On homotopically stable points and product spaces

by

Yukihiro Kodama (Tokyo)

\$ 1. Introduction

Let X be a topological space. A point x_0 of X is called homotopically labile in X whenever for every neighbourhood U of x_0 there exists a continuous transformation f(x,t) which is defined in the Cartesian product $X \times I$ of X and of the closed interval $I = \langle 0, 1 \rangle$ and which satisfies the following conditions:

(1)
$$f(x,t) \in X$$
 for every $(x,t) \in X \times I$,
(2) $f(x,0) = x$ for every $x \in X$,
(3) $f(x,t) = x$ for every $(x,t) \in (X-U) \times I$,
(4) $f(x,t) \in U$ for every $(x,t) \in U \times I$,
(5) $f(x,1) \neq x_0$ for every $x \in X$.

A point x_0 of X is called homotopically stable if it is not homotopically labile. K. Borsuk and J. W. Jaworowski [5] introduced this notion and studied the various properties of labile and stable points.

In this paper, we shall study first a certain characteristic property of homotopically labile points in ANR's for metric spaces. This shows that "homotopical stability" is equivalent to "n-homotopical stability for some integer n 1)". The main theorem, which states that the homotopical lability or stability of a point in a product space is determined by the local connectivity groups at that point 1), is proved in § 4. This theorem gives a generalization of H. Noguchi's theorem [21] to the case of ANR.

Let X and Y be two topological spaces. The equality $\dim X \times Y = \dim X + \dim Y$ does not generally hold; for example, K. Borsuk [4] has proved that there exist 2-dimensional Cantor manifolds whose Cartesian product has dimension three. In § 5 we shall show that this equality holds in the following two cases:

¹⁾ For these definitions, see §§ 2 and 4.

2. X and Y are locally compact ANR's for metric spaces satisfying certain conditions.

§ 2. Some characterizations of homotopically labile points

A topological space X is called an ANR for metric spaces if whenever X is a closed subset of a metric space Y, there exists a continuous transformation from some neighbourhood of X in Y onto X which keeps X point-wise fixed (cf. [14], Definition 2.2).

We introduce the following definitions:

A point x_0 of a topological space X is called homotopically n-labile in X, n=0,1,2,..., when, for every neighbourhood U of x_0 , there exists a neighbourhood V of x_0 which is contained in U and satisfies the following condition: Let E^{n+1} be an (n+1)-cell whose boundary is an n-sphere S''. Then every continuous mapping $f: S^n \to V - x_0$ is extended to a continuous mapping $f': E^{n+1} \to U - x_0$. A point x_0 of X is called homotopically n-stable in X if it is not homotopically n-labile in X.

For convenience, we shall use the following abbreviations:

ANR = ANR for metric spaces,

HL=homotopically labile,

n-HL = homotopically n-labile,

 HL^n = homotopically *i*-labile for each integer i = 0, 1, 2, ..., n,

HS = homotopically stable,

n-HS = homotopically n-stable.

Moreover, we shall understand by "mapping" a continuous transformation and denote by "dimension" the covering dimension of Lebesgue. We shall establish the following theorem:

THEOREM 1. Let X be an m-dimensional ANR. Then a point x_0 of X is HL in X if and only if x_0 is HL^{m-1} in X.

To prove this theorem, it is convenient to state the following lemmas:

LEMMA 1. Let X be an ANR and x_0 a point of X and let U be a neighbourhood of x_0 . Then there exists a neighbourhood U_0 of x_0 contained in U with the following property: If f,g are two mappings of a metric space Y into X such that

$$\begin{split} f(y) &= g(y) &\quad for &\quad y \in Y - f^{-1}(U_0) \,, \\ g(y) &\in U_0 &\quad for &\quad y \in f^{-1}(U_0) \,, \end{split}$$

then there exists a mapping $F: Y \times I \rightarrow X$ such that

$$\begin{split} F(y,0) &= f(y) \quad \text{and} \quad F(y,1) = g(y) \quad \text{for} \quad y \in Y \,, \\ F(y,t) &= f(y) \quad \text{for} \quad y \in Y - f^{-1}(U_0) \,, \\ F(y,t) &\in U \quad \quad \text{for} \quad y \in f^{-1}(U_0) \,. \end{split}$$

Proof (cf. [12], p. 40). According to a theorem of Wojdysławski ([25], p. 186), X can be imbedded as a closed set of a convex subset D of a normed vector space B. Since X is an ANR, there exist a neighbourhood W of X in D and a retraction $h \colon W \to X$. Let U be a neighbourhood of x_0 in X. We can find a spherical neighbourhood V of x_0 in D such that $V \subset \overline{V} \subset h^{-1}(U)$. Put $U_0 = V \cap X$. Let Y be a metric space and let f, g be two mappings of Y into X satisfying conditions of Lemma 1. Since D is a convex set, V is a convex set. Hence, there exists a homotopy $k_t \colon Y \to X \cup V$ such that $k_t(y) = f(y)$ for $y \in Y - f^{-1}(U_0)$, $k_0(y) = f(y)$, $k_1(y) = g(y)$ for $y \in Y$. Then the homotopy $F \colon Y \times I \to X$ defined by $F(y,t) = hk_t(y)$ is the required one.

LEMMA 2. Let X be an ANR. If U is an open subset of X, then U is an ANR ([10], Lemma 3.1).

Proof of Theorem 1. 1) Sufficiency. Let x_0 be a point of X which is HL^{m-1} . There exist two neighbourhoods U, U_0 of x_0 which satisfy the condition of Lemma 1. Since x_0 is HL^{m-1} , we can construct a decreasing sequence of neighbourhoods U_i of x_0 such that $x_0 \in U_i \subset \overline{U}_i \subset U_{i-1}$ and every mapping $f \colon S^J \to U_i - x_0$ has an extension $f' \colon E^{J+1}U_{i-1} - x_0$ for $i = 1, 2, \ldots, m+1$ and $j = 0, 1, 2, \ldots, m-1$. Put $M = \overline{U}_{m-1}$, $N = \overline{U}_{m+1} - U_{m+1}$. Since M is a metric space and N is a closed subset of M, we can construct a space Y and a continuous mapping $h \colon M \to Y$ ([8], Theorem 3.1) such that

 1° h|N is a homeomorphism and h(N) is closed in Y,

2° P = Y - h(N) is an m-dimensional infinite complex with the weak topology and $h(M-N) \subset P$.

Moreover, by [8], p. 357, there exists a continuous extension y_0 : $P^0 \cup h(N) \rightarrow N$ of a mapping $g = h^{-1}$: $h(N) \rightarrow N$, where P^i is the i-skeleton of the complex P. Consider g_0 as a mapping $P^0 \cup h(N)$ into $U_m - x_0$. Since $U_m - x_0$ is an ANR by Lemma 2, we can find a mapping g_0' and a neighbourhood V of h(N) in Y such that g_0' : $P^0 \cup V \cup h(N) \rightarrow U_m - x_0$ and $g_0'|P^0 \cup h(N) = g_0$ (cf. for example, [12], p. 40). Let Q be a subcomplex consisting of closed simplexes of P contained in V. Then $Q \cup h(N)$ forms a closed neighbourhood of h(N) in Y. Consider the mapping $g_0'' = g_0'|Q \cup h(N) : Q \cup h(N) \rightarrow U_m - x_0$. By the constructions of U_i , we can find a continuous extension $g_1: P^1 \cup Q \cup h(N) \rightarrow U_{m-1} - x_0$ of g_0'' , since P has

the weak topology. By a repeated application of this process, we can see that there exists a mapping q_m of Y into $U_0 - x_0$ such that $q_m | h(N) = h^{-1}$.

$$f(x) = x$$
 for $x \in X - U_{m+1}$,
 $f(x) = g_m h(x)$ for $x \in \overline{U}_{m+1}$.

Define a mapping f of X into $X-x_0$ as follows:

If I is an identity mapping of X into X, then we can find a homotopy F between t and t whose existence is proved by Lemma 1. This homotopy means the homotopical lability of x_0 .

2) Necessity. It is sufficient to prove that, if a point x_0 of X is *n*-HS for some *n* such that $0 \le n \le m-1$, then x_0 is HS. Let x_0 be *n*-HS. By the definition of n-HS, there exists a neighbourhood U of x_0 satisfying the condition that, if V is a neighbourhood of x_0 contained in U, there exists at least one mapping $f: S'' \rightarrow V - x_0$ such that f has no extension $f': E^{n+1} \to U - x_0$. Since X is an ANR, we may suppose that V is contractible in U^2). Therefore we have an extension $q: E^{n+1} \to U$ such that $q|S^n=f$. Since $f(S^n)$ is compact, we can find a positive number ε such that $0 < \varepsilon < \varrho(f(S^n), x_0)$, where ϱ is a metric in X. Assume that x_0 is HL in X. Then there exists a mapping $F: X \times I \rightarrow X$ such that F(x,0) = xfor $x \in X$, F(x,t) = x for $x \in X - S(x_0, \varepsilon)$, $F(x,t) \in S(x_0, \varepsilon)$ for $x \in S(x_0, \varepsilon)$ and $F(x,1) \neq x_0$ for $x \in X$, where $S(x_0,\varepsilon)$ is the spherical ε -neighborhood of x_0 in X. Put f'(s) = F(g(s), 1) for $s \in E^{n+1}$. We have f'(s) = f(s) $s \in S^n$ and $f'(E^{n+1}) \subset U - x_0$. This contradicts our hypothesis that f has no extension $f': E^{n+1} \to U - x_0$. This completes the proof.

It follows from Theorem 1 that, in an m-dimensional ANR, a point x_0 is HL if and only if x_0 is HL^k for $k \ge m-1$. Moreover, in the same way as in the proof of the sufficiency of Theorem 1, the condition " x_0 is HL^k for $k \ge m$ " is equivalent to the condition "for every neighbourhood" U of x_0 there is a neighbourhood V of x_0 contained in U such that $V-x_0$ is contractible in $U-x_0^2$)". Therefore we have the following theorem:

THEOREM 2. Let X be a finitely dimensional ANR and x_0 a point of X. Then x_0 is HL in X if and only if, for every neighbourhood U of x_0 , there exists a neighbourhood V of x_0 contained in U such that $V-x_0$ is contractible in $U-x_0$.

Theorems (3.1)-(3:4) of [20] are consequences of Theorem 2.

Remark 1. We can replace the condition "X is finitely dimensional" by the condition "X is finitely dimensional at the point x_0 in the sense of C. H. Dowker (cf. [7], p. 103)" in Theorems 1 and 2. For the homotopical lability and stability are local properties in ANR's and if dim $\overline{V} \leqslant n$, then dim $V \leqslant n$ by [19], Theorems 5.1 and 8.6.

§ 3. Künneth's theorem

Let (X,A) and (Y,B) be pairs of topological spaces and let J be a commutative field. The following homomorphism h is naturally defined:

$$h: \sum_{p+q=n} H_p(X,A:J) \otimes H_q(Y,B:J) \rightarrow H_n((X,A) \times (Y,B):J), \ n=0,1,2,...,$$

where $H_p(X,A:J)$ means the p-dimensional Čech homology group of (X,A) with coefficients J,Σ means the direct sum of the groups, \otimes means the tensor products of the groups and $(X,A)\times (Y,B)=(X\times Y,X\times B\cup A\times Y)$. The Künneth's theorem ([1], p. 308) shows that h is an isomorphism if (X,A) and (Y,B) are pairs of finite complexes. K. Borsuk ([3], p. 293) proved that h is an isomorphism if X and Y are compact ANR's and $A = B = \Phi$.

We shall state the following generalization of the theorems quoted above, but omit its proof, since it is proved by a straightforward computation:

THEOREM 3. We have the following isomorphism:

$$\sum_{p+q=n} H_p(X,A:J) \otimes H_q(Y,B:J) \approx H_n((X,A) \times (Y,B):J),$$

$$n = 0,1,2,\dots,$$

(i) (X,A) and (Y,B) are pairs of compact Hausdorff spaces 3),

(ii) (X,A) is a pair of compact Hausdorff spaces and (Y,B) is a pair of (finite or infinite) complexes,

(iii) (X, A) is a pair of S-spaces 4) and (Y, B) is a pair of finite complexes.

§ 4. Homotopical stability in product spaces

Let X be a topological space and x_0 a point of X. Let V and U be two neighbourhoods of x_0 such that $\overline{V} \subset U$. If we denote by Π_V^U the inclusion mapping $(X, X-U) \subset (X, X-V)$, we have the homomorphism $(\Pi_{\nu}^{U})_{\star}: H_{n}(\widehat{X}, X-U:R) \to H_{n}(X, X-V:R)$ induced by $\Pi_{\nu}^{U}, n=0,1,2,...$

²⁾ We say that a subset A of a topological space X is contractible in a subspace B of X, if there exists a homotopy f such that $f_i: A \to B$, $i \in (0,1)$, and f_0 = the inclusion mapping: $A \subset B$ and $f_1(A)$ is a point of B.

³⁾ Professor K. Morita proved the case (i) in his lecture at the Tokyo University of Education.

⁴⁾ A topological space X is called an S-space if every open covering has a star finite open refinement. Cf. [16] and [2].

The system $\{H_n(X,X-U:R); (H_{\nu}^U)_*|V \text{ and } U \text{ range over all neighbourhoods of } x_0 \text{ such that } \overline{V}CU\}$ forms the direct system of groups. Put $H_n(x_0:R) = \lim_{\leftarrow} H_n(X,X-U:R)$. We shall call this group an n-dimensional local connectivity Čech group at x_0 with coefficients R. If R is a commutative field, the rank of the group $H_n(x_0:R)$ is the n-dimensional local Betti number (over R) at x_0 (cf. [24], p. 191). If we replace the Čech group by the singular group, we have the n-dimensional local connectivity singular group at x_0 with coefficients. We denote this group by $\mathfrak{H}_n(x_0:R)$.

THEOREM 4. Let X be a locally compact Hausdorff space and x_0 be a point of X. If x_0 is HL in X, then we have $H_n(x_0:R) = \mathfrak{H}_n(x_0:R) = 0$ for each integer n and any abelian group R.

Proof. Let x_0 be HL in X. Take a neighbourhood U of x_0 with compact closure. We can find a homotopy $f_t\colon X\to X$ such that $f_0(x)=x$ for $x\in X$, $f_t(x)=x$ for $x\in X-U$, $f_t(x)\in U$ for $x\in U$, and $f_1(x)\neq x_0$ for $x\in X$. Since U has compact closure, $f_1(X)$ is closed in X and does not contain x_0 . Since X is regular, there exists a neighbourhood V of x_0 such that $\overline{V}\subset U$ and $f_1(X)\cap V=\emptyset$. Let us denote the inclusion mapping: $(X-U,X-V)\subset (X,X-V)$ by $f_1(X,X-U)$ be a mapping $f_1(X,X-U)\to (X,X-V)$. We easily see that $f_1^U\sim f_1(X,X-U)\to (X,X-U)\to (X,X-V)$. Therefore they induce the same homomorphisms $(f_1)_*=(f_1^U)_*: H_n(X,X-U)\to (f_1(X,X-U))=(f_1(X,X-U))$. Therefore $(f_1^U)_*=0$. This shows $(f_1(X,X-U))=0$. In the same way we can prove $\mathfrak{H}_n(x)=0$.

Since the Čech homology theory satisfies the excision axiom (cf. for example, Eilenberg and Steenrod [9], p. 243) by Theorem 3, we can easily prove the following theorem:

THEOREM 5. Let X and Y be locally compact Hausdorff spaces. Let x_0, y_0 be points of X and Y respectively. If there exist a commutative field J and integers n, n' such that $H_n(x_0:J) \neq 0$ and $H_{n'}(y_0:J) \neq 0$, then the point (x_0, y_0) is HS in $X \times Y$.

Corollaires 2 and 3 of [5], p. 175, are consequences of Theorem 5. Theorem 6. Let X and Y be finite dimensional locally compact ANR's, and let x_0 and y_0 be points of X and Y respectively. Moreover, assume that X and Y are arc-wise connected and non-degenerate. Then the point (x_0, y_0) is HS in $X \times Y$ if and only if there exists a non-negative integer n such that $H_n((x_0, y_0): Z) \neq 0$ where Z is an additive group of integers.

Since the sufficiency is a consequence of Theorem 4, we have only to prove the necessity. Therefore, by Theorem 1, it is sufficient to prove that if $H_n((x_0,y_0):Z)=0$ for n=0,1,2,..., then (x_0,y_0) is i-HL in $X\times Y$ for i=0,1,2,... We shall prove this statement in the following three stages:

I. (x_0, y_0) is 0-HL.

II. (x_0, y_0) is 1-HL.

III. (x_0, y_0) is k-HL for k > 1.

At first, we need the following lemmas:

LEMMA 3. Let X be an ANR and (X_i,A_i) , i=1,2, be two pairs of closed subsets of X such that X_2 and A_2 are closed neighbourhoods of X_1 and A_1 , respectively. Then there exist a pair of complexes (K,L) and mappings $\varphi \colon (X_1,A_1) \to (K,L)$ and $\psi \colon (K,L) \to (X_2,A_2)$ such that $i \sim \psi \varphi \colon (X_1,A_1) \to (X_2,A_2)$, where i means the inclusion mapping $(X_1,A_1) \subset (X_2,A_2)$.

Proof (cf. [13], Theorem 2). Let us imbed X as a closed subset of a convex subset D of a normed vector space B as in Lemma 1. Let h be a retraction of some neighbourhood W of X in D to X and let ϱ be a metric function in B. For each point x of A_1 , let $\varepsilon_0(x)$ be a positive number such that $\varepsilon_0(x) < \min \{\varrho(x, X - A_2), \varrho(x, D - W)\}$. For each point x of $X_1 - A_1$, let $\varepsilon_0(x)$ be a positive number such that $\varepsilon_0(x) < \min \{\varrho(x, X - X_2), \varrho(x, D - W), \varrho(x, A_1)\}$. Take positive numbers $\varepsilon_1(x)$ and $\varepsilon_2(x)$ such that $S(x, \varepsilon_1(x)) \subset h^{-1}(S(x, \varepsilon_0(x)) \cap X)$ for each point x of X_1 , where $S(x, \varepsilon)$ means the spherical neighbourhood of x with the radius ε in D. Consider a covering $\mathfrak{A} = \{S(x, \varepsilon_2(x)); x \in X_1\}$ of X_1 . According to a theorem of A. H. Stone [16], we have a locally finite collection of open sets $\mathfrak{Y} = \{V_a : \alpha \in \Omega\}$ which covers X and is a star refinement of X, that is, $\mathfrak{Y}^* = \{V_a^* = \bigcup_{V_\beta \cap V_\alpha \neq \varphi} V_\beta : \alpha \in \Omega\}$ is a refinement of X.

Let (K,L) be a pair of nerves of the covering $\mathfrak{D} \cap (X_1,A_1)$ with the weak topology. Since \mathfrak{D} is a star refinement of \mathfrak{A} , for each element V_a of \mathfrak{D} , we can select a point x_a of X_1 such that $V_a^* \subset S(x_a, e_2(x_a))$. By the construction of $e_0(x)$, if $V_a \cap A_1 \neq \mathcal{O}$, then $x_a \in A_1$. Define $\psi_0 \colon (K^0, L^0) \to (X_2, A_2)$ such that $\psi_0(v_a) = x_\beta$, where K^i means the i-skeleton of K and v_a the vertex of K corresponding to an element V_a of Y. If v_{a_0}, \dots, v_{a_n} forms

a simplex of K, $\mathfrak D$ being a star refinement of $\mathfrak A$, $\bigcup_{i=0}^n \psi_0(v_{a_i}) \subset S(x_{a_0}, \varepsilon_2(x_{a_0}))$ by the definition of ψ_0 . Since $S(x_{a_0}, \varepsilon_0(x_{a_0}))$ is a convex set and K is a complex with the weak topology, the mapping ψ_0 has an extension ψ' over K such that $\psi'(\operatorname{ClSt}(v_a)) \subset S(x_{a_0}, \varepsilon_2(x_{a_0}))$ for each vertex v of K, where $\operatorname{ClSt}(v_a)$ means the union of all closed simplexes of K with v_a as a vertex. Define $\psi \colon K \to X_2$ by $\psi = h\psi'$. Obviously $\psi(L) \subset A_2$. Let φ be

⁵⁾ Let g_1 and g_2 be two mappings of (X,A) into (Y,B). Then " $g_1 \sim g_2$: $(X,A) \rightarrow (Y,B)$ " means that there exists a homotopy h_i such that $h_0 = g_1$. $h_1 = g_2$ and h_i : $(X,A) \rightarrow (Y,B)$ for each $i \in (0,1)$.

a canonical mapping (cf. [6], p. 202) of (X_1, A_1) into (K, L). We shall prove that $i \sim \psi \varphi \colon (X_1, A_1) \to (X_2, A_2)$. Let x be a point of X_1 and let V_{a_0}, \ldots, V_{a_n} be all elements of \mathfrak{P} containing x. Then the point $\varphi(x)$ is contained in the closed simplex $\overline{(v_{a_0} \ldots v_{a_n})}$ (cf. [6], p. 202). Therefore, by the definitions of ψ and $\varepsilon_1(x)$, we have $\psi \varphi(x) \in S(x_{a_0}, \varepsilon_1(x_{a_0})) \cap X$. Since $S(x_{a_0}, \varepsilon_1(x_{a_0}))$ is a convex set and $x \smile \psi \varphi(x) \subset S(x_{a_0}, \varepsilon_1(x_{a_0}))$, there exists a homotopy $f_t \colon K \to W$ such that $f_0 = i$ and $f_1 = \psi \varphi$. Put $F \colon X_1 \times I \to X_2$ such that F(s,t) = hf(s) for $(s,t) \in K \times I$. For each x of X_1 , we have $F(x \times I) \subset S(x_{a_0}, \varepsilon_0(x_{a_0}))$. If x is a point of A_1 , we can select x_{a_0} such that $x_{a_0} \in A_1$. Then, since $S(x_{a_0}, \varepsilon_0(x_{a_0})) \cap X \subset A_2$, we have $F(x \times I) \subset A_2$. This shows that $i \sim \psi \varphi \colon (X_1, A_1) \to (X_2, A_2)$.

LEMMA 4. Let X be an ANR and x_0 be a point of X. Then we have $H_n(x_0:R)\approx \mathfrak{H}_n(x_0:R)$ for each integer n and any abelian group R.

Proof. Since X is a metric space, there exists a countable sequence $\{U_i\}$ of a complete family of neighbourhoods of x_0 such that $\overline{U}_i \subset U_{-1}$, i=0,1,2,...; it is sufficient to use only $\{U_i\}$ in the definition of the local connectivity group at x_0 . Apply Lemma 3 to the pairs $(X,X-U_i)$ and $(X,X-U_{i+1})$, i=1,2,... We then get a pair (K_i,L_i) of complexes and mappings $\varphi_i\colon (X,X-U_i)\to (K_i,L_i)$ and $\psi_i\colon (K_i,L_i)\to (X,X-U_{i+1})$ for i=1,2,... Consider the direct system $\{H_n(K_i,L_i:R); \varphi_{i+1}\psi_i, i=1,2,...\}$. We have $H_n(x_0:R)=\lim_{i\to\infty} H_n(K_i,L_i:R)$. Since the Čech homology theory and the singular homology theory are consistent in a pair of complexes (cf. for example, [13], Theorem 2), we have $H_n(x_0:R)=\mathfrak{H}_n(x_0:R)$.

Proof of I. Let W be a neighbourhood of (x_0, y_0) in $X \times Y$. Take a neighbourhood U_1 of x_0 in X and a neighbourhood U_2 of y_0 in Y such that $U_1 \times U_2 \subset W$. Since X and Y are ANR's, there exist neighbourhoods V_1 and V_2 of x_0 and y_0 such that V_i is contractible in U_i , i=1,2. Let a and b be any two points of $V_1 \times V_2 - (x_0, y_0)$. It is sufficient to prove that a and b are connected by an arc in $U_1 \times U_2 - (x_0, y_0)$. Let us denote by p_1 and p_2 the projections $X \times Y \to X$ and $X \times Y \to Y$ respectively. Assume that $p_1(a) = x_0$. Since X is a non-degenerate ANR, we can find a point x_1 of $V_1 - x_0$ such that x_0 and x_1 are connected by an arc in V_1 . Put $a'=(x_1,p_2(a))$. Then $p_1(a')\neq x_0$ and $p_2(a')\neq y_0$. Therefore, we may assume that $p_1(a) \neq x_0 \neq p_1(b)$ and $p_2(a) \neq y_0 \neq p_2(b)$. Since V_1 is contractible in U_1 , we can connect two points a and $(p_1(b), p_2(a))$ by an arc in $U_1 \times p_2(a) \subset U_1 \times U_2 - (x_0, y_0)$. Since V_2 is contractible in U_2 , we can connect two points $(p_1(b), p_2(a))$ and b by an arc in $p_1(b) \times U_2 \subset U_1 \times U_2$ $-(x_0,y_0)$. Therefore, two points a and b are connected by an arc in $U_1 \times U_2 - (x_0, y_0)$. This shows that (x_0, y_0) is 0-HL in $X \times Y$.

Proof of II. It is sufficient to prove the following two lemmas.

Let X and Y be ANR's and x_0 and y_0 be points of X and Y.

LEMMA 5. If either x_0 is 0-HL in X or y_0 is 0-HL in Y, then (x_0,y_0) is 1-HL in $X\times Y$.

LEMMA 6. If x_0 and y_0 are 0-HS in X and Y respectively, then $H_2((x_0,y_0):Z)\neq 0$.

Proof of Lemma 5. Assume that x_0 is 0-HL in X. Let W be a neighbourhood of (x_0,y_0) and U_i , i=1,2, be neighbourhoods of x_0 and y_0 in X and Y respectively such that $U_1 \times U_2 \subset W$. Take a neighbourhood V_i of x_0 and y_0 such that V_i is contractible in U_i , i=1,2. Let f be a mapping of 1-sphere S^1 into $V_i \times V_2 - (x_0,y_0)$. We shall prove that f has an extension $f' \colon E^2 \to U_1 \times U_2 - (x_0,y_0)$. There exists a positive number ε such that $0 < \varepsilon < \varrho((x_0,y_0),f(S^1))$, where ϱ is a metric in $X \times Y$. Put $W_0 = S(x_0,\varepsilon)$. Define $f_i \colon S^1 \to V_i$ such that $f_i = p_i f$, i=1,2, where p_1 and p_2 are projections $X \times Y \to X$ and $X \times Y \to Y$ respectively. Take neighbourhoods W_1, W_2, W_3 of x_0 such that

1° W_1 is contained in W_0 and contractible in W_0 .

 2° W_2 is contained in W_1 and any mapping $g: S^{\circ} \to W_2 - x_0$ has an extension $g': E^1 \to W_1 - x_0$.

3° W_3 is contained in W_2 and contractible in W_2 .

Put $N=f_1^{-1}(x_0)$. Let N_i , i=1,2,..., be components of N. Put $G=f_1^{-1}(W_3)$. Then G is an open set containing N. Let $\{G_a\}$ be all components of G intersecting with N. Since S^1 is locally connected, each G_a is an open set (cf. [24], Chap. I, (14.1)) in S^1 . Hence, $\{G_a\}$ is an open covering of the compact set N. Therefore $\{G_a\}$ consists of a finite number of sets. Let us denote them by G_1, \ldots, G_n . Put $M_j = \bigcup \{N_k; N_k \subset G_j\}, j=1,2,\ldots,n$. Let I_j be the minimal closed interval in S^1 containing M_j , $j=1,2,\ldots,n$. Then $I_i \cap I_j = \emptyset$ for $i \neq j$. Define a mapping $g_1: S^1 \to V_1$ such that

$$g_1(s) = f_1(s)$$
 for $s \in S^1 - \bigcup_{j=1}^n I_j$,
 $g_1(s) = x_0$ for $s \in \bigcup_{j=1}^n I_j$.

Obviously, g_1 is continuous. Moreover, if we define a mapping G_1 : $S^1 \rightarrow V_1 \times V_2 - (x_0, y_0)$ such that $G_1(s) = (g_1(s), f_2(s))$ for $s \in S^1$, we have by the construction 3° of W_2 and W_3

(a)
$$G_1 \sim f: S^1 \to V_1 \times V_2 - (x_0, y_0).$$

Since $\bigcup_{j=1}^{n} I_j$ is contained in the open set $g_1^{-1}(\overline{W}_2)$, there exists an open interval $H_j = (a_j, b_j)$ in S^1 containing I_j such that $\overline{H}_j \cap (\bigcup_{i \neq j} \overline{H}_i) = \Phi$ and

 $g_1(\overline{H}_j)\subset W_2,\ j=1,2,...,n.$ Define a mapping $g_1'\colon S^1-\bigcup_{j=1}^n H_j\to V_1-x_0$ such that $g_1'=g_1|S^1-\bigcup_{j=1}^n H_j$. By the construction 2° of W_2 , we find that a mapping $g_2'|a_j\cup b_j\colon a_j\cup b_j\to W_2-x_0$ is extended $t_j\colon \overline{H}_j\to W_1-x_0$ for j=1,2,...,n. Put $g_2\colon S^1\to V_1-x_0$ such that

$$g_2(s) = g_1(s)$$
 for $s \in S^1 - \bigcup_{j=1}^n H_j$,
 $g_2(s) = t_j(s)$ for $s \in \overline{H}_j$, $j = 1, 2, ..., n$.

If we define a mapping $G_2: S^1 \to V_1 \times V_2 - (x_0, y_0)$ such that $G_2(s) = \{g_2(s), f_2(s)\}$ for $s \in S^1$, by the construction 1° of W_0 and W_1 , we have

(b)
$$G_2 \sim G_1: S^1 \to V_1 \times V_2 - (x_0, y_0).$$

Since V_2 is contractible in U_2 and Y is non-degenerate, there exists a homotopy $k_t\colon V_2\to U_2$ such that $k_0(y)=y$ and $k_1(y)=y_1\neq y_0$ for $y\in V_2$. Define $G_3\colon S^1\to V_1\times y_1$ by $G_3(s)=\{g_2(s),y_1\}$ for $s\in S^1$. Put $H_i\colon S^1\to V_1\times U_2-(x_0,y_0)$ such that $H_i(s)=\{g_2(s),k_if_2(s)\}$ for $i\in \{0,1\}$ and $i\in S^1$. Then $i\in S^1$ and $i\in S^1$. Therefore we have

(e)
$$G_3 \sim G_3: S^1 \to V_1 \times U_2 - (x_0, y_0)$$
.

Since V_1 is contractible in U_1 , there exists a homotopy $i_t \colon V_1 \to U_1$ such that $i_0(x) = x$ and $i_1(x) = x_1$ for $x \in V_1$. If we denote by G_4 the constant mapping $S^1 \to (x_1, y_1)$, we have, in the same way as in (c),

d)
$$G_3 \sim G_4: S^1 \to U_1 \times U_2 - (x_0, y_0).$$

(a)-(d) completes the proof of Lemma 5.

Proof of Lemma 6. Since x_0 is 0-HS, there exists a neighbourhood U of x_0 such that, whenever V is a neighbourhood of x_0 and contained in U, there exists a mapping $f \colon S^0 \to V - x_0$ which has no extension $f' \colon E^1 \to U - x_0$. We can assume that V is contractible in U. Therefore, we have an extension $g \colon E^1 \to U$ of f. Take a neighbourhood W of x_0 such that $W \subset V$ and $W \cap g(S^0) = W \cap f(S^0) = \Phi$. Then g determines an element a of $\mathfrak{G}_1(U, U - W \colon Z)$, where $\mathfrak{G}_n(X, A \colon Z)$ means the n-dimensional singular homology group of (X, A) with coefficients Z. Let ∂ be the boundary homomorphism $\mathfrak{H}_1(U, U - W \colon Z) \to \mathfrak{H}_0(U - W \colon Z)$. Since ∂a is an element represented by f with the infinite order, the order of a is infinite. Moreover, let W' be a neighbourhood of x_0 contained in W. The homomorphism $f_* \colon \mathfrak{H}_1(U, U - W \colon Z) \to \mathfrak{H}_1(U, U - W' \colon Z)$ induced by the inclusion mapping $f \colon (U, U - W) \subset (U, U - W')$ maps $f \colon \mathcal{H}_1(U, U - W \colon Z)$ with the infinite order. Let $f \colon \mathcal{H}_1(U, U \to W \colon Z)$ with the infinite order. Let

a complete family of neighbourhoods of x_0 such that $W_{i+1} \subset W_i \subset W$, i=1,2,... Apply Lemma 3 to pairs $(U,U-W_i)$ and $(U,U-W_{i+1})$. We have a pair of complexes (K_i, L_i) mappings φ_i : $(U, U - W_i) \rightarrow (K_i, L_i)$, $w_i \colon (K_i, L_i) \to (U, U - W_{i+1})$ and a homotopy $l \sim \psi_i \varphi_i \colon (U, U - W_i) \to 0$ $\rightarrow (U, U - W_{i+1})$, where l is the inclusion mapping $(U, U - W_i) \subset (U, U - W_{i+1})$. There exists an element a_i of $\mathfrak{H}_1(K_i, L_i; Z)$ with the infinite order such that $(\varphi_{i+1}\psi_i)_*a_i=a_{i+1},\ i=1,2,...$ Since y_0 is 0-HS, we can find a complete family $\{W_i'\}$ of neighbourhoods of y_0 , a sequence of pairs of complexes (M_i, N_i) , mappings μ_i : $(U', U' - W'_i) \rightarrow (M_i, N_i)$, λ_i : $(M_i, N_i) \rightarrow$ $\rightarrow (U', U' - W'_{i+1})$ and $l' \sim \lambda_i \mu_i$: $(U', U' - W'_i) \rightarrow (U', U' - W'_{i+1})$, where l' is the inclusion mapping $(U', U' - W'_i) \subset (U', U' - W'_{i+1})$. Moreover, there exists an element b_i of $\mathfrak{H}_1(M_i,N_i;Z)$ with the infinite order such that $(\mu_{i+1}\lambda_i)^*b_i = b_{i+1}$ for i = 1, 2, ... Define π_{i+1}^i : $(K_i \times M_i, K_i \times N_i \cup M_i)^*$ $\cup L_i \times M_i) \rightarrow (K_{i+1} \times M_{i+1}, \quad K_{i+1} \times N_{i+1} \cup L_{i+1} \times M_{i+1}) \quad \text{such that} \quad \pi_{i+1}^i(s,s')$ $=(\varphi_{i+1}\psi_i(s),\mu_{i+1}\lambda_i(s'))$ for $s \in K_i$ and $s' \in M_i$, i=1,2,... If $(\pi^i_{i+1})_*$ is the homomorphism induced by π_{i+1}^i , then the limit group of the direct system $\{\mathfrak{H}_{2}(K_{i}\times M_{i},K_{i}\times N_{i}\cup L_{i}\times M_{i}\colon Z)\,;\,(\pi_{i+1}^{l})_{*}\}\ \ \text{is equal to}\ \ \mathfrak{H}_{2}((x_{0},y_{0})\colon Z),\ \ \text{be-}$ cause the singular theory satisfies the excision axiom (cf. [9], Chap. 7). By Künneth's theorem ([1], p. 308), we have $a_i \otimes b_i \in \mathfrak{H}_1(K_i, L_i; \mathbb{Z}) \otimes$ $\otimes \mathfrak{H}_{1}(M_{i}, N_{i}; Z) \subset \mathfrak{H}_{2}(K_{i} \times M_{i}, K_{i} \times N_{i} \cup L_{i} \times M_{i}; Z)$. Since the orders of a_i and b_i are both infinite, the order of $a_i \otimes b_i$ is infinite. Moreover, $(\pi_{i+}^i)_*(a_i \otimes b_i) = a_{i+1} \otimes b_{i+1}$. This shows $\mathfrak{H}_2((x_0, y_0) : Z) \approx H_2((x_0, y_0) : Z) \neq 0$ by Lemma 4.

Proof of III. It is sufficient to prove that if X is an ANR, and x_0 is a point of X such that it is HL^{k-1} for k>1 and $H_{k+1}(x_0;Z)=0$, then x_0 is k-HL in X.

Let U be a neighbourhood of x_0 . There exists a sequence V_i of neighbourhoods of x_0 such that

1°
$$x_0 \in V_0 \subset ... \subset V_i \subset \overline{V}_i \subset V_{i+1} \subset ... \subset \overline{V}_{k+1} \subset V_{k+2} = U$$

 $2^{\circ} V_0$ is contractible in V_1 ,

3° if $f: S^j: V_i - x_0$, there exists an extension $f': E^{j+1} \to V_{i+1} - x_0$ of f for i = 1, 2, ..., k and j = 0, 1, 2, ..., k-1.

Let f be any mapping of S^k into V_0-x_0 . Fix a point s_0 of S^k . There exists a mapping $\varphi: (E^k, \dot{E}^k) \to (S^k, s_0)$ such that $\varphi|E^k - \dot{E}^k$ is a homeomorphism onto $S^k - s_0$, where \dot{E}^k means the boundary of \dot{E}^k . Since $H_{k+1}(x_0; Z) = 0$ and the singular homology theory satisfies the excision axiom (cf. [9], Chap. 7), we can find a sufficiently small neighbourhood W of x_0 such that the element of $\mathfrak{H}_k(V_1 - W, x_1; Z)$ determined by $f_0 = f\varphi$ is zero, where $x_1 = f_0(\dot{E}^k) = f(s_0)$. Therefore, by the definition of singular homology group, there exists a (k+1)-dimensional finite complex P^{k+1} containing E^k and a mapping $h: P^{k+1} \to V_1 - W$ such that

183

4° $\dot{P}^{k+1} = E^k + \partial^k$, 5° $h|E^k = f_0$ and $h(\partial^k) = x_1$ °).

Define a homotopy $H\colon P^{k+1}\times I\to U-x_0$ as follows: At first, put H(p,0)=h(p) for $p\in P^{k+1}$ and $H(p,t)=f_0(p)$ for $p\in \dot{P}^{k+1}$ and $t\in I$. Next, put $H(p,1)=x_1$ for $p\in P_0^{k+1}$, where P_i^{k+1} is the i-skeleton of P^{k+1} . By the construction 3° of V_1 and V_2 , we can extend H to a mapping of $(P^{k+1}\times 0)\cup ((P^{k+1}\cup \dot{P}_0^{k+1})\times I)$ into V_2-x_0 . By a repeated application of this process we can have a mapping $H\colon (P^{k+1}\times 0)\cup ((\dot{P}^{k+1}\cup P_{k-1}^{k+1})\times I)\to U-x_0$ such that

$$H(p,0) = h(p)$$
 for $p \in P^{k+1}$,
 $H(p,t) = (p) = f_0(p)$ for $p \in \dot{P}^{k+1}$,
 $H(p,1) = x_1$ for $p \in P^{k+1}_{k-1}$.

Since $U-x_0$ is an ANR by Lemma 2, we can extend H to a mapping of $P^{k+1} \times I$ into $U-x_0$. Consider a mapping $H|P^{k+1} \times 1: P^{k+1} \times 1 \to U-x_0$. In the same way as in Theorem 12.6 of [11], we define the following homomorphism a of the k-dimensional chain group $C_k(P^{k+1}:Z)$ of P^{k+1} into the k-dimensional homotopy group $\pi_k(U-x_0,x_1)$ of $(U-x_0,x_1)$. Let T_i^k , $i=1,2,\ldots,q$, be the n-simplexes of P^{k+1} , each in a definite orientation. Since the restricted mapping $H|P^{k+1} \times 1: P^{k+1} \times 1 \to U-x_0$ maps the (k-1)-skeleton of $P^{k+1} \times 1$ into the point x_1 , the mapping $H|T_i^k \times 1: T_i^k \times 1 \to U-x_0$ determines the element $a(T_i^k)$ of $\pi_k(U-x_0,x_1)$. To the integral k-chain $C_k = \sum_i a_i T_i^k \in C_k(P^{k+1}:Z)$, let us assign the element $a(C_k) = \sum_i a_i a(T_i^k)$. Since k>1, a is a homomorphism. Moreover, if T^{k+1} is a (k+1)-simplex of P^{k+1} , $a(T^{k+1})=0$. Hence, since $H|P^{k+1} \times 1$ maps $\partial^k \times 1$ into the point x_0 , we have $a(P^{k+1})=a(\partial^k)=0$. Therefore, by 3°, we have $a(E^k)=0$. This completes the proof of III and consequently the proof of Theorem 6.

Theorem 5 of [21] is a consequence of Theorem 6.

In part III of Theorem 6 we have proved that if x_0 is HL^1 in X and $H_i(x_0;Z)=0$ for $i=0,1,2,\ldots,j+1$, then x_0 is HL^j . Therefore, we have the following theorem.

THEOREM 7. Let X be a finitely dimensional locally compact ANR and let x_0 be a point of X. Then x_0 is HL in X if and only if x_0 is HL¹ in X and $H_n(x_0: Z) = 0$ for n = 0, 1, 2, ...

Remark 2 (cf. Remark 1). Since the Čech homology theory satisfies the excision axiom (cf. for example, Eilenberg and Steenrod [9], p. 243), we can replace the condition "X is finitely dimensional" by

the condition "X is finitely dimensional at x_0 in the sense of C. H. Dowker (cf. [7], p. 103)" in Theorem 7. Similarly, we can replace the condition "X and Y are finitely dimensional" by the condition "X and Y are finitely dimensional in the sense of C. H. Dowker (cf. [7], p. 103) at x_0 and y_0 respectively" in Theorem 6.

5. Dimension of products spaces

THEOREM 8. Let X be a locally compact fully normal space and let Y be a locally compact 2-dimensional ANR. Then the following equality exists:

$$\dim X \times Y = \dim X \times \dim Y$$
.

Proof. By [17], Theorem 3.2, we may assume that X is compact. Since Y is 2-dimensional, there exists a point y_0 at which Y is 2-dimensional in the sense of C. H. Dowker (cf. [7], p. 103). Since Y is a locally compact ANR, we can find a neighbourhood U of y_0 such that \overline{U} is compact and contractible in Y. Since Y is locally connected, there exists a 2-dimensional compactum M contained in U. M is not a dendrite (cf. [23], Chap. 5), because dim M=2. Therefore M contains a topological image S of a 1-sphere.

If dim X=m, there exist two closed subsets X_1 and A of X such that $A \subset X_1$ and $H_m(X_1, A:R_1) \neq 0$ (cf. for example, [15], Theorem 10), where R_1 is the group of real numbers modulo 1. Since X, is a compact space, S is a polyhedron and $H_1(S:Z) \approx Z$, we conclude that $H_{m+1}(X_1 \times S, A \times S : R_1) \neq 0$. Since S is contractible in a compact subset N of Y, there is a homotopy $f_i : S \to N$ such that f_0 is the inclusion mapping and $f_1(S)$ is a point y_1 of N. Put $g_1: (X_1 \times S, A \times S) \to (X_1 \times N, A \times N)$ such that $g_t(x,s) = (x,f_t(s))$ for $x \in X_1$ and $s \in S$. The homomorphism g_{t*} : $H_{m+1}(X_1 \times S, A \times S: R_1) \to H_{m+1}(X_1 \times N, A \times N: R_1)$ is the same for each $t \in (0,1)$. But $g_1(X_1 \times S) \subset X_1 \times y_1$. Since dim $X_1 = m$, g_{1*} is the trivial homomorphism. Therefore, g_{0*} is the trivial homomorphism. Let h and k be the inclusion mappings $(X_1 \times S, A \times S) \subset (X_1 \times N, A \times N)$ and $(X_1 \times N, A \times S) \subset (X_1 \times N, A \times N)$, respectively. Then $q_0 = kh$. Therefore, q_{0*} $=k_{\star}h_{\star}$. Let a be a non-zero element of $H_{m+1}(X_1\times S,A\times S:R_1)$. At first, assume that $h_{\star}(a) = 0$. Since X_1, A, N, S and R_1 is compact, the sequence of Cech groups of the triple $(X_1 \times N, X_1 \times S, A \times S)$ is exact by [9], Chap. 1, Theorem 10.2 and Chap. 8, Theorem 5.6. Therefore we conclude that $H_{m+2}(X_1 \times N, X_1 \times S; R_1) \neq 0$. Next, suppose that $h_*(a) = b \neq 0$. Then $k_{\star}(b) = 0$. By the exactness of the Mayer-Vietoris sequence of the triad $(X_1 \times N, X_1 \times S, A \times N)$ (cf. [9], Chap. 1, Theorem 15.7), we have $H_{m+2}(X_1 \times N, (X_1 \times S) \cup (A \times N) : R_1) \neq 0$. Therefore, dim $X \times Y \geqslant m+2$. Since dim $X \times Y \le m+2$ (cf. for example, [18], Theorem 4), we have $\dim X \times Y = \dim X + \dim Y.$

⁶⁾ Cf. [11], p. 1023.

THEOREM 9. Let X be a locally compact m-dimensional ANR containing a point x_0 which is HL^{m-2} and (m-1)-HS, and let Y be a locally compact n-dimensional ANR containing a point y_0 which is HL^{n-2} and (n-1)-HS. Then the following equality exists:

$\dim X \times Y = \dim X + \dim Y$.

Proof. By Theorem 8 and [18], Theorem 6, it is sufficient to prove the theorem in the case of 2 < m and 2 < n. In the same way as in Lemma 6, we can show that there exist compact subsets X_1, A of X and Y_1, B of Y such that $H_m(X_1, A:Z) \neq 0$ and $H_n(Y_1, B:Z) \neq 0$. Since $\dim X = m$ and $\dim Y = n$, all non-zero elements of the groups $H_m(X_1, A:Z)$ and $H_n(Y_1, B:Z)$ have infinite orders. Therefore, if F is the field of rational numbers, we have $H_m(X_1, A:F) \neq 0$ and $H_n(Y_1, B:F) \neq 0$. Hence, by Theorem 3, we have $H_{m+n}(X_1 \times Y_1, X_1 \times B \cup A \times Y_1:F) \neq 0$. This shows that $\dim X \times Y \geqslant \dim X + \dim Y$. It is obvious that $\dim X \times Y \leqslant \dim X + \dim Y$. This completes the proof.

References

- [1] P. Alexandroff and H. Hopf, Topologie I, Berlin 1935.
- [2] E. G. Begle, A note on S-spaces, Bull. Amer. Math. Soc. 55 (1949), p. 577-759.
- [3] K. Borsuk, On the decomposition of manifolds into products of curves and surfaces, Fund. Math. 33 (1945), p. 273-298.
- [4] Concerning the Cartesian product of Cantor-manifolds, Fund. Math. 38 (1951), p. 55-71.
- [5] and J. W. Jaworowski, On labil and stabil points, Fund. Math. 39 (1952), p. 159-175.
- [6] C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), p. 200-242.
 - [7] Local dimension of normal spaces, Oart. J. of Math. 6 (1955), p. 101-120.
- [8] J. Dugundji, An extension of Tietz's theorem, Pacific J. of Math. 1 (1951), p. 357-367.
- [9] S. Eilenberg and N. E. Steenrod, Foundations of algebraic topology, Princeton 1952.
- [10] O. Hanner, Some theorems on absolute neighbourhood retracts, Arkiv för Mat. 1 (1952), p. 329-408.
- [11] S. T. Hu, An exposition of the relative homotopy group, Duke Math. J. 9 (1946), p. 991-1033.
- [12] Y. Kodama, Mappings of a fully normal space into an absolute neighborhood retract, Sc. Rep. T. K. D. Sect. A. 5 (1955), p. 37-47.
 - [13] On ANR for metric spaces, Sc. Rep. T. K. D. Sect. A. 5 (1955), p. 96-98.
- [14] E. Michael, Some extension theorems for continuous functions, Pacific J. of Math. 3 (1951), p. 789-804.
- [15] K. Morita, On uniform spaces and the dimension of compact spaces, Proc. Phys. Math. Soc. Japan 22 (1940), p. 970-977.
- [16] Star-finite coverings and the star-finite property, Mathematica Japonicae 1 (1948), p. 66-68.

- [17] M. Morita, On the dimension of normal spaces II, J. of Math. Soc. of Japan 2 (1950), p. 16-33.
 - [18] On the dimension of product spaces; Amer. J. Math. 76 (1953), p. 205-223.
- [19] Normal families and dimension theory for metric spaces, Math. Ann. 128 (1954), p. 350-362.
- [20] H. Noguchi, A characterization of homotopically labil points, Kodai Math. Seminar Rep. (1954), p. 13-16.
- [21] On the problem the invariance of homotopically stability of points under cartesian multiplication, Proc. Amer. Math. Soc. 16 (1955), p. 651-655.
- [22] A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), p. 977-982.
 - [23] T. Whyburn, Analytic topology, Amer. Math. Soc. Coll. Publ. 28 (1942).
 - [24] R. L. Wilder, Topology of manifolds, ibidem 32 (1948).
- [25] M. Wojdysławski, Rétractes absolus et hyperspaces des continus, Fund. Math. 32 (1939), p. 184-192.

Reçu par la Rédaction le 7.3.1956