L,L) an(lvmap-
pings ¢ (X, 4;)—(I,L) and p: (K,L)—>(X23Ag) szwh that z:~wgo: (X,,4,)
—( X5, da), where i+ means the inclusion mapping (X, 4,)C(X,,4,).

Proof (c¢f. [13], Theorem 2). Let us imbed X as a closed subset gf
a convex subset D of a normed vector space B as in Lemma 1. Let & be
a retraction of some neighbourhood W of X in D to X and lgt.g be a me-
tric function in B. For each point z of 4,, let gfx) be a 1)081t-1V€j number
such that ey(x) <min {p(r, X —4,), o(2,D~W).. For efxch ])0111:[ ‘rYof
X, —4,, let gy{r) be a positive number such that (x) < min {g(af‘, 1‘; ;12);
elx, D—=W) p(r,4,)). Take positive numbers 81(93113ﬂd £q{) su;l ;?;1-
S(.r,el(x))Cll"I(S (i, 2o(@)) ~ X) and  S(r,e(r)Ch (S (‘E,el(x'))ﬁ; ) o
each point @ of X,, where S{r,¢) means ‘chg spherical neig f)ur .
of x with the radius ¢ in D. Consider a covering U ={S(r,e,(x)); r € ‘ul}
of X,. According to a theorem of A. H. Ston‘e [16], we lvlave 2 loca V
finite collection of open sets U = {V,; « ¢ 2} which covers X and is a star

i 4 . is a refi t of UA.
refinement of A, that is, P*= (V¥ = nLrJ* 'dT 5; @€ 2} is a refinemen
OV =P

Let (K ,L) be a pair of nerves of the covering U ~ (Xy, 4,) w1tl}G t#e ;;e%k
topology. Since 9 is a star refinement of QI’, for each elemenr tﬁ. GOHZ
we can select a point z, of X, such that T':CfS'((ra,ez(;z'(,));. ]?J} % 0
struction of go(x), if Vynd,7 @, then r, € 4,. ]?efme wy: (K ,? )—;(12,{11‘_,6
such that yy(v,)=ua3, where K' means the ?-skelet_OH of K an zf,, K °
vertex of I corresponding to an element V, of Y. If v,,...,7,, forms

a simplex of K, ¥ being a star refinement of ¥, I_L=Ju %(wa,)CS(xao,ez(.rao))

by the definition of vp,. Since 8y, eo{2y,)) Is a convex set ;md. ;T]xl is
atc:omplex with the weak topology, the mapping v, has an ex eDSIO , ]1:1
over K such that v (C18t(0,)) C8 (2, &x(ia,)) f9r each ‘?ltlééx Qi)th f a;
where C1St(v,) means the union of all closed;sunplexes 0 | v; : M b.e
a vertex. Define v: K—X, by y=hy'. Obviously y(L)Cd,. Let ¢ be
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3 canonical mapping (cf. [6], p. 202) of (X;,4d,) into (K,L). We shall
prove that t~ye: (X;,4;)—~(X,,4,). Let » be a point of X, and let
Vegseers Vo, be all elements of 9 containing . Then the point ¢(x) is
contained in the closed simplex (v, ...v,,) (cf. [6], p. 202). Therefore,
by the definitions of y and e(x), we have yp() e S(zay,er(®a,) ~ X.
Since Sy, ey®a,)) 15 a convex set and z v yp(2)C8(Tu,a(2s,)), there
exists a homotopy f;: K —W such that f,=1 and fy=yep. Put F': X, xI-+X,
such that F(s,t)="hf(s) for (s,t) e X xI. For each x of X,, we have
FexI )CS(xao,so(mau)). If x is & point of 4,, we can seleet x,, such that
%o, € A;. Then, since S(mao,so(wao)) ~XCA,, we have F(x xI)CA,. This
shows that i~mwp: (X;,4,)—(X,, 4,).

Lewmwva 4. Let X be an ANR and 2, be a point of X. Then we have
H,(2y: R)== Halo: R) for each integer n and any abelian group R.

Proof. Since X is a metric space, there exists a countable sequence
{U;} of a complete family of neighbourhoods of z, such that T,CU _,,
i=0,1,2,...; it is sufficient to use only {U,} in the definition of the local
connectivity group at z,. Apply Lemma 3 to the pairs (X,X —U;) and
(X, X—Uipq), i=1,2,.. We then get a pair (K;,L;) of complexes and
mappings ¢ (X, X —U;)—~(K;,L;) and y;: (K, L)—>(X,X—U,,) for
i1=1,2,... Consider the direct system {H.(K;,L;:R); @iy, t=1,2,...}.
We have H,(x,:R)=lm H,(K;L;: R). Since the Cech homology theory
and the singular homoiggy theory are consistent in a pair of complexes
(ef. for example, [13], Theorem 2), we have H,(x,:R)=H.(z,:R).

Proof of I. Let W be a neighbourhood of (z,,y,) in X x¥. Take '

2 meighbourhood U, of %, in X and a neighbourhood U, of y, in ¥ such

that U; xU,CW. Since X and ¥ are ANR’s, there exist neighbourhoods |

¥, and V, of x, and y, such that V; is contractible in U;, i=1,2. Let
« and & be any two points of ¥y xV,—(x,,y,). It is sufficient to prove
that @ and b are connected by an arc in U, X U,— (2,,¥,). Let us denote
by p, and p, the projections X x¥—-X and X xY—¥ respectively.
Assume that p(a)=wx,. Since X is a non-degenerate ANR, we can find
& point @ of V,—u, such that x, and =, are connected by an are in V,.
Put o'=(r;,py(a)). Then py(a’)#x, and py(a’)sy,. Therefore, we may
assume that p,(a)#z7#p,(b) and pyla)#y,#py(b). Since V, is contract-
ible in U,, we can connect two points a and (pl(b),pg(a)) by an are in
Uy X py(a)C Uy X Uy — (,,9,). Since V, is contractible in U,, we can con-
nect two points (pl(b),pz(a)) and b by an arc in p,(0) xU,C U, xU,—
—(%q,¥0). Therefore, two points a and b are connected by an arc in
Us XUy~ (q,90). This shows that (2y,%,) is 0-HL in X x Y.

Proof of II. It is sufficient to prove the following two lemmas.
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Let X and ¥ be ANR’s and x, and ¥y be points of X and Y.

LeymMA 5. If either x, is 0-HL in X or y, is 0-HL in Y, then (
i¢ 1-HL in X x Y.

LEMMA 6. If ®, and y, are 0-HS in X and ¥ respectively, then
Hy((mo,40) 2 Z) #0. A

Proof of Lemma 5. Assume that g, is 0-HL in X. Let W he
a neighbourhood of (2q,%,) and U;, i=1,2, be neighbourhoods of o
and y, in X and Y respectively such that U, xU,CW. Take a neigh-
bourhood V; of x, and ¥, such that V; is contractible in Ui, i=1,2. Let
f be a mapping of 1-sphere § into V;xV,—(x,,y,). We shall prove that
f has an extension f': B2—U; x U, —(i,,y,). There exists a positive num-
ber & such that 0<a<9((m0,y0),]‘(81)), where ¢ is a metric in X xY.
Put Wo=8(2y,e). Define fi: 8=V, such that fi=pif, i=1,2, where
p, and p, are projections X XY -»X and X x¥ ¥ respectively, Take
neighbourhoods W,,W,, W, of z, such that

1° W, is contained in W, and contractible in W,.

2° W, is contained in W, and any mapping g: §°—W,—z, has an

- extension g': F'+W,—ux,.

3° W, is contained in W, and contractible in W,.
Put N=f{"(z,). Let N3, i=1,2,..., be components of ¥. Put G¢=f{ (W),
Then @ is an open set containing ¥. Let {G,} be all components of &
intersecting with N. Since 8' is locally connected, each G, is an open
set (cf. [24], Chap. I, (14.1)) in 8. Hence, {G,} is an open covering of
the compact set N. Therefore {G,} consists of a finite number of sets.
Let us denote them by Gy, ...,Gh. Put M=\ Ny N CQ, §=1,2,...,n.
Let I; be the minimal closed interval in §* containing M;, j=1,2,...,n.
Then I;~I;=® for i+j. Define a mapping g,: §*'—V, such that

%oy Yo)

n(s)=his) for seS—UJI,
j=1

n
¢.(8) =, for selJI;.
J=1
Obviously, ¢, is (r,ontix}uous.‘ Moreover, if we define a mapping G:
81—V, XVy—(y,9,) such that Gl(s)=(gl(s),fg(s)) for s 8%, we have by
the construction 3° of W, and W,

(a) Gy~f: 81V XV — (@4, ¥,) -
Since LDI ; is contained in the open set g1 I(Wz), there exists an open
J=1 —~ -
interval H;=(a;,b;) in S§' containing I; such that H,m(g).H,‘)=¢> and
J#Ei

Fundamenta Mathematicae, T. XLIV. . 13
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(H)CW,, j=1,2,..,n. Define a mapping ¢: Sl——jUIHj#Ir’l—mo such

that g;=g1]SI—-._L"JlH j+ By the construction 2° of W,, we find that a map-
3=

ping gila; bz a;0b;—W,y —a, is extended 2;: H;—W, —u, for j=1,2, ... )7
Puat g,: 8=V, —a, such that

sest—JH,,

j=1
seH; " j=1,2,..,n.

$a{8)=g:(s) for

gafs)=1,(s)  for

If we define a mapping @, : 81>V, XV, — (24,¥,) such that Gy(s) = (gz(s),fg(s))
. for s € 8!, by the construction 1° of W, and W,, we have

(b) Gyl BV X Vo~ (w4,Y,) -

Since V, is contractible in U, and Y is non-degenerate, there exists
a homotopy k,: V,—U, such that kyy)=y and k(y)=1y,5=y, for
y eV,. Define Gy: §'=V, xy, by Ga(.s)z(gg(s),yl) for s¢ 8% Put H;:
81—V XUy —(24,%,) such that H(s)=(gu(s), kifu(s)) for 1e<0,1> and
8 € 8. Then H,=@, and H,=6&,. Therefore we have

()

Sinee V, is contractible in U,, there exists a homotopy 4,: V,—U, such
that iyx)=2 and 4(x)=2a, for 2 <V,. If we denote by @G, the constant
mapping 8'—(x,,y,), we have, in the same way as in (e¢),

d)

GENG:;: Sl—->V1 X Uz"‘(woayﬂ) .

Gs~Gy: 81Ty X Uy—(24,,) -

(a)-(d) completes the proof of Lemma 3.

Proof of Lemma 6. Since , is 0-HS, there exists a neighbour-
hood T of z, such that, whenever V is a neighbourhood of z, and con-
tained in U, there exists a mapping 7: 80 —V —a, which has no extension
f': B*»U—um,. We can assume that V is contractible in U7. Therefore,
we have an extension g: E'—>U of 7. Take a neighbourhood W of =,
such that WCV and W~ g(89)=W~ f(8°)=¢@. Then g determines an
element o of G(U,T—W:Z), where §,(Y ,A:Z) means the n-dimen-
sional singular homology group of (X, 4) with coefficients Z. Let & be
the boundary homomorphism §,(U, U-W:Z)»H(U~W:%Z). Since da
is an element represented by f with the infinite order, the order of a is
infinite. Moreover, let W’ be a neighbourhood of z, contained in W.
The homomorphism j,: 5V, U~W:Z)>$,(U,U—W’': Z) induced by
the inclusion mapping §: (U, U-W)C(U,U—W’) maps « into an ele-

ment jJfa) of $(U,U—W’':Z) with the infinite order. Let {W;} be
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a complete family of neighbourhoods of 2, such that W,
i=1,2,... Apply Lemma 3 to pairs (U,U~-W),) and (T, U-Wi). We
have a pair of complexes (K;,L;) mappings ¢,: (U y U~W)—>(K;,L),
wir (K, L) > (U, U—W,;;) and a homotopy I~y (O,U-~W,) >
(U, U—W,;.,), where 1 is the inclusion mapping (U, T—W,)C( U,U-W,.,).
There exists an element a ;0f $,(K;,L;:Z) with the infinite order such
that (@iyawi)eai=aiz1, i=1,2,.. Since y, is 0-HS, we can find a com-
plete family {W}} of neighbourhoods of Yo, & sequence of pairs of com-
plexes (M;,N;), mappings u: (T, U —Wi)—(M;,Ny), Az (M;,N)—
(UL U ~Wia) and UVe~dy: (U, U —W3) (U, U'~W,1), where ' is
the inclusion mapping (U, U -WHC(U", U'—~Wi1). Moreover, there
exists an element b of ©,(M;,N,:Z) with the infinite order such
that  (uad)*;=0;51 for ¢=1,2,... Define aa: (KX My KE;x N;o
ULy X M) (K XMy, Koy XNipiw Liza X Myy3) such that ﬂ::+1(375")
=(pr1pi($), pipdi(s’)) for seX; and ¢ €M, i=1,2,... If (a},), is the
homomorphism induced by .y, then the Hmit group of the direct system
{9a(Hi % My Ky x Nyw Ly X My Z) 5 (wheq),} s equal to Ha((#0,90): Z), be-
cause the singular theory satisfies the excision axiom (ef. [9], Chap. 7).
By Kimneth’s theorem ([1], p. 308), we have a0 bie H(K;,Li: Z)e
@9 M, Ni: Z)CHKix My, K; x Nyw L x M;: Z). Since the orders of
a; and b; are both infinite, the order of g;®d, is infinite. Moreover,
(7 )y{@;® b)) = @100 ® by, This shows 552((500,:1/0):Z):cH:_,((w,,,yo):Z) #0
by Lemma 4.

Proof of IIL It is sufficient to prove that if X is an ANR, and z,
is & point of X such that it is HL*" for ¥ >1 and Hy a(n,: Z)=0, then
&, I8 k-HL in X.

Let U be a neighbourhood of z,. There exists a sequence V; of neigh-
bourhoods of x, such that

10 &g € VOC...CVICV,C17;+1C...CT/—k+1CVk+2 = U,

2° ¥, is contractible in V,,

8% if f: 87 V;—um,, there exists an extension f': BV, —x, of f

for i=1,2,..,k and j=0,1,2,...,k—1.

Let  be any mapping of §* into V,—x,. Fix a point s, of 8¥. There exists
a mapping @: (E*, %) (8% s,) such that @|E*—E* is a homeomorphism
onto §—s,, where K means the boundary of E¥. Since Hyyi(,:2)=0
and the singular homology theory satisfies the excision axiom (cf. [9],
Chap. 7), we can find a sufficiently small neighbourhood W of z, such
that the element of §,(V,—W,s, : Z) determined by fo=fp is zero, where
w1=]‘,,(E"‘)=f(go), Therefore, by the definition of singular homology
group, there exists a (k+1)-dimensional finite complex P*™* containing E*
and a mapping h: P*' T, —~W such that

;+1CW,~CW,

13%
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4° Pk+1=Ek+ Qk,

5° BB =f, and h(9")=um,9).

Detine a homotopy H: P**'xI—U—u, as follows: At first, put
H(p,0)=h(p) for p ¢ P*™* and H(p,t)=f,(p) for p ¢ P*** and t ¢ I. Next,
put H(p,1)=w, for peP;*, where Pi* is the i-skeleton of P“*% By
the construction 3° of ¥, and V,, we can extend H to a mapping of
(P 0)u (PFT O PE™) x 1) into V,—o,. By a repeated application of
this process we can have a mapping H : (P x 0)u (P OPFH) x I) - U—2,
such that

H(p,0)="%{p) for peP*?,
H(p,t)=(p)=fo(p) for peP**,
H(p,1)=u for p e PET3.

Sinee U-—x, is an. ANR by Lemma 2, we can extend H to a mapping
of P** x1 into U—u,. Consider a mapping H[P*?*x1: P"'x15U—z,.
In the same way as in Theorem 12.6 of [11], we define the following
homomorphism a of the k-dimensional chain group ClP*™*:Z) of P*H
into the k-dimensional homotopy group ay(U—z4,2,) of (U~ xy,2,). Let
Tf, i=1,2,...,q, be the n-simplexes of P*** each in a definite orienta-
tion. Since the restricted mapping H|P*"* x1: P**1x1 U —x, maps the
(k—1)-skeleton of P**! x 1 into the point x,, the mapping H|T¥ x1: T% x 1
—U—u, determines the element a(TF) of wmy(U—i,,2,). To the integral
k-chain Oy = Z a; T e OP*™:Z), let us assign the element a(Cy)

i
 =Xaa(T}). Since k>1, ¢ is a homomorphism. Moreover, if T* is
a (k+ 1)-simplex of P**", a(T**")=0. Hence, since H|P***x 1 maps 9*x1
into the point 2o, we have a(P**")=a(5) =0. Therefore, by 3°, we have

a(Ek)=0. This eompletes the proof of ITT and consequently the proof
of Theorem 6. ‘

Theorem 5 of [21] is a consequence of Theorem 6.
In part ITT of Theorem 6 we have proved that if x, is HL® in X and

Hy(z,:Z)=0 for {=0,1,2,...,j41, then =z, is HL’. Therefore, we have

the following theorem.

THEOREM 7. Let X be a finitely dimensional locally compact ANR
and let z, be a point of X. Then x, is HL in X if and only if xy is HL' in X
and Hy(x,: Z)=0 for n=0,1,2,...

Remark 2 (cf. Remark 1). Since the Cech homology theory satis-
fies the excision axiom (cf. for example, Eilenberg and Steenrod [9],
D. 243), we can replace the condition “X  ig finitely dimensional”. by

% Cf. [11], p. 1023.
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the condition ‘.Y is finitely dimensional at x,in the sense of C. H. Dowker
(ef. [T], p. 103)” in Theorem 7. Similarly, we can replace the condition
“X and Y are finitely dimensional” by the condition “X¥ and Y are
finitely dimensional in the sense of C. H. Dowker {ef. {7], p. 103) at Ty
and y, respectively’’ in Theorem 6.

5. Dimension of products spaces

THEOREM 8. Let X be a locally compact fully normal space and let ¥
be a locally compact 2-dimensional ANR. Then the following equality exists:
dim X X ¥=dim X xdim Y.

Proof. By [17], Theorem 3.2, we may assume that X is compact.
Sinece ¥ is 2-dimensional, there exists a point y, at which ¥ is 2-dimen-
sional in the sense of C. H. Dowker (cf. [7], p. 103). Since Y is a locally
compact ANR, we can find a neighbourhood U of ¥, such that U is com-
pact and contractible in ¥. Since ¥ is locally connected, there exists
a 2-dimensional compactum M contained in U. M is not a dendrite
(ef. [28], Chap. 5), because dim M=2. Therefore M contains a topo-
logieal image 8 of a 1-sphere.

If dim X=m, there exist two closed subsets X, and 4 of X such
that ACX, and H,(X,,A:R,)#0 (cf. for example, [15], Theorem 10),
where R, is the group of real numbers modulo 1. Since X, is a com-
pact space, S is a polyhedron and H,(S:Z)~Z, we conclude that
Hpoy(X; ¢ 8,AX8: R)5~0. Since § is contractible in a compact subset ¥
of ¥, there is a homotopy f;: §—N such that f; is the inclusion mapping
and f,(8) is a point y, of NV. Put ¢,: (X1 XS, 4 X8) (X, XN,4AxN) such
that  g(z,s)=(z,f(s)) for zeX, and seS. The homomorphism g,,:
mit(Xy XN, AXN:R,) is the same for each
te<0,1>. But ¢,(X;xX8)CX,Xy,. Since dim X;,=m, ¢, is the trivial
homomorphism. Therefore, g,, is the trivial homomorphism. Let h
and %k be the inclusion mappings (X;xS,4 x8)C(X;XN,AxN) and
(XX N, A X8)C(X; XN, A XN), respectively. Then g,= kh. Therefore, ¢,
=k,h,. Let & be a non-zero element of H,,41(X;XS,4 X 8:R,). At first,

. assume that h,(a)==0. Since X,,4,N,8 and R, is compact, the sequence

of Cech groups of the triple (X; x N, X, x 8,4 x8) is exact by [9], Chap.1,
Theorem 10.2 and Chap. 8, Theorem 5.6. Therefore we conclude that
Hypo( Xy X N, X, X 8: R) # 0. Next, suppose that h(a)=>bz0. Then
k,(b})=10. By the exactness of the Mayer-Vietoris sequence of the triad
(XX N, X, x 8,4 xN) (cf. [9], Chap. 1, Theorem 15.7), we have
Hpia X, X N (X, % 8) w (4 X N): R)) #0. Therefore, dim X x ¥ >m+2.
Since dim Xx ¥Y<m+2 (ef. for example, [18], Theorem 4), we have
dim X X¥ = dim X +dim ¥ .
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THEOREM 9. Let X be a locally compact m-dimensional ANR con-
taining a point z, which is HL™ ™ and (m—1)-HS, and let Y be a locally
compact n-dimensional ANR containing a point y, which is HL"™® ang
(n—1)-HS. Then the following equality exists:

dimX x¥=dim X +dim ¥ .

Proof. By Theorem & and [18], Theorem 6, it is sufficient to prove
the theorem in the case of 2<m and 2<n. In the same way as in
Lemma 6, we can show that there exist compact subsets X;,4 of X
and ¥,, B of Y such that H,(X,,A:2)50 and H,(Y,,B:%)50. Since
dim X =m and dim ¥ =, all non-zexo elements of the groups H m( Xy, A:7)
and H,(Y,,B:Z) have infinite orders. Therefore, if F is the field of ra-
tional numbers, we have H,(X,,4:F)=0 and H,(Y,,B:F)50. Hence,
by Theorem 3, we have H, (X, x¥,,X,xBudXx Y,:F)5£0. This
shows that dim X x ¥ >dim X+ dim Y. It is obvious that dim X x ¥
<dim X4 dim ¥. This eompletes the proof.
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