Borel sets and countable series of operations
by
H. B. Griffiths (Bristol)

Introduction

In [1] Z. P. Dienes has raised the following question: Given two
Borel sets \(X, Y \) in a space \(E \), there are the five possibilities
\[(i) \quad X = Y, \quad X \subseteq Y, \quad X \supseteq Y, \quad X \cap Y = 0, \quad X \cap Y \neq 0. \]

Is it possible to decide which of these hold by means of an "Operation \(D \)"
(which he defines vaguely as a succession of \(0 \), comparisons of integers
for size). If it is possible, the problem is "decidable \(D \)". He goes on to
show that given a \(G_\delta \)-set on the real line \(E \), then the problem of deciding
whether or not the set is empty, is decidable \(D \).

Now, his question has two sides, one logical, the other topological.
His vague notion of an operation \(D \) induces in us the intuitive picture
of two magicians \(M_1, M_2 \), each with this property: if \(a \) is a countable
ordinal, and if for each \(\xi < \alpha \), \(A(\xi) \) is an act which a human mathematician
could in principle perform, then each magician can perform the
whole series \(A(0), A(1), \ldots, A(\xi), \ldots \), and live to tell the tale. \(M_1 \) then
has to describe \(X \) and \(Y \) to \(M_2 \) by means of such a series \(A \), and \(M_2 \)
reads it and is able to recall any term at will; we want to know if there
is a series \(A' \) such that by performing it, \(M_2 \) can say which of the possi-
bilities \((i)\) holds. This suggests that Dienes's question might be best
rephrased as "Are the possibilities \((i)\) decidable in a logic with countably
transfinite rules of inference and sentence formation?" It is then conceiv-
able that a variety of other problems might be shewn to be decidable
(or undecidable) relative to such a formal system. However, it seems
to the author, that before constructing such a system — and in order
to see what is involved and what features it is desirable to build into
the system — we should have more experience of what ought, by any
definition, to be "decidable \(D \)" problems.

We therefore give, in \(1 \) (2.3) below, a less formal definition of "do-
cidable D^α which suffices for the purposes of the present paper, and helps us to give a similarly provisional meaning to "given a Borel set".

We therefore skirt the basic logical problem, as in fact it is the topological side of Diene's question which interests us most here. Prof. M. H. A. Newman in 1948 generalised Diene's result to a G_δ in a complete separable metric space E, and kindly gave his unpublished proof to the author, with some advice on its extension to sets of higher order; this was used to obtain a proof for such sets in the author's M. Sc. Thesis [2]. Recently, however, a new and shorter proof has occurred to the author and is given here, largely for its possible topological interest.

Since we want to know how to "give" such a space E, we solve the following problem: "Given an abstract, countable, partially-ordered set, what axioms must the ordering satisfy in order that the set be order-isomorphic to a basis of open sets of some complete separable metric space?"

It is desirable that it be an operation D to decide whether or not the ordering satisfies any particular axiom". This solution enables us to give what we call a "countable specification" of the space E, and next we consider the analogous notion of a countable specification for a G_δ-subset of E, and then for a general Borel set in E. Finally we deduce a process for deciding, by means of an operation D, whether or not a Borel set, "given" by means of such a specification, is empty; and this enables us to answer the above question of Diene affirmatively. We conclude by indicating some unsolved problems.

1. Notation and definition of "decidable $D^\alpha"

Lower case greek letters will usually denote ordinal numbers; and then they will be always less than β_1, the first uncountable ordinal.

The set of all integers >0 will be denoted by Ξ, and in Section 5, P^α will mean the set consisting only of the integer zero. For each α, let Σ_α denote the (well-ordered) series of all ordinals $<\alpha$, and let P^α denote the set of all maps $z: \Sigma_\alpha \to \Xi$ for which $z(\xi) = 0$ for all but a finite number of $\xi < \alpha$.

Thus if α is finite, P^α is the ordinary Cartesian product of a copies of Ξ; and in particular $P^\Xi = \Xi$. Let $R_{\Xi}: P^\alpha \to \Xi (\xi < \alpha)$ be defined by $R_{\Xi}(z) = z(\xi)$, and for each α let $C_{\alpha}: P^\alpha \to \Xi$ be some fixed function which enumerates P^α; so that $C_{\alpha}(P^\alpha) = \Xi$ and C_{α} is (1.1). For each $\alpha \in \Xi$, let $F_{\alpha}: \Sigma_{\alpha} \to \Xi$ enumerate the class Σ_α of maps $\varphi: \Sigma_\alpha \to \Xi$.

We shall often find it convenient to write expressions of the form

\[w^{\alpha+1} = (p, 0, i) \quad (\beta < \alpha) \]

(sometimes suppressing the indices) to mean that $w^{\alpha+1} \in I^{\alpha+1}$, $z^i \in P^\beta$ and

\[u(\xi) = \begin{cases} 0 & \text{if } 0 < \xi < \beta, \\ \beta & \text{if } \beta < \xi < \alpha, \\ \alpha & \text{if } \xi = \alpha. \end{cases} \]

(1.2) Correspondingly, $(X^\alpha, 0, i)$ will denote the set of all $w^{\alpha+1}$ of the form (1.1), as x^α runs through X^α. Also we use (1.1) to define the map $\lambda_{\beta}: P^\beta \to P^{\beta+1}$ by $\lambda_{\beta}(z) = w^{\beta+1}$.

The class of primitive functions is defined to be the set of all algebraic operations in the ring of integers, all the functions $R_{\Xi}, C_{\alpha}, C_{\alpha+1}, L_{\alpha}, F_{\alpha}, \cup$, the operator \setminus applied to a sequence of sets, and the operators \max, \min, applied to a well-ordered countable series of integers.

Let Ξ be the set consisting of 0 and 1. Given maps $E_1: P^{00} \to \Xi (1 < \xi < \alpha)$, we shall say that a function $f^\alpha: \Xi \to \Xi$ is countably recursively defined rel E_1, E_2, \ldots, E_n if and only if f^α has been defined by transfinite induction in terms of the primitive functions, E_1, E_2, \ldots, E_n, and the preceding functions $f^\beta, \beta < \alpha$, where α is countable.

Let M_k be the set of all maps of the form $f: A \to \Xi$, where $A \subseteq P^\alpha$ for some countable A. Let \mathcal{C} be a class of objects. We shall say that the objects X of \mathcal{C} are countably specified if and only if there exist maps

\[h: \mathcal{C} \to M_k, \quad k: h(\mathcal{C}) \to \Xi \]

such that kh is the identity on \mathcal{C}. Let $R(X_1, X_2, \ldots, X_\alpha)$ be an α-ary relation $\alpha \in \mathcal{C}$ on \mathcal{C}, which becomes a proposition when α is given to the X_i. Then we shall say that $R(X_1, \ldots, X_\alpha)$, and its negation, are decidable D_i, if and only if the objects of \mathcal{C} are countably specified as in (1.3), and there is a map $g: \Xi \to \Xi$ which is countably recursive rel $h(X_1), h(X_2), \ldots, h(X_\alpha)$, and such that $R(X_1, \ldots, X_\alpha)$ is equivalent to "g is identically zero on Ξ".

In considering Diene's problem, we shall take \mathcal{C} to be the class of all Borel sets over the space E, and $R(X, Y)$ will be one of the relations (i) of the Introduction. We shall shew in the present paper that each such R is decidable D_i; the final discussion is postponed until Section 8, in order not to interrupt the topological narrative of Sections 2-7. It will turn out that to construct the map $h: \mathcal{C} \to M_k$ we have to use the axiom of choice; but, to return to the magicians of the Introduction, then $h(X)$ is essentially the series A by which M_k "gives" X to M_k (for A is the list of arguments and values of h). Thus, M_k has to choose h. However, it is after his choice that M_k receives A, and the problem at issue is the decision process then used by M_k. His fundamental tool will be the construction given in Theorem 2.2 of the next section.
2. Ψ-functions

(2.1) A Ψ-function is any mapping $A : I \to \Psi$. For each $(n, i, j) \in I$, we write for brevity

$$A_n(i, j) = A(n, i, n + 1, j).$$

A triple (n, i, j) for which $A_n(i, j) = 1$ is called a "segment" of A. By a "thread" in A we mean a mapping $t : \Omega \to I$, such that for each $n \in \Omega$,

$$A_n(t_n, t_{n+1}) = 1,$$

where (as often) we put $t_0 = 1$. We shall then write

$$t \subseteq A.$$

A is reduced if and only if every segment of A of the form $(0, i, j)$ is part of a thread, i.e., if and only if there is a thread t in A such that $t_0 = 0$ and $t_1 = i$. Given A, B we write

$$A \supseteq B \quad \text{or} \quad B \subseteq A$$

whenever each segment of B is a segment of A. Our language is motivated by the fact that we can make a geometrical model of A as follows. If we take the set of all points in the plane, with coordinates $(p, q), (p, q) \in \Omega$, then we join (n, i, j) by the straight segment between them, if and only if they are distinct and $A(n, i, m, j) = 1$. If the equation holds with $n = m$, $i = j$, we attach a loop at (n, i, j) having no other contact with the plane. If A is the class of all such segments and loops, then $A \supseteq B$ if and only if $A \sqcup B$ (as classes). Moreover, a thread in A corresponds to an infinite continuous path of segments "down" the diagram Ω. This geometrical picture will be the source for motivation of several of our proofs, and corresponds vaguely with Dienes's "pyramids" (1), p. 230).

Next, for each $q \in \Omega$, define a Ψ-function A' by: $A'(i, m, n, p) = 1$ if and only if $A(i + q, m, n + q, p) = 1$. Clearly $A' = A$ and $(0, i, j)$ is a segment in Φ_A, and if only if (q, i, j) is a segment in A. We shall say that A is fully reduced if and only if for each $q \in \Omega$, A' is reduced.

The main result of this Section is now

(2.2) Theorem. Given A there exists $A^* \subseteq A$ such that

(i) $A^* \subseteq A$,
(ii) A^* is fully reduced,
(iii) every thread in A is also a thread in A^*.

Proof. We define a series A^* of Ψ-functions, using transfinite induction, as follows:

(a) $A^0 = A$,
(b) If α is a limit ordinal, then for each (i, j),

$$A^\alpha_{\alpha}(i, j) = \sup_{<\alpha} A^{\beta}(i, j).$$

(c) Let $\alpha = \gamma + 1$. We call the segment (n, i, j) ignorable in A^α if and only if, for all $p \in \Omega$,

$$A^\alpha_{\gamma+1}(i, j, p) = 0.$$

If (n, i, j) is any ignorable segment in A^α, define $A^\alpha(i, j) = 0$, and for all other quadruples $(p, q, r, s) \in I$, define $A'(p, q, r, s) = 0$. This completes the definition, by transfinite induction. Since the number of triples (p, q, r) (and therefore of ignorable segments) is at most countable, then there exists a least $\beta < \eta$ such that

$$A^\beta = A^*$$

whenever $\beta < \gamma$.

We assert that A^β is the required A^α.

Clearly, $A^\beta \subseteq A$. To prove that for each q_i, $\Phi(A^\beta)$ is reduced, consider any segment r of the form $(0, i, j)$ in A^β. Then,

$$\Phi(A^\beta)(i, j) = 1 = \Phi(A^\beta)(i, j).$$

Since $A^\beta = A^{\beta+1}$, the segment (q, i, j) cannot be ignorable in A^β; and so there exists $p \in \Omega$ for which

$$A^\beta_{\beta+1}(i, j, p) = 1 = \Phi(A^\beta)(i, j).$$

Hence, by finite induction, there exists for each $q \in \Omega$, a $p_q \in \Omega$, such that $p_q = i$, $p_q = j$, $p_q = p$, and

$$\Phi(A^\beta)(p_q, p_q+1) = 1.$$

Thus the thread $p : \Omega \to \Omega$, defined by $p(w) = p_w$, is a thread in $\Phi(A^\beta)$ with initial segment r. This proves that $\Phi(A^\beta)$ is reduced, and hence that A^β is fully reduced.

Next, let us prove that every thread t in A is also a thread in A^β. By definition, we have for all n,

$$A_n(t_n, t_{n+1}) = 1;$$

hence no segment (n, t_n, t_{n+1}) is ignorable in A^β. If t is not a thread in A^β, there is a least $\gamma < \beta$ such that t is not a thread in A^β, i.e., there is a least
Given \(n \in \mathbb{N} \) we shall mean by an \(n \)-bichain \(I^n \) in \(A \) a diagram of the form
\[
\begin{array}{c}
i_0 \leftarrow i_1 \leftarrow \ldots \leftarrow i_p \\
j_0 \leftarrow j_1 \leftarrow \ldots \leftarrow j_q
\end{array}
\]
where the \(i \)'s and \(j \)'s are in \(\mathbb{N} \), and for each appropriate \(r \),
\[
1 = A_{r+1}(i_{t-1}, j_{s-1}) = A_{r+1}(i_{t+1}, j_{s+1}) = A_{r+1}(i_r, j_s).
\]
Thus the arrows correspond to segments in the diagram of \(A \). We say that \(I^n \) is twisted if and only if
\[
A(n, i_0, n+p, i_p) = 1,
\]
and otherwise \(I^n \) is un twisted. We call \(p \) the length of \(I^n \), and if \(q < p \) we call the diagram
\[
\begin{array}{c}
i_0 \leftarrow i_1 \leftarrow \ldots \leftarrow i_q \\
j_0 \leftarrow j_1 \leftarrow \ldots \leftarrow j_q
\end{array}
\]
the \(q \)-segment of \(I^n \); clearly it is also an \(n \)-bichain, and of length \(q \). Given two \(n \)-bichains \(I^n_1, I^n_2 \), we write
\[
I^n_1 \supset I^n_2 \quad \text{ or } \quad I^n_1 \subset I^n_2
\]
if and only if \(I^n_1 \) is the \(l \)-segment of \(I^n_2 \), where \(l = \text{length } I^n_2 \). A sequence \(\{I^n_\alpha\} \) of \(n \)-bichains is ascending if and only if for each \(\alpha \in \mathbb{N} \)
\[
I^n_{\alpha+1} \supset I^n_\alpha.
\]
We now assume that \(A \) satisfies the following axiom:
\[
\text{\(\mathcal{G}_3 \):} \quad \text{For each } n \in \mathbb{N}, \text{ every ascending sequence of } n \text{-bichains in } A \text{ contains a member which is twisted.}
\]
We shall show in Section 8 that it is an operation \(D \) to decide whether or not a given \(A \) satisfies \(\mathcal{G}_3 \). For use in the proof, we establish the assertion (3.2) below. Thus if we fix \(n \), then all the bichains in \(A \) of length \(n \) may be effectively enumerated \(\dagger \) in the form \(\gamma_0(u), \gamma_1(u), \ldots \).
\[
\gamma_d(p), \ldots \quad \text{Define the } \mathbb{Q}-\text{function } B: \mathbb{N} \rightarrow \mathbb{Q} \text{ by:}
\]
\[
B(r, s, t, u) = 1 \text{ if and only if there exists } q \text{ such that } \gamma_u(q), \gamma_{u+1}(q) \text{ are } q \text{-bichains and } \gamma_u(q) < \gamma_{u+1}(q).
\]
For all other quadruples \((r, s, t, u)\), put \(B(r, s, t, u) = 0 \). We assert:
\[
(3.2) \quad A \text{ satisfies } \mathcal{G}_3 \text{ if and only if } B^* \text{ (see (2.2)) is identically zero.}
\]
\(\dagger \) \text{ I.e., the function } \gamma_u \text{ is definite in terms of } A \text{ and the class of primitive functions (of Section 1).}
Lemma. If t' is a sub-thread of t, then $t' < t$.

Proof. Suppose t, t' satisfy (3.3), so that $p(n) > n$. Then

$$I = A_d(t_1, t_{n+1}) = \ldots = A_d(t_{n+1}, t_{n+2}) = \ldots = A_d(t_{n+2}, t_{n+3})$$

so that by repetition of \mathcal{E}_a

$$1 = A_d(t_1, t_{n+1}) = A_d(t_{n+1}, t_{n+2}) = \ldots = A_d(t_{n+2}, t_{n+3})$$

Therefore by \mathcal{E}_a

$$1 = A_d(t_1, t_{n+1}) = t\ e\ 1 = A_d(t_1, t_{n+1}),$$

whence, by \mathcal{E}_a, $1 = A_d(t_1, t_{n+1})$, so that $t > t'$, as required.

Lemma. If $t > s$ there is a sub-thread t' of t such that $t' < s$.

Proof. For each $m, n \in \mathbb{I}$, we have the n-bichain

$$\mathcal{T}_m = \left\{t_m = t_{m+1} = \ldots = t_{m+n} \mid \begin{array}{l}t_m = t_{m+1} = \ldots = t_{m+n} \\
t_{m+1} = t_{m+2} = \ldots = t_{m+n+1}
\end{array} \right\}$$

since $t > s$. Hence, if n is fixed, the sequence

$$\mathcal{T}_0, \mathcal{T}_1, \ldots, \mathcal{T}_n, \ldots$$

is ascending, and so contains a twisted member, by \mathcal{E}_a. Therefore for each n there is a least $r(n) = r \in \mathbb{I}$ such that

$$A(n, s, n + r, t_{n+1}) = 1$$

Hence, by \mathcal{E}_a

$$A(n, s, n + r, t_{n+1}) = 1$$

and \mathcal{E}_a, so that $A_d(t_{n+1}, t_{n+2}) = 1$. Therefore we may suppose that the sequence $r(n)$ in (3.71) is monotonic increasing. Hence so is the sequence $p(n) = p(r(n))$; and $p(n) > p(n-1)$ since $r(n) > 0$. Therefore, if we put $s = t_{n+1}$, then $t' = \mathbb{I}$ is a sub-thread of t, and by (3.72) $s > t'$. This completes the proof.

The last result enables us to classify the threads in \mathbb{A} into disjoint equivalence classes. Thus, we write

$$s \doteq t$$

if and only if there is a thread u in \mathbb{A} such that $u < s$ and $u < t$. In (3.7),

$$t' < t$$

so that

If $s < t$, then $s \doteq t$.
(3.9) \textbf{Theorem.} The relation (3.8) is a genuine equivalence relation.

\textbf{Proof.} We have to show

(i) \(t = t \) (for by \(C_t \), \(t < t \));
(ii) \(s = t \) implies \(t = s \) (immediate from the definition);
(iii) if \(r = s \) and \(s = t \) then \(r = t \).

To prove (iii), there exist by definition threads \(a, b, c \), such that \(a < r \) and \(c < s \), while \(b < s \) and \(b < t \). By (3.6) there exists a sub-thread \(r' \) of \(r \), where

\[r'(n) = r(p(n)), \quad p(n+1) > p(n) > n, \]

and \(r' < a \). Since \(a < s \), then for all \(n \in \mathbb{N} \), \(A^t(a, a) = 1 \); while \(A^s(a, r'_0) = 1 \) because \(r' < a \). Therefore by \(G_t \)

(iv) \[A^t(a, r'_0) = 1. \]

Similarly there is a sub-thread \(s' \) of \(s \), where

\[s'(n) = s(g(n)), \quad g(n+1) > g(n) > n \]

such that

(v) \[A^s(s, r'_0) = 1 \]

for all \(n \in \mathbb{N} \). In particular, by (iv)

\[A^{t0}(r'_0, r'_0) = 1 \]

so that by \(G_t \)

(vii) \[A^t(r'_0, r'_0) = 1. \]

But by (v) and (vii)

\[1 = A^s(r'_0, r'_0) = A^t(r'_0, r'_0) \]

so that by \(G_t \) and (vii)

(viii) \[A^r(r'_0, r'_0) = 1. \]

Define \(r' : \mathbb{N} \to \mathbb{N} \) by \(r'(n) = r'(g(n)) \), so that since by (v) \(g : \mathbb{N} \to \mathbb{N} \) is monotonic increasing, then by (3.4) \(r' \) is a thread in \(A \); and by (3.7) \(r' < r \). Moreover, by (viii) \(r' < r \). Therefore, by definition, \(r = t \) as required.

This completes the proof that we have defined a genuine equivalence relation on the set of all the threads in \(A \). Hence the equivalence classes \([t]\) of these threads \(t \) are disjoint. In the next section we shall turn this system of classes into a topological space, with the classes \([t]\) as its points. First, however, we shall give the following result, which is needed in Section 5. For convenience, if \(t \) is a thread in \(A \), then given \(n \in \mathbb{N} \) we define \(t^n : \mathbb{N} \to \mathbb{N} \) by

\[t^n(j) = t(n + j). \]

Clearly, \(t^n \) is a sub-thread of \(t \).

(3.11) \textbf{Lemma.} For each \(n \in \mathbb{N} \), let \(t^n \) be a thread in \(A \) for which \([t^n] = \{r^n\} \subseteq \mathbb{N} \). Then there exists \(s \in \mathbb{N} \) such that for each \(n \in \mathbb{N} \)

\[s < t^n. \]

\textbf{Proof.} Since \(t^n : \mathbb{N} \to \mathbb{N} \), there exists by definition a thread \(r \) in \(A \) such that \(r < t^n \) and \(r < t \). Define \(r' = r \), \(r'' = r \), respectively, so that \(r' < t^n \); while \(r'' = r' < t < r \) so that by (3.5), \(r'' < t \). Now suppose that we have defined threads

\[r'' > r'' > \cdots > r'' \quad \text{(in } A) \]

such that \(r'' > r'' > \cdots > r'' \) (0 < \(j < n \)). Then \(r'' = r'' \), by (3.8), while \(r'' = r'' \) (given); hence \(r'' = r'' \). Therefore, by definition, there is a thread \(u \) in \(A \) such that \(u < r'' \) and \(u < r'' \). Define \(r'' \) to be \(u \). By induction on \(p \), this defines a sequence of threads \(r'' \) in \(A \), such that for each \(j \),

\[r'' > r'' > \cdots > r'' \]

Now define \(s = s : \mathbb{N} \to \mathbb{N} \); we assert that \(s \) is the thread we require.

For

\[1 = A_d(s, s^n) \quad \text{(because } s^n \text{ is a thread)} \]

so that

\[1 = A_d(s, s^n) \quad \text{(by } G_s) \]

and so \(s \) is a thread in \(A \). Moreover \(s < r^n \) if and only if, for each \(m \in \mathbb{N} \),

\[A^t(s, s^n) = 1; \]

but

\[1 = A_d(s, s^n) \quad \text{(since } r^n > r^n) \]

\[= A(d, s, s^n) \quad \text{(by } G_s, \text{ since } r^n \text{ is a thread)} \]

\[= A(d, s, s^n) \quad \text{(by } G_s, \text{ above and (3.10))}, \]

i.e. \(r'' > s^n \), as required.
4. Complete separable metric spaces

For each thread i in A, let $[i]$ denote the equivalence class of i as defined above. Given $i,j \in \mathfrak{S}$, define U_{ij} to be the set of all classes $[i]$ (if any) for which there is an $s \in [i]$ with $s(i) = j$. Otherwise, put $U_{ij} = \emptyset$ (the empty set). We now form a topological space $A = \mathcal{A}(A)$, whose points are defined to be the classes $[i]$ and for which the sets $U_{ij} \times j \in \mathfrak{S}$ are by definition to form a basis for the open sets. Note that, if $x = [i]$, then $x \in U_{i(0)}$, so that the system

\[\mathfrak{B} = \{ U_{i1}, U_{i2}, \ldots, U_{im}, \ldots \} \]

is a covering of A. We need the following lemmas.

(4.2) **Lemma.** If $A(a, p, m, q) = 1$, and $n < m$ then $U_{m,n} \subseteq U_{p,q}$ provided that $U_{m,n} \neq 0$.

Proof. By hypothesis, $U_{m,n} \neq 0$, so that there is a thread g such that $g \in U_{m,n}$ and

$g(m) = p$.

Let $x \in U_{p,q}$; then there exists a thread $h \in A$, such that

$\mathfrak{B}(m) = q$.

Define $r: \mathfrak{S} \to \mathfrak{S}$ by

$r(j) = \begin{cases} g(j), & j < n; \\ h(m - n + j), & j \geq n. \end{cases}$

Then $A(r, j, s) = A(h, m - n + j, h(m - n + j)) = 1$, if $j < n$ (since g is a thread) while if $j \geq n$,

$A(r, j, s) = A(h, m - n + j, h(m - n + j)) = 1$

by \mathfrak{G}_{2}, since h is a thread.

Finally, $A(r, m, n + 1) = A(h, m - n + 1)$; now $A(n, p, m, q) = 1$ (given), and $A(m, q, m + 1, h(m)) = 1$, since h is a thread and $h(m) = q$. Therefore by \mathfrak{G}_{2} (since $m > n$),

$A(n, p, m + 1, h(m)) = 1 = A(p, h(m))$ by definition of A_m,

so that

$A(r, m, n + 1) = 1$.

Hence we have proved that r is a thread over A.

Define the sub-thread r' of r by

$r'_j = r_{j+1}$,

so that

$r'_j = h_{m-j}$.

*) For typographical reasons, we shall denote $t(i)$ by $i(i)$ (on subscripts).
Then

\[y \in (u_{n+1} \cap U_{m,n}) \cap (u_{m,n} \cap U_{n+1,m+1}) = \{ x \in U_{n+1} \cap U_{m+1} \} \]

(say).

Hence, by (4.3), (4.31) and (4.34), there exist \(p, q \in S \) such that

\[y \in U_{n+1} \subseteq V \quad \text{and} \quad A_{m,n} (a_{n+1}, p) = 1 = A_{n} (a_{m}, p), \]

\[y \in U_{m+1} \subseteq V \quad \text{and} \quad A_{m,n} (b_{m+1}, q) = 1 = A_{n} (a_{m}, q). \]

Applying (4.3) and (4.31) again gives the existence of a (least) \(g \in S \) for which

\[y \in U_{n+1} \subseteq U_{m+1} \subseteq U_{n+1} \subseteq V \quad \text{and} \quad V = V', \]

and

\[A_{n+1} (p, g) = 1 = A_{n+1} (q, g). \]

Using the equations of (4.42) and applying \(S \) gives

\[A_{m+1} (a_{m+1}, g) = 1 = A_{m+1} (b_{m+1}, g) = A_{m} (a_{m}, g). \]

Put \(g = a(m+1) \). Then, by finite induction on \(m \), we have proved the existence of a map \(u : S \to \mathbb{R} \) satisfying (4.41) for all \(m \). Thus \(u = u \) is a thread over \(A \), and \(u < a, a < b \). Hence \(a = b \), i.e. \(x = [x] = \{ x \} = y \), as required.

(4.43) COROLLARY. Note that the proof shows that the intersection of all the \(U_{m,n} \) (for any thread \(a \)) is at most a single point.

We shall now ensure that \(A \) be regular, by imposing upon \(A \) the additional axioms:

\(S \). Given \(p, q \in S \), then it is impossible that for all \(m \in S \), \(A_{m,n} (p, q) = 1 \).

\(S \). If \(A_{m,n} (p, q), p \neq q \), there exists \(s > n \) such that for all \(t < s \),

\[A_{m,n} (a_{m}, a_{n}, b) = 1 = A_{m,n} (a_{m}, a_{n}, b) \]

then

\[A_{m,n} (p, s, t) = 1. \]

(4.5) LEMMA. \(A \) is regular.

Proof. Let \(x \in A \) and let \(V \) be a neighbourhood of \(x \). Then there exists \(U_{m,n} \) such that \(x \in U_{m,n} \subseteq V \), and there is a thread \(a \) such that \(a(m) = x \).

By \(S \), there exists \(m > n \) such that \(a(m) \neq a(n) \) (since \(a \) is a thread). Let \(W = U_{m,n} \); we assert that \(x \in W \subseteq U_{m,n} \). That \(x \in W \) follows by definition of \(U_{m,n} \). To prove that \(W \subseteq U_{m,n} \), we apply \(S \) for \(A_{m,n} (p, q, a(m)) = 1 \) (since \(a \) is a thread and \(S \) holds) so that there

\[x \in W \subseteq U_{m,n} \]

exists \(s > n \) satisfying the conditions of \(S \). Given \(y \in W \subseteq W \), then every neighbourhood of \(y \) meets \(W \). In particular then, \(y \in U_{m,n} \) for some \(d \) (by (4.1) and \(U_{m,n} \subseteq W \neq \emptyset \). Hence, by (4.3), there exists \(b \in S \) such that \(U_{d} \subseteq U_{m,n} \subseteq W \) and, by (4.31) and (4.33)

\[A_{m,n} (a_{m}, a_{n}, s, d) = 1 = A_{m,n} (s, d, s, b). \]

Therefore, by \(S \)

\[A_{m,n} (p, s, d) = 1; \]

and so, since \(U_{m} \neq \emptyset \), then \(U_{m,n} \subseteq U_{m} \) by 4.2. Hence \(y \in (W \subseteq W \cap U_{m,n} \), and since \(W = U_{m,n} \subseteq U_{m} \) (by (4.2) again), then \(W \subseteq U_{m} \), as asserted. Therefore

\[x \in W \subseteq U_{m,n} \subseteq V, \]

i.e. \(A \) is regular at \(x \), and therefore everywhere.

This completes the proof.

It is desirable that each \(U_{m,n} \) should in most cases be non-empty. To ensure this we shall suppose that \(A \) satisfies the following two axioms.

\(S \). \(A \) is fully reduced (in the sense of (2.1)).

\(S \). For all \(p, q, r \in S \), if \(A_{m,n} (p, q) = 1 \), then

\[A_{m,n} (p, r) = 1, \quad 0 < m < n. \]

(4.6) LEMMA. Given \(n, p \in S \), suppose that there exists \(q \in S \) such that \(A_{m,n} (p, q) = 1 \); then \(U_{m,n} \neq \emptyset \).

Proof. Since \(1 = A_{m,n} (p, q) = A_{m,n} (p, g) \), and \(A \) is by \(S \), reduced, then there is a thread \(a \) over \(A \) with \(a_{m} = p, a_{n} = q \), and such for all \(m \in S \),

\[A_{m,n} (a_{m}, a_{n}, m+1, a_{n+1}) = 1, \quad \text{i.e.} \quad A_{m,n} (a_{m}, a_{n}, m+1, a_{n+1}) = 1. \]

In particular, \(A_{m,n} (a_{m}, a_{n}, n+1, a_{n+1}) = 1 \) (equal to \(A_{m,n} (a_{m}, a_{n}) \)) and so by \(S \)

(4.61)

\[A_{m,n} (a_{m}, a_{n}) = 1, \quad 0 < m < n. \]

Define a new mapping \(b : S \to S \) by

\[b(j) = a_{j}, \quad 0 < j < n, \]

\[b(n+j) = a(j), \quad j \in S. \]

In view of the above equations,

\[A_{m,n} (b_{j+1}) = 1 \quad \text{for all} \quad 0 < j < n, \]

so that \(b = b \) is a thread over \(A \). Moreover, if \(j < n \), then \(b(j) = a(j) = a_{j} = b_{j} \), and therefore \(b \in U_{m} \). Hence, in particular, \(b \in U_{m,n} \), and so \(U_{m,n} \neq \emptyset \), as required.
(4.7) **COROLLARY.** For all \(n, p \in \mathcal{I} \),
\[
U_{m} \supseteq U_{m+1}.
\]
This holds because either
(i) \(U_{m+1} \cap \emptyset = 0 \), in which case the inclusion is trivial;
or
(ii) \(U_{m+1} \cap \emptyset \neq 0 \), so that there is a thread \(c \) with \(c(m+1) = p \), and \(A_{m+1}(p, a_{m+1}) = 1 \). Thus the hypotheses of (4.6) are satisfied, and so (4.61) holds with \(n+1 \) for \(n \). Therefore by (4.2) \(U_{m+1} \subseteq U_{m} \) for all \(m < n \). Thus, \(U_{m} \supseteq U_{n+1} \) for all \(m, p \in \mathcal{I} \), as required.

(4.8) **LEMMA.** If \(U_{m} \supseteq U_{m} \neq 0 \) then either
(a) \(n < m \) and \(A_{m}(n, p, m, q) = 1 \)
or
(b) \(U_{m} = U_{m} \).

Proof. Since there exists \(x \in U_{m} \subseteq U_{m} \), there exist threads \(a, b \in x \) such that
(i) \(a(m) = q \), \(b(n) = p \); and since \(a, b \in x \), there exists a thread \(c \) with
(ii) \(c < a \), \(c < b \).

First suppose \(n < m \). Then by (ii), we have
\[
A_{m}(b, a_{m}) = 1 = A_{m}(a, a_{m}),
\]
and since \(c \) is a thread, then by \(\mathcal{G}_{a} \)
\[
A_{m}(c_{m}, c_{m}) = 1.
\]
Hence by (i) and \(\mathcal{G}_{a} \)
\[
A_{m}(n, p, m, q) = 1
\]
as required.

If \(n > m \), a similar argument gives
\[
A_{m}(a_{m}, q, a_{m}) = 1,
\]
whence by (4.2), \(U_{m} \subseteq U_{m} \) with \(U_{m} \subseteq U_{m+1} \); we get
\[
U_{m} = U_{m}.
\]
This completes the proof.

(4.9) **LEMMA.** Let \(\sigma: \mathcal{I} \rightarrow \mathcal{I} \) be such that for each \(j \in \mathcal{I} \)
\[
U_{j} \cap U_{\sigma(j)} \cap U_{j+1} \neq \emptyset.
\]
Then \(\bigcap_{j \in \mathcal{I}} U_{j} \cap U_{\sigma(j)} \cap U_{j+1} \) is precisely one point.

Proof. By 4.8, since \(j < j+1 \), we have
\[
A_{j}(\sigma(j), j+1) = 1,
\]
and therefore \(\nu = v \) is a thread over \(\mathcal{A} \); moreover, by definition \([v] \in U_{\mathcal{A}(\mathcal{D})} \).

Hence
\[
X = \bigcap_{j \in \mathcal{I}} U_{j} \neq \emptyset.
\]
By (4.43), \(X \) is at most a single point, and so, since \(X \) is not empty, the result follows.

Note that to obtain 4.91, we did not use the fact that each \(U_{j} \cap U_{\mathcal{D}(\mathcal{A})} \) contains the closure of \(U_{j} \cap U_{\mathcal{D}(\mathcal{A})} \) (and not just \(U_{j} \cap U_{\mathcal{D}(\mathcal{A})} \) itself).

By (4.1), each system \(\mathcal{B}_{a} \) is a covering of \(\mathcal{A} \). It will be convenient if \(\mathcal{B}_{a} \) is actually a basis for \(\mathcal{A} \), and to ensure \(^{7}\) this we shall assume that \(\mathcal{A} \) satisfies the further axiom
\[
\mathcal{G}_{a}.
\]
Given \(n, p, q \in \mathcal{I} \) such that
\[
A_{n}(p, q) = A_{n}(p, p) = 1
\]
then
\[
A_{n+1}(p, q) = 1.
\]

If \(\mathcal{A} \) satisfies \(\mathcal{G}_{a} \), then we have

(4.10) **LEMMA.** If \(U_{p} \neq 0 \), then \(U_{p} = U_{p+1} \).

Proof. By (4.7) \(U_{p} \supset U_{p+1} \), so that we need to prove the reverse inclusion. Let then \(x \in U_{p+1} \), so that there exists by definition a thread \(x \in x \) with \(a(x) = j \), and, in particular,
(i) \(A_{j}(a_{j}, a_{j}) = 1 \).

Since \(U_{j} \neq 0 \), there is a thread \(b \subseteq A \) such that \([b] \in U_{j} \) and \(b(p+1) = j \), while
\[
A_{p+1}(b, b_{j}) = 1.
\]
Therefore, by \(\mathcal{G}_{a} \)
(ii) \(A_{j}(b_{j}, b_{j}) = 1 \).
Hence applying \(\mathcal{G}_{a} \) to (i) and (ii) (since \(j = a(p) = b(p+1) \))
(iii) \(A_{p+1}(j, j) = 1 \).
Now, since \(a \) is a thread,
(iv) \(A_{p+1}(a_{p+1}, a_{p+1}) = 1 \).

\(^{7}\) We have made no attempt to investigate the independence or otherwise of the axioms \(\mathcal{G}_{a}, \mathcal{G}_{b} \).

*Fundamenta Mathematicae, T. XLIV.
so that applying \(C_2 \) to (iii) and (iv) gives

(v) \[A_{p+1}(j, q_{p+1}). \]

Define a thread \(c: \mathbb{N} \rightarrow \mathbb{N} \) by

\[c(n) = \begin{cases} a(n), & n \neq p+1, \\ j, & n = p+1. \end{cases} \]

That \(c \) is a thread follows from the fact that \(a \) is a thread and by (ii) and (v). Moreover \(a < t_j \) for applying \(C_2 \) to the equations \(A_{a}(a_{t_j}, q_{a+1}) = 1 \) gives \(A_{a}(a_{t_j}, q_{a}) = 1 \), i.e.

\[A_{a}(a_{t_j}, q_{a}) = 1 \text{ if } n \neq p + 1 \]

while by (iii) \(A_{a+1}(a_{p+1}, q_{a+1}) = 1 \).

Thus \(a < c \) follows by definition. Hence \(x = [a] = [c] \). But \(c(p+1) = j \), i.e. \(c \in U_{p+1,j} \), and so \(U_{p+1} \subseteq U_{p+1,j} \); from which the lemma follows.

(4.11) Lemma. For each \(n \in \mathbb{N} \), \(\mathcal{B}_n \) is a basis for \(A \).

Proof. We have showed that given \(x \in A \) and an open set \(G \) containing \(x \), then there exists \(U_{mn} \in \mathcal{B}_n \), such that

(i) \[x \in U_{mn} \subseteq G. \]

Now since by definition \(\bigcup_{n=0}^{\infty} \mathcal{B}_n \) constitutes a basis for \(A \), then there exist \(p, q \in \mathbb{N} \) such that

\[x \in U_{p+q} \subseteq G. \]

If \(p > m \), then by (4.10), \(U_{p+q} = U_m \) since \(U_{p+q} \neq 0 \), and so \(U_m \) is the element of \(\mathcal{B}_m \) required in (i). Suppose therefore that \(p < m \). Since \(x \in U_{p+q} \), there exists a thread \(a \in x \) for which \(a(p) = q \) and, in particular,

\[A_{p}(a_{p}, q_{p+1}) = A_{p+1}(a_{p+1}, q_{p+2}) = \ldots = A_{m-1}(a_{m-1}, a_m); \]

therefore by \(C_3 \), \(A_{a}(p, a_{n}, q_{a+1}) = 1 \), and so by (4.2) (since \(U_{p+q} \neq 0 \), \(U_m = U_{p+q} \supseteq U_{mn} \)). But, by definition, \(x \in U_{mn} \), because \(a \in x \), and so \(x \in U_{mn} \subseteq U_m \subseteq G \). Therefore \(U_{mn} \) is the element of \(\mathcal{B}_m \) required in (i). This completes the proof.

(4.12) Corollary (of proof). \(\mathcal{B}_{n+1} \subseteq \mathcal{B}_n \).

(4.13) We have now shown that \(\mathcal{B}_n \) is a "fundamental sequence of neighbourhoods" in the sense of Whyburn [4], p. 2. Also, by (4.3), (4.4) and (4.5), conditions (1)-(6) of loc. cit. are satisfied; therefore by op. cit. Chap. I, 5.3, p. 7, \(A \) is metrisable, say, with metric \(q \). A property of a complete metric space is that (4.9) holds (cf. Hausdorff [3], p. 130, known as the Second Intersection Theorem, since clearly diam \(U_{mn} \rightarrow 0 \) as \(j \rightarrow \infty \)). We now prove the converse in.

(4.14) Lemma 4. With the metric \(q \), \(A \) is complete.

Proof. Since \(A \) has a metric \(q \), then by Hausdorff [3], p. 106, we can complete \(A \) to \(\bar{A} \) with metric \(q \), and can regard \(A \) as being included in \(\bar{A} \). Given \(y \in \bar{A} \) and a real number \(\delta > 0 \), let \(U(y, \delta) \) denote the set of all \(y' \in \bar{A} \) with \(q(y, y') < \delta \). For each \(n, m \in \mathbb{N} \), define \(V_{mn} \subseteq A \) to be the union of all \(U(y, \delta) \) for which \(y \in V_{mn} \) and \(U(y, \delta) \wedge A \subseteq U_{mn} \).

Then it can be verified that

(a) \[V_{mn} = V_{mn} \wedge A \]

and (by (4.11)) that the system

\[\mathcal{B}_n = (V_{mn}, V_{mn+1}, \ldots, V_{mn+\infty}, \ldots) \]

is a basis for \(\bar{A} \).

Let \(\{x_n\} \) be a Cauchy sequence in \(A \). Since \(A \subseteq \bar{A} \), there exists \(x \in \bar{A} \) such that, in \(\bar{A}, \) \(x_n \rightarrow x \). Since each \(\mathcal{B}_n \) is a basis for \(\bar{A} \) and \(A \) is regular then there exists \(v: \mathbb{N} \rightarrow \mathbb{N} \) such that \(x_n \in V_{v(n)} \subseteq \mathcal{B}_{v(n)} \) and

(b) \[\mathcal{K}(\alpha_{v(n)} + 1) \subseteq V_{v(n)} \quad (\mathcal{K} = \text{closure in } \bar{A}). \]

Now \(V_{v(n)} \) is a neighbourhood of \(x \) in \(\bar{A} \), so that there exists \(r = r(n) \wedge \mathbb{N} \) for which \(x_n \in V_{v(n)} \subseteq \mathcal{B}_{v(n)} \) and \(v(n) \in V_{v(n)} \subseteq \bar{A} \).

By (b) \(U_{v(n)+1} \subseteq U_{v(n)+1} \subseteq \mathcal{B}_{v(n)} \), so that by (4.9) there exists \(z \in A \) for which

\[\bigcap_{n=0}^{\infty} U_{v(n)} = z. \]

From (c) \(x_n \rightarrow z \) in \(A \), whence

\[\lim_{n \rightarrow \infty} x_n = z \quad \text{in } \bar{A}. \]

Therefore \(z \in \bar{A} \), i.e. every Cauchy sequence in \(A \) has a limit in \(A \), whence \(A \) is complete, as required.

To sum up, we have proved

(4.15) Theorem. If the \(\mathcal{B} \)-function \(A \) satisfies \(C_1, C_2 \), then the space \(A = \bar{A} \) is separable and has a complete metric.
Conversely, we have

\((4.16) \) \textbf{Theorem.} Given a complete metric separable space \(S \), there is a \(\mathcal{F} \)-function \(A \) such that \(S \) is homeomorphic to \(A(A) \).

\textbf{Proof.} Since \(S \) is separable, there is a countable set \((b_0, b_1, \ldots, b_n, \ldots) \) of points of \(S \), which is dense in \(S \). Hence the system of all neighbourhoods

\[U[b_j, (1 + n)^{-1}] \]

is a basis for \(S \). Let it be enumerated in the form \(W_0, W_1, \ldots, W_p, \ldots \), where

\[p = \mathcal{G}_d(j, n) \]

in the enumeration \(\mathcal{G}_d \); \(I \to \mathcal{F} \) of Section 1.

Define \(A : I \to \mathcal{F} \) by

\[(4.161) \ A(m, p, m, q) = 1 \text{ if and only if } m > n, \ \text{diam} \ W_p < 2/(1 + n), \ \text{diam} \ W_q < 2/(1 + m) \]

and either

\[p = q \ \& \ m = n + 1 \text{ or } n \]

or

\[p \neq q \ \& \ \text{W}_p \not\supseteq \text{W}_q. \]

Put \(A(m, p, m, q) = 0 \) otherwise.

If now we draw the diagram \(\mathcal{A} \) of \(A \) as in (2.1) we observe that, owing to the transitivity of equality and \(\mathcal{A} \), \(A \) immediately satisfies \(\mathcal{G}_d \); and through each point \((p, 0) \) there is a vertical "chain" of segments which terminates after at most \(\frac{1}{1 + n} \) steps. Hence \(A \) satisfies \(\mathcal{G}_d \). \(\mathcal{G}_d \) and \(\mathcal{G}_e \) are equally simply verified. \(\mathcal{G}_d \) is obvious, and \(\mathcal{G}_d \) holds for the following reason.

We have to show that each segment \((n, p, q) \) of \(A \) is part of a thread in \(\mathcal{A} \). Now if \(A(n, p, q) = 1 \), then \(\text{diam} \ W_p < 2/(1 + n) \), and there exist \(n, s \), such that \(W_q = U(b_n, r^{-1}) \). Since \(S \) is regular and metric, we can construct (by induction on \(j \)) a sequence

\[(4.162) \ W_p = W_{00} \supseteq W_{01} \supseteq \ldots \supseteq W_{j+1} \supseteq W_{j+2} \supseteq \ldots \]

of neighbourhoods of \(b_n \), such that \(\text{diam} \ W_{aj} < 2/(n + j + 1) \), and \(\bigcap W_{aj} = b_n \).

Put \(a(0) = p \), so that \(A_a(a_0, a_1) = 1 \) (given) while \(A_{aj}(a_j, a_{j+1}) = 1 \) (by (4.162)). Hence \(a : \mathcal{J} \to \mathcal{J} \), defined by \(a(j) = a_j \), is a thread in \(\mathcal{A} \) with

\[(4.163) \ A(0) = a(0), \ A(1) = a(1), \ldots, \ A(m) = a(m), \ldots \]

and so by applying the Second Intersection Theorem (see (4.13)) in \(S \),

\[\bigcap _{n=0} ^{\infty} W_{an} = \{ x \}, \text{ a single point, say } x_0. \]

Since for each \(n \), \(W_{an} \subseteq W_{an+1} \) then by the same argument, \(\bigcap _{n=0} ^{\infty} W_{an} = \{ x_0 \} \), and so since \(S \) is regular, there exists by (4.164) an integer \(p \) such that

\[W_{ap} \subseteq W_{an+1}. \]

Therefore \(W_{ap} \) is a neighbourhood of \(x_0 \) (as is each \(W_{an} \)); and so since \(S \) is regular, there exists by (4.164) an integer \(p \) such that

\[W_{ap} \subseteq W_{an+1}. \]

Hence

\[A(0, b_n, p, a_j) = 1, \]

which contradicts (4.163). Thus \(A \) satisfies \(\mathcal{G}_d \), and this completes the proof that \(A \) satisfies \(\mathcal{G}_d \).
We now have to prove that S is homeomorphic to the space $A = A (4)$.

First we shall collect some results. We recall from (4.12) that $B = \bigcup_{n=1}^{\infty} B_n$.

(4.17) A sequence (W_{n}) in B_n will be called a proper sequence if and only if for each $n \in \mathbb{N}$, $W_{n+1} W_{n+2} \subseteq W_{n}$. As remarked after (4.164),

$\bigcup_{n=1}^{\infty} W_{n} = x$.

We shall say that (W_{n}) is over x_n. Also from (4.162),

(4.172) The map $\alpha : \mathbb{N} \to \mathbb{N}$ is a thread in A, and

(4.173) $\text{Given } x \in W_{j}, \text{ there exists a proper sequence } (W_{n}) \text{ over } x \text{ such that } W_{n} = W_{j}$.

From (4.163) and (4.164) we have

(4.174) $a < b \implies x_{a} = x_{b}$.

Now $a < b$ if and only if there exists c with $a < c$ and $a < b$, whence

$x_{c} = x_{a}$ and $x_{c} = x_{b}$. Therefore

(4.175) $a < b \implies x_{a} = x_{b}$.

Next, let (W_{n}), (W_{m}) be two proper sequences over the same point $x = x_{a} = x_{b}$. Then, using (4.172),

(4.176) $u = \alpha$.

For, it follows easily by induction on u that there is a proper sequence

(W_{n}) over x, such that for each $n \in \mathbb{N}$,

$W_{n} \subseteq W_{n+1}$,

whence, using (4.172) and (4.161),

$A^0 (x_{a}, x_{b}) = A^0 (x_{a}, x_{b})$,

t. e. $w < u$ and $w < v$. Therefore $u = v$ as required.

As a sort of converse to (4.172), we have

(4.177) Given a thread α over A, there is a sub-thread β of a such that

(W_{n}) is a proper sequence over x_{a}.

For by definition of a thread and (4.161), we have

$W_{n} = W_{n+1} = ...$

$= W_{n+1} \subseteq W_{n+2} = ... = W_{n+2} \subseteq W_{n+3} = ...$

$= W_{n+3} \subseteq W_{n+4} = ... = W_{n+4} \subseteq W_{n+5} = ...$

so that the sequence $(\{n\})$ is monotonic increasing; therefore the map

$b : \mathbb{N} \to \mathbb{N}$ defined by $b (n) = a (p (n))$ is a sub-thread of α, and

$\bigcup_{n=1}^{\infty} W_{n} = \bigcup_{n=1}^{\infty} W_{n+1} = x_{a}$.

Therefore (W_{n}) is a proper sequence over x_{a}, as required.

Now let us establish the homeomorphism of A on S. By (4.175), x_{n} remains constant when a runs through $[a]$. Define this constant value to be

(4.176) $\hat{f} (a) = x_{a}$.

We assert that $f : A \to S$ is the required homeomorphism.

First, $f (A) = S$. For, if $x \in S$, then by (4.173) there is a proper sequence

(W_{n}) over x, and so by (4.171), (4.172) and (4.175), $x = x_{a} = f (a)$. This proves that f is onto, as required.

Secondly, f is (1-1). For if $f (a) = f (b)$, then $f (a) = x_{a} = f (b) = x_{b}$; therefore the proper sequences (W_{n}), (W_{m}) are over the same point. Hence, by (4.176), $[a] = [b]$; which proves f to be (1-1).

Thirdly, for each $j \in \mathbb{N}$

(4.179) $f (U_{j}) = W_{j}$.

To prove this let $a \in U_{j}$, so that by definition there exists $b \in [a]$ with

$b (0) = f$. Now $f (a) = x_{a} = \bigcup_{n=1}^{\infty} W_{n} = W_{j} = f (U_{j}) \subseteq W_{j}$.

Conversely, given $y \in W_{j}$, there is by (4.173) a proper sequence (W_{n}) over y with

$c (0) = f$; hence (using (4.172)) the thread c is such that $c (0) \subseteq U_{j}$.

But $y = c (x)$, this proves that $f (U_{j}) \subseteq W_{j}$, and so $f (U_{j}) = W_{j}$ as asserted.

Hence $f^{-1} (W_{j}) = U_{j}$, since f^{-1} is single valued. Thus f, f^{-1} induce order-preserving maps $f_{i} : B_{i} \to W_{i} = (W_{j}, W_{k}, ...)$; and since

$B_{i} (W_{i})$ are bases of $A (S)$, then f and f^{-1} are both continuous. This completes the proof that $f : A \to S$ is a homeomorphism, and thus Theorem 4.16 is established.

5. The Borel sets of $A (4)$

Let S be the complete metric separable space of 4.16, with associated Borel function $A = A (S)$. Then by (4.16), the topological properties of S are those of A, and we shall from now on assume that S is A. Thus in the notation of (4.178) we have

(5.1) $f (a) = [a]$,

and so by (4.179) we can write the basis $B_{i} = (U_{0}, U_{1}, ...)$ as $(W_{0}, W_{1}, ...)$.

A $G_δ$-set of A is any set of the form
\[G_γ = \bigcap_{n=0}^{∞} G_n, \quad G_n \text{ open in } A. \]

We shall make a model of $G_δ$, in the form of a $Ψ$-function $B ⊆ A$ as follows. Define a $Ψ$-function $B(γ_δ)=B ⊆ A$ by
\[B(n,p,m,q)=\begin{cases} 1 & \text{if } (A(n,p,m,q)=1 \& U_{m,q} \subseteq G_n \& U_{m,q} \subseteq G_m) \end{cases}. \]

(5.2) Define $A(B)$ to be the set of all $x \in A$ for which there is a thread a in B such that $a \in x$.

(5.3) **Lemma.** $A(B) = G_δ$.

Proof. Let $x \in A(B)$. Then there exists a thread $a \in x$ in B; so that for each $n \in \mathbb{N},$
\[B(\delta_n, a, n+1) = 1. \]

Therefore, by (5.2), $U_{m,q} \subseteq G_n$. But, by definition, $[a] = U_{m,q}$, and so $x = [a]$ is in every G_n. Thus $x \in G_δ$, i.e.
\[B \subseteq G_δ. \]

To prove the reverse inclusion, let $y \in G_δ$. Then for each $n \in \mathbb{N}, y \in G_n$. Since each G_n is a basis of the (regular) space A, there exists (by induction on n) a proper sequence $U_{m,q} = U_{m,q} = W_{m,q}$ over y such that, for each $n \in \mathbb{N},$
\[G_n \subseteq W_{m,q} \subseteq B_n. \]

(5.31) By (4.172) a is a thread in A, and so by (5.1) and (5.31), (since $W_{m,q} = U_{m,q}$) it follows that a is a thread in B. Therefore, by definition, $[a] \in B$. Now in the notation of (4.171),
\[y = \bigcap_{m=0}^{∞} W_{m,q} = f(a) \quad \text{by (4.178)} \]
\[= [a] \quad \text{by (5.1)}. \]

Hence $y \in B$, i.e. $G_δ \subseteq B$. With (5.31), the proof is complete.

(5.4) **Lemma.** If s, t are threads in A such that $s < t$ and $t \subseteq B$, then $s \subseteq B$.

Proof. Since $t \subseteq B$, then by (5.2)
\[A(\delta_t, t, s+1) = 1 \& U_{s,q} \subseteq G_n, \]
for each $n \in \mathbb{N}$. Also, since $s < t$, then
\[A(\delta_s, s, t) = 1. \]

so that by (4.2) $U_{s,q} \supseteq U_{t,t}$ (since $[t] \not\in U_{s,q} \neq 0$). Therefore $U_{s,q} \supseteq U_{s,q} \subseteq G_n$, while, since $s \subseteq A$ (given),
\[A(\delta_s, s, t) = 1. \]

Therefore, by (5.2), $B(\delta_s, s, t+1) = 1$, i.e. $s \subseteq B$.

Now let us pass to the Borel sets of higher order in A. We recall from Hausdorff [3], p. 178, that the Borel sets of order 1 are the $G_δ$ sets of A, and that a Borel set of order $α > 1$ is any set of the form
\[\bigcup_{x \in \mathbb{N}} X_α \quad \text{(a even),} \quad \bigcap_{x \in \mathbb{N}} X_α \quad \text{(a odd),} \]

where each $X_α$ is a Borel set of order $< α$.

Moreover there is an ordinal $\nu < \Omega_1$ (depending on A) such that every Borel set in A of order $> \nu$ is also one of order ν.

A set of the form $\bigcup_{x \in \mathbb{N}} Y_α$ is empty if and only if each $Y_α$ is empty.

Hence we shall confine our attention to Borel sets of odd order, of the form
\[X = \bigcap_{x \in \mathbb{N}} X_α, \]

where each $X_α$ is of odd order $< \nu (X)$. How can we use the $Ψ$-function A to make a model of X? One method is given below. It will be necessary to introduce some new concepts, guided by the following considerations. We note that in particular, a set of order 3 is of the form (5.6) in which each $X_α$ is a $G_δ$, i.e. of a set of order 1. This suggests that we write a set of order $2p+1$, where p is finite, in the form
\[X = \bigcap_{x \in \mathbb{N}} \bigcup_{x \in \mathbb{N}} \bigcup_{x \in \mathbb{N}} \bigcup_{x \in \mathbb{N}} X_1, \]

where the i's and j's run from 0 to $∞$. By induction on p, a necessary and sufficient condition that $x \in X$ is easily seen to be that there exist p integer-valued functions (corresponding to existential quantifiers)
\[a_0(i, j, r, (r+1), \ldots, (p)) \quad (1 \leq r < p), \]

such that for all $i(1), i(2), \ldots, i(p) \in \mathbb{N}$, $x \in X(u, v)$; where
\[u = (i(1), i(2), \ldots, i(p)), \quad v = (y_1, y_2, \ldots, y_p) \in I, \]
\[a_v = a_0(i(r), r, (r+1), \ldots, (p)) \]
and
\[X(u, v) = X_1(a_0(i(1), i(2), \ldots, i(p)). \]
If we call the correspondence \(u \mapsto v \) a compound function, denoted by \(a: l' \to l' \), then the above takes the form

\[(5.7) \text{A necessary and sufficient condition, that } x \in X, \text{ is that there exists a compound function } a: l' \to l' \text{ such that, for all } u \in l', \]
\[x \in X[u, a(u)].\]

Such a relatively neat statement has no immediate simple analogue when \(p \) becomes infinite (as will be apparent to the reader if he reflects on the case \(p = \omega \)). Hence we have to introduce the complicated definitions of \(\mathcal{A} \)-domains, etc. below. We shall require the notation of Section 1.

Given \(z \in l' \), then since only a finite number of values \(x(\xi) \) are non-zero, we can form the sum of all \(x(\xi) \), as \(\xi \) runs through \(\Sigma_n \), to form an integer

\[(5.8) \sigma(z) = x(0) + x(1) + \ldots + x(\xi) + \ldots\]

Next let us write for brevity

\[(5.81) E_\alpha = l' \times l', \]

so that every \(z \in E_\alpha \) is of the form

\[z = (u, v) \quad u, v \in l'.\]

Using transfinite induction on \(\alpha \), we now define the term a \(\mathcal{A} \)-domain of \(E_\alpha \). Such a domain is a subset \(A \subseteq E_\alpha \) given by the scheme:

\[(5.82) (a) \quad A = E_\alpha \text{ if } \alpha = 0 \text{ or } 1; \]
\[(b) \quad \text{if } \alpha > 1, \text{ then every } z \in A \text{ is of the form } \]
\[z = (u, 0, i) \times (v, 0, j) \]

and it is required that for each fixed \(i, j \in I \), the points \(u \times v \) run through the whole of a \(\mathcal{A} \)-domain \(\Delta_{ij} \subseteq E_{\alpha(ij)}, \) \(\alpha(ij) < \alpha. \)

This completes the definition. The collection of all \(\Delta_{ij} \) will be called the associated domains of \(A \).

\[(5.83) \text{Let } \mathcal{G} \text{ be the set of all } \mathcal{A} \text{-functions of the form } B(G_\alpha) \text{ defined in (5.2), as } G_\alpha \text{ runs through the class of all } G_\alpha \text{-subsets of } A. \text{ An element } f' \in \mathcal{G} \text{ will be called a Borel map of order } 1, \text{ and we shall often write } \]
\[f': E_\alpha \to \mathcal{G}.\]

By a Borel map of order \(\alpha > 0 \), we shall mean a map \(f': A \to \mathcal{G} \) where \(A \subseteq E_\alpha \) and is a \(\mathcal{A} \)-domain.

\(\uparrow \) The notation is defined in (1.1).

We can now associate with \(f' \) a Borel set

\[M(f') \subseteq A\]

of order \(2\alpha + 1 \) using transfinite induction, as follows. First

\[M(f') = \Delta_{f} \quad (a \in \mathcal{A})\]

in the sense of (5.3); if \(\alpha > 0 \), and \(f': A \to \mathcal{G} \) is a Borel map of order \(\alpha \), let the associated domains of \(A \) be \(\Delta_{ij} \), as above. Define \(f_{ij}: \Delta_{ij} \to \mathcal{G} \) by

\[(5.84) f_{ij}(u \times v) = f_{ij}(u, 0, i) \times (v, 0, j)\]

where \((u, 0, i), (v, 0, j) \in I' \) and \(u, v \in I_{\alpha(ij)} \) with \(\alpha(ij) < \alpha \). Then \(f_{ij}: \Delta_{ij} \to \mathcal{G} \) is a Borel map of order \(\alpha(ij) \); so that on putting

\[(5.8) M(f') = \bigcap_{i = 0}^{\infty} M(f_{ij}),\]

\(M(f')\) is defined inductively, for all \(\alpha \), and is a Borel set of \(A \), of order \(\alpha \) (cf. (5.6)).

The analogue of (5.7) for infinite \(\alpha \) leads us to define the system \(\mathcal{G}(A) \), where \(A \) is a fixed \(\mathcal{A} \)-domain \(\subseteq E_\alpha \), by the following scheme. \(\mathcal{G}(A) \) is to consist of all subsets \(\Phi \subseteq I' \) such that

\[(5.10) (a) \quad \Phi = I', \quad \alpha = 0 \text{ or } 1; \]
\[(b) \quad \alpha > 1, \quad \Phi \text{ is of the form } \]
\[\Phi = \bigcup_{i = 0}^{\infty} \Phi_i\]

where there exists \(\varphi: \mathbb{N} \to \mathbb{N} \) such that for each \(i \in \mathbb{N}, \)
\[\varphi_i \in \mathcal{G}(A_{\varphi(i))}.\]

The \(\Phi \)'s in \(\mathcal{G}(A) \) are the analogues of the set of all \(\{s(1), s(2), \ldots, s(p)\} \) in (5.7). As analogues of the compound function \(a \) in (5.7) we define the elements of the system \(\mathcal{M}(A) \) to consist of all maps \(\mu: \Phi \to I' \) where \(\Phi \in \mathcal{G}(A) \) and such that

\[(5.11) (a) \quad \text{if } \alpha = 0, 1, \mu \text{ is arbitrary}; \]
\[(b) \quad \text{if } \alpha > 1, \text{ and if } \Phi \text{ is as in (5.10b), then for each } i \in \mathbb{N}, \]
\[\mu(u, 0, i) = \mu_i(u, 0, \varphi(i))\]

where \(u \in \Phi_i \) and \(\mu_i: \Phi_i \to I_{\alpha(i)} \) is an element of \(\mathcal{M}(A_{\varphi(i)}), \alpha(i) < \alpha. \)

The statement corresponding to (5.7) is now as follows. Let \(f': A \to E_\alpha \)
be a Borel map of order \(\alpha \).
By (3.11), there exists an \(x \) a thread \(s \subseteq A \) such that for each \(i \in S \), \(i_s < i \). Therefore \(i_s^{t_s} = i^{t_s} \), and so by (ii) and (5.3),
\[
i_s^{t_s} \subseteq i_{s_{t_s}}(u \times p^{t_s}(u)) = i^{t_s}(u \times p(u))
\]
for all \(i \in \Phi \), where \(\Phi \) and \(p \) are defined as in the proof of the last lemma. But \(z = (a,0,i) \), so that \(\sigma(z) = \sigma(u) - i \), and therefore \(u = i + u \). Hence
\[
i_s \subseteq i^{t_s}(u \times p(u))
\]
for each \(i \in \Phi \), as required. The argument reverses in the obvious way; and the proof is complete, by transfinite induction.

If it be "given" a Borel set \(X \) of order \(a \) is to be given a Borel map \(f' : A \rightarrow G \) with \(X = \{f' : f \in F \} \); and if we wish to show in an operation \(D \) that there exists an \(x \) in \(X \); then clearly (5.13) is a better tool for the job than (3.13), in view of (5.5). However, there are still too many elements in \(G(A) \) and \(M(A) \) to examine collectively in an operation \(D \), and so we must refine (5.13) further.

(5.14) To this end, then, let \(q \in \mathbb{S} \) or \(Q \) be as in (5.13) and let \(Z_q(\Phi) \) denote the set of all \(z \in \Phi \) such that \(r = q - \sigma(z) \in \mathbb{S} \). Then \(r + \sigma(z) = q \), so that
\[
\begin{align*}
(i) & \quad Z_q(\Phi) \subseteq Z_{q+r}(\Phi), \\
(ii) & \quad z = \bigcup_{a \in A} Z_{q+a}(\Phi), \\
(iii) & \quad \Phi = \bigcup_{a \in A} Z_{q+a}(\Phi).
\end{align*}
\]

It is now easily verified that (5.13) is equivalent to
\[
(5.142) \quad x \in M(f') \text{ if and only if for all } q \in \mathbb{S}, \quad \left[f'(u \times p(u)) \right]_{q+r} = 1, \quad (\sigma(q), \sigma(q+1)) = 1,
\]
for all \(u \in Z_q(\Phi) \).

Our next object is therefore to seek to characterise those subsets of \(F \) which are of the form \(Z_q(\Phi) \), \(\Phi \in G(A) \), without having to find \(\Phi \); for we shall see that the number of such subsets is countable, while the number of \(\Phi \) in \(G(A) \) is not. This characterisation is the concern of the next section, and culminates in the crucial Lemma (6.15).

6. The sets \(Z_q(\Phi) \)

Given \(\Phi \in G(A) \), and as in (5.10b), we assert that
\[
Z_q(\Phi) = \bigcup_{a \in A} Z_{q+a}(\Phi),
\]

\(i.e., q = \sigma(z). \)
For if \(\mathbf{z} \in \mathbb{Z}_q(\Phi) \), then \(\mathbf{z} \in \Phi \) and is of the form \(\mathbf{z} = (\mathbf{u}, \mathbf{0}, p), 0 < p < q \), where \(\mathbf{u} \in \Phi_p \). Since \(\mathbf{z} \in Z_q(\Phi) \), then by definition

\[q - \sigma(\mathbf{z}) = q - (\sigma(\mathbf{u}) + p) = (q - p) - \sigma(\mathbf{u}), \]

and so \(\mathbf{u} \in Z_{q+p}(\Phi_p) \); whence \(\mathbf{z} \in (Z_{q+p}(\Phi_p), \mathbf{0}, i) \). The argument is reversible and so (6.1) follows.

Now, if \(\alpha = 0 \) or \(1 \), \(\Phi = \Gamma^a \) and so \(Z_q(\Phi) \) is finite. Therefore, by (6.1) and induction on \(\alpha \) we have

(6.2) \(Z_q(\Phi) \) is a finite subset of \(\Gamma^a \).

Next we define a certain system \(Z_q(\mathcal{A}) \) of subsets of \(\Gamma^a \) by the following scheme (the associated domains of \(\mathcal{A} \) are \(A_{\mathcal{A}} \) as in (5.84)):

(6.3) (a) \(\alpha = 0 \) or \(1 \); \(Z_q(\mathcal{A}) \) possesses the single member \(Z_q(\Gamma^a) \);

(b) \(\alpha > 1 \); \(X \in Z_q(\mathcal{A}) \) if and only if there is a map

\[\varepsilon(X) = \varepsilon : Z_q(3) \rightarrow \mathcal{A} \]

such that

\[X = \bigcup_{i=0}^{i=q} \left(X_{q-1}, 0, i \right) \]

where \(X_{q-1} \in Z_{q-1}(A_{\mathcal{A}_0}) \), \(0 < i < q \).

This completes the definition, by induction; we see immediately that (6.31) If \(X \in Z_q(\mathcal{A}) \), then \(X \subseteq \Gamma^a \) and is finite.

The significance of \(Z_q(\mathcal{A}) \) appears in

(6.4) LEMMA. If \(\Phi \in G(\mathcal{A}) \), then \(Z_q(\Phi) \subseteq Z_q(\mathcal{A}) \).

Proof. The result is obvious if \(\alpha = 1 \); hence suppose its truth for all \(\mathcal{A} \)-domains in \(\Gamma \), \(\beta < \alpha \). As in (5.10b) let

\[\Phi = \bigcup_{\alpha=0}^{\alpha=q} (\Phi_0, 0, i); \quad \Phi_0 \in G(A_{\Delta_{\Delta_0}}) \]

Then by (6.1),

\[Z_q(\Phi) = \bigcup_{i=0}^{i=q} (Z_{q-1}(\Phi_0), 0, i); \]

now define \(\varepsilon : Z_q(3) \rightarrow \mathcal{A} \) by \(\varepsilon = \varepsilon \mid Z_q(3) \). Then by the inductive hypothesis, \(Z_{q-1}(\Phi_0) \in Z_{q-1}(A_{\Delta_{\Delta_0}}) \), so that (6.3b) is satisfied by \(Z_q(\Phi) \). This completes the proof.

Given \(X \in Z_q(\mathcal{A}) \), \(\Gamma \in Z_{q+1}(\mathcal{A}) \), we define the relation \(X < \Gamma \) inductively by the scheme:

\[\exists \mathbf{v} \in \Phi \text{ s.t. } \mathbf{v} \subseteq X < \Gamma \]

This completes the proof of the entire Lemma.
It is now necessary to define the "finite" analogues of the elements of $\mathcal{M}(A)$. Thus we define $\mathcal{M}(A)$ to be the set of all maps $\psi: X \to I^\bullet$, with the properties that $X \in \mathcal{Z}(A)$ and

$$(6.8) \quad (a) \quad \psi \text{ is arbitrary if } \alpha = 0, 1;$$

(b) if $\alpha > 1$, and X is as in (6.3b), then given $x \in X$, $x = (u, 0, i)$ where $u \in X_{\leq \alpha - 1}$, $\mathcal{Z}(A_{\leq \alpha - 1})$ is in $\mathcal{M}(A_{\leq \alpha - 1})$ and $a(i, 0, i) < \alpha$. This completes the definition, by induction on α.

Corresponding to (6.4) we have

$$(6.9) \quad \text{lemmas. Let } \Phi: I^\bullet \to I^\bullet \text{ be in } \mathcal{M}(A). \text{ Then for each } q \in \mathcal{S}, \mu|Z_q(\Phi) \text{ is in } \mathcal{M}(A).$$

Proof. The result is trivial if $\alpha = 0$ or 1; therefore suppose that it holds for all $\beta < \alpha$. By (6.1)

$$\mu|Z_q(\Phi) = \mu|Z_q(\Phi_{\leq \beta}) (\neq \phi_0 \text{ (say)})$$

therefore, if $x \in Z_q(\Phi_{\leq \beta})$, then x is of the form $x = (u, 0, i)$ where $u \in Z_{\leq \beta}(\Phi_{\leq \beta})$; and $\mu_q(x)$ is of the form

$$\mu_q(x) = \mu_q(x) = (\mu_q(u), 0, \varphi(i)) \quad (5.11b)$$

where $\mu_q: \Phi_{\leq \beta} \to I^{q(\Phi_{\leq \beta})}$ is in $\mathcal{M}(A_{\leq \beta})$. Hence, by the inductive hypothesis, if

$$\gamma_{q} = \mu_q|Z_q(\mathcal{A}_{\leq \beta})$$

then $\gamma_{q} \in \mathcal{Z}(\Phi_{\leq \beta})$; therefore

$$\mu_q(x) = \mu_q(x) = (\mu_q(u), 0, \varphi(i)),$$

where $\varphi: Z_q(\Phi_{\leq \beta}) \to 3$ is defined to be $\Phi|Z_q(\Phi_{\leq \beta})$. Thus the conditions of (6.8b) are satisfied by $\mu_q: Z_q(\Phi_{\leq \beta}) \to I^\bullet$, so that $\mu_q \in \mathcal{M}(A)$. The Lemma now follows, by induction.

In (6.7) suppose that, for each $q \in \mathcal{S}$, there is given a map $\gamma_q: X_q \to I^\bullet$, such that $\gamma_q \in \mathcal{M}(A)$ and $\gamma_q = \gamma_{q+1}|X_{q+1}$, a system of affords which we express for brevity by writing

$$(6.10) \quad \gamma_q < \gamma_{q+1} \text{ if } q \in \mathcal{S}.$$ We saw in (6.7) that $\bigcup_{q \in \mathcal{S}} X_q$ (i.e., Φ say) belongs to $\mathcal{G}(A)$; and we shall now prove

$$(6.11) \quad \text{There exists in } \mathcal{M}(A) \text{ a map } \mu: \Phi \to I^\bullet \text{ such that, for each } q \in \mathcal{S}, \mu|X_q = \gamma_q.$$

This statement is legitimate, by (6.3a).

$\text{Borel sets and countable series of operations}\quad 147$

Proof. Given $\sigma \in \mathcal{S}$, there exists a least $q \in \mathcal{S}$, such that $\sigma \in X_q$, since $\Phi = \bigcup_{q \in \mathcal{S}} X_q$. Define $\gamma_q(\sigma)$ to be $\gamma_q(\sigma)$. Thus

$$\gamma_q(X_q) = \gamma_q(\sigma).$$

It remains to prove that $\gamma_q: \Phi \to I^\bullet$ is in $\mathcal{M}(A)$. This result is obvious if $\alpha = 0$ or 1, and we now assume it for all ordinals $\beta < \alpha$. If $x \in X_{\leq \alpha}$, as above, then by (6.7), $\sigma \in [X_{\alpha+1}, 0, i]$ for some i, and therefore by (6.8b), $\gamma_q(\sigma)$ is of the form

$$(6.11) \quad \gamma_q(\sigma) = (\gamma_q(u), 0, \varphi(i))$$

where $\varphi: X_{\alpha+1} \to I^{q(\Phi_{\leq \beta})}$ is in $\mathcal{M}(A_{\leq \beta})$. Hence

$$\gamma_q = \gamma_q(\Phi) X_{\alpha+1}.$$

By (6.7) and the fact that $\phi_1 = \bigcup_{q \in \mathcal{S}} X_q$, we can apply the inductive hypothesis, to conclude that

$$(6.12) \quad \gamma_q: \Phi \to I^{q(\Phi_{\leq \beta})}$$

is in $\mathcal{M}(A_{\leq \beta})$. Since $\gamma_q(\Phi) = \gamma_q(\Phi_{\leq \beta})$, then by (6.11),

$$\gamma_q(\sigma) = \gamma_q(\sigma) = (\gamma_q(u), 0, \varphi(i)), \quad u \in X_{\alpha+1} \subset \Phi_{\leq \beta};$$

and therefore, by (6.11), γ_q is in $\mathcal{M}(A)$. The required result now follows by induction on α.

A sort of converse to (6.11) is

$$(6.12) \quad \text{Lemma. Given } \Phi: I^\bullet \to I^{q(\Phi_{\leq \beta})} \text{ in } \mathcal{M}(A), \text{ then for each } q \in \mathcal{S}, \mu|Z_q(\Phi) < \mu|Z_{q+1}(\Phi).$$

The proof is an immediate consequence of (6.8), (6.9), and the definition (6.10).

We are now in a position to state (5.142) in the following form:

$$(5.13) \quad \text{Lemma. Given the Borel map } f: \Phi \to \mathcal{G}, \text{ a necessary and sufficient condition that } x \in \mathcal{F}(f) \text{ is that there exists}
$$

(i) a thread $\alpha \in \mathcal{S}$,

(ii) for each q an element $\gamma_q: X_q \to I^\bullet$ of $\mathcal{Z}(A)$ satisfying $\gamma_q < \gamma_{q+1}$, such that for each $q \leq 1$ and (iii) $\Gamma_q(\sigma)$, $\sigma = \gamma_q(\sigma)$.

$$(5.14) \quad \text{We recall from (5.8) and (5.14) that } x = \sigma(\sigma).$$

Funda. Math. T. XLIV.
Proof. The necessity follows from (5.142), with $X_\varphi=Z_\varphi(\Phi)$, by (6.12); for \("\land\) in (5.142) is just \(\land\) by definition. The sufficiency follows because by (ii) and (6.7), if \(X=\bigcup X_i\), then $X \in \mathcal{G}(d)$, and $X_\varphi=Z_\varphi(X)$; and since $\varphi_1 < \varphi_{i+1}$, then by (6.11), $\varphi_1 \colon X \to I^\varphi$ is in $\mathcal{B}(d)$, and $\varphi_1 X_\varphi = \varphi_1$, so that (iii) is exactly (5.142) with $\varphi = \varphi - \varphi$. Therefore, by (5.142), \([\varphi] \in M(f^\varphi)\), as required.

Using the last lemma, we now construct a \(\phi\)-function $Q \colon P \to \mathbb{B}$, to be used as a "test" function (described in (6.15) below). Given $f^\varphi \colon A \to \mathcal{G}$, then A is a countable set, and therefore by (6.2), so is $\mathcal{G}(d)$, for each $d \in \mathbb{N}$. If $X \in \mathcal{G}(d)$, then the number of maps $\varphi \colon X \to I^\varphi$ is countable, because X is finite; hence $\mathcal{G}(d)$ is countable, with an enumeration whose jth element is $\psi_j \colon X_j \to I^\varphi$. We recall from Section 1 the enumeration functions $C_j \colon P \to \mathbb{N}$, and $D_j \colon \mathbb{N} \to \mathbb{N}$; and note that $\Sigma_{\varphi=1} Z_\varphi(\mathbb{N})$.

Now define $Q \colon P \to \mathbb{B}$ by:

\[
Q(\varphi,j,i,m,j) = 1 \text{ if and only if (6.14) holds,}
\]

(a) $\varphi_{i+1} < \varphi_i$,\hspace{1cm} (b) for all $\varphi \in X_{i+1}$,\hspace{1cm} (c) for all $\varphi \in X_{i+1}$,

\[
f^\varphi(\varphi_i, \varphi_{i+1}, is) = 1;
\]

For all other quadruples (i,j,m,j),

\[
Q(i,j,m,j) = 0.
\]

Then we have

(6.15) Lemma. A necessary and sufficient condition that $M(f^\varphi) \neq 0$ is that Q contains a thread.

Proof. By (6.13), if $M(f^\varphi) \neq 0$, then (i), (ii) and (iii) are satisfied. For, let ψ_j be $\omega_{\mathbb{N},1} \colon X_{\mathbb{N},1} \to I^\varphi$ in the above enumeration of $\mathcal{G}(d)$, and let $\alpha(\mathbb{N}) \mathbb{N}$ by $D_j(i,\mathbb{N})$. Then by definition of Q, and by (iii),

\[
Q(\mathbb{N},j,i,\alpha(\mathbb{N}),\mathbb{N}) = 1
\]

for each $\alpha \in \mathbb{N}$; so that if we define $b \colon \mathbb{N} \to \mathbb{N}$ by

\[
b(\alpha) = \alpha(\mathbb{N},j,i,\alpha(\mathbb{N}),\mathbb{N})
\]

then b is a thread in Q, as required.

Conversely, given a thread b in Q, the argument reverses in the obvious way. The proof is then complete.

7. Operations with Borel maps

In Section 5 we showed how the Borel maps gave a model of the Borel sets of the space \mathcal{A}. Our next task is to find operations which model those of intersection, and complementation. With the notation of (5.84) we shall write

\[
f^\varphi = \bigwedge_i f_{i,j}.
\]

If $f, g \in \mathcal{G}$, define a new element of \mathcal{G}, $f \circ g$, by

\[
(f \circ g)(n,i,m,j) = \min\{f(n,i,m,j), g(n,i,m,j)\}.
\]

Clearly, $f, g \in \mathcal{G}$; moreover

\[
M(f \circ g) = M(f) \circ M(g).
\]

For if t is a thread in $f \circ g$, we have for each $n \in \mathbb{N}$,

\[
1 = (f \circ g)(n,i,m,j) = \min\{f(n,i,m,j), g(n,i,m,j)\}
\]

whence $1 = f(n,i,m,j) = g(n,i,m,j)$, so that t is a thread in both f and g. Hence

\[
M(f \circ g) \subseteq M(f) \circ M(g).
\]

Conversely, if $x \in M(f) \cap M(g)$, there exist, in \mathcal{A}, threads $s \subseteq f$, $t \subseteq g$, such that $x = [s] = [t]$. Hence there is by definition a thread $u \subseteq A$, with $u \subseteq s$, $u \subseteq t$; and so by (5.4), $u \subseteq f$ and $u \subseteq g$. Therefore by definition and by (7.1a), $u \subseteq f \circ g$. This establishes the inclusion reverse to (7.21), and (7.2) follows.

Now suppose that we have defined a product $f\circ g^\varphi$ of the maps f^φ, g^φ for all $\alpha, \beta < \gamma$ and such that

\[
M(f \circ g^\varphi) = M(f) \circ M(g^\varphi).
\]

Then we can define $f \circ g^\varphi (\alpha > \beta)$ by

\[
f \circ g^\varphi = \bigwedge_i (f \circ g^\varphi)i = \bigwedge_i f^\varphi \circ g^\varphi,
\]

where 14 $C_i \colon P \to \mathbb{B}$ is the enumeration function of Section 1.
so that the inductive hypothesis (7.3) is justified. The “product” \(f \cdot g \) is therefore defined for Borel maps \(f, g \), of all orders, and satisfies (7.3).

Next, given \(f \in \mathcal{G} \) we shall construct a sequence of maps \(K_\alpha(f) \in \mathcal{G} \) such that

\[
CM(f) = \bigcup_{\alpha \in \mathbb{N}} MK_\alpha(f),
\]

where \(CM = \text{complement of } X \) in the space \(A \). By definition of \(\mathcal{G} \) and by (5.2), \(f = B(\bigcap_{\alpha = 0} G_\alpha) \) where \(G_\alpha \) is open in \(A \), and so \(M(f) = \bigcap_{\alpha = 0} G_\alpha \). It follows quickly from the definitions that also \(M(f) = \bigcap_{\alpha = 0} G'_\alpha \), where \(G'_\alpha \) is the union of all \(\bigcup_{\beta \in \mathbb{N}} U_{\beta} \) for which there exist \(m,q \in \mathbb{N} \) such that \(B(n,p,m,q) = 1 \).

Hence \(CM(f) = \bigcup_{\alpha \in \mathbb{N}} G'_\alpha \); but then each \(G'_\alpha \) is closed in \(A \), and so

\[
G'_\alpha = \bigcap_{\alpha = 0} U(G'_{\alpha}, 1/(\alpha + 1)) = \bigcap_{\alpha = 0} G_{\alpha j} \quad \text{(say)}.
\]

We define \(K_\alpha(f) \) to be \(B(\bigcap_{\alpha = 0} G_{\alpha j}) \); clearly \(K_\alpha(f) \in \mathcal{G} \) and satisfies (7.4).

If also \(g \in \mathcal{G} \) write

\[
K_\alpha(f,g) = f \cdot K_\alpha(g) \quad \text{(say)},
\]

so that, as one easily verifies,

\[
MK_\alpha(f,g) = M(f) \cap CM(g).
\]

Now suppose that \(f, g \) are Borel maps of orders \(\beta, \nu \) respectively. Define a Borel map \(K_\beta(f,g) \) of order \(\beta \) by

\[
K_\beta(f,g) = f_{\nu} \cdot K_\beta(g), \quad C_{\beta}(r,s) = \beta;
\]

so that

\[
\bigcap_{\beta \in \mathbb{N}} \bigcup_{\beta \in \mathbb{N}} MK_\beta(f,g) = \bigcap_{\beta \in \mathbb{N}} \bigcup_{\beta \in \mathbb{N}} M(f_{\nu} \cdot K_\beta(g))
\]

by (7.3)

\[
= \bigcup_{\beta \in \mathbb{N}} [M(f_{\nu}) \cap MK_{\beta}(g)]
\]

by (7.4)

\[
= \bigcup_{\beta \in \mathbb{N}} [M(f_{\nu}) \cap CM(g)]
\]

by (7.5)

\[
= M(f) \cap CM(g)
\]

Therefore, by (7.1) and (5.9).

\[
M(f) \cap CM(g) = M(\bigcap_{\beta \in \mathbb{N}} K_{\beta}(f,g)).
\]

If \(g^0 \) is a Borel map of order 1, the result is different; we have

\[
M(f) \cap CM(g^0) = \bigcup_{\beta \in \mathbb{N}} [M(f) \cap CM(g^0)]
\]

by (5.9)

\[
= \bigcup_{\beta \in \mathbb{N}} \bigcup_{\beta \in \mathbb{N}} [M(f_{\nu}) \cap MK_{\beta}(g^0)]
\]

by (7.5)

\[
= \bigcup_{\beta \in \mathbb{N}} \bigcup_{\beta \in \mathbb{N}} [M(f_{\nu}) \cap CM(g^0)]
\]

so that (5.9) and the above

\[
M(f_{\nu}) \cap CM(g^0) = \bigcup_{\beta \in \mathbb{N}} [M(f_{\nu}) \cap CM(g^0)].
\]

Therefore (7.6) is justified for all \(\beta, \nu \), by transfinite induction.

\[\text{Note that the induction is on } \delta.\]
8. On propositions which are decidable \(D \)

We now return to the considerations of Section 1. With the notation used there, we take \(C \) to be the class of all \(\mathcal{P} \)-functions, i.e., maps of \(A \) into \(\mathcal{P} \). Then \(C \subseteq \mathfrak{H} \) and in what follows we take \(h, k \) in (1.1) to be the identity maps. On \(C \) let \(R_0(D) \) be the relation "there is no thread in \(A^3 \)". We recall the functions \(C_n \) from Section 1, for inverse \(C_n = C_n \). Now in (2.31), a quadruple \((u, n, m, i) \) gives rise to an ignorable segment in \(A^3 \) if and only if

\[
1 - A(u, n, m) + (1 - n - m)^2 + \max_{p \in t} A(m, p, m + 1, p) = 0.
\]

Denote the expression on the left by \(H(G(u, n, m, i)) \); we have avoided the use of the functions \(R_0 \) of Section 1 for clarity, writing \(n - m \) for \(R_0(u, n, m, i) \). Then, by (2.31), for each \(k \in \mathfrak{H} \),

\[
A^{n+1}(G(k)) = \min \left\{ A(n, G(k)), H(k) \right\},
\]

and by (2.4), if \(a \) is a limit ordinal,

\[
A^n(G(k)) = \min_{0 \leq r < a} \left\{ A^{r+1}(G(k)) \right\}.
\]

Let \(k \) be as in (2.4), and let \(g : A \to \mathfrak{K} \) be \(A^0G_0 \). Then \(g \) is clearly countably recursively definable and by (2.6) \(R_0(D) \) is equivalent to \(g = 0 \). Therefore, by definition, \(R_0(D) \) is decidable \(D \).

On \(C \), let \(R_0(D) \) be the relation "\(A \) satisfies axiom \(C_i \), \(i = 1, \ldots, 9 \) (of Sections 3 and 4). To show that \(R_0(D) \) is decidable \(D \) is a simple extension of the above, and the above itself shows that \(R_0(D) \) is decidable \(D \). For the rest, the corresponding function \(g_i \) required can be defined directly according to the following scheme:

\[g_2(u) = g_2(G(i, j, n, k)) = \min_{t \in \mathcal{P}} \left\{ A(i, j, n, k) : \left[1 - A(i - 1, j, n - 1, k) \right] \right\}; \]

\[g_3(u) = g_3(G(i, j, n, k)) = \max_{i \leq j < k} \left\{ A(i, j, k, q) : A(k, q, t, m) \right\}; \]

\[g_4(u) = g_4(G(i, j, m, k)) = \max_{i \leq j < k} \left\{ A(i, j, m, k, l) : \left[2 - A(i, j, k, m) - A(i, j, i + 1, k) \right] \right\}; \]

\[g_5(u) = g_5(G(m, n, k)) = \min_{n \in \mathcal{P}} \left\{ A(n, m, p) : \right\}; \]

\[g_6(u) = g_6(G(m, n, k)) = \max_{n \in \mathcal{P}} \left\{ A(n, m, p, p, q) : \right\}; \]

\[g_7(u) = g_7(G(m, n, k)) = \max_{n \in \mathcal{P}} \left\{ A(n, p, s, s, t) : \right\}; \]

\[g_8(u) = g_8(G(n, m, p, r) \cdot \min \left\{ A(m, q, r, a, b) : A(s, t, a, b) : \left[1 - A(n, p, s, t) \right] \right\}; \]

\[g_9(u) = g_9(G(n, p, r) \cdot \max_{n \in \mathcal{P}} \left\{ A(n, p, s, s, t) : \right\}; \]

\[g_{10}(u) = g_{10}(G(n, p, r) \cdot \max_{n \in \mathcal{P}} \left\{ A(n, p, s, s, t) : \right\}; \]

\[g_{11}(u) = g_{11}(G(n, p, r) \cdot \max_{n \in \mathcal{P}} \left\{ A(n, p, s, s, t) : \right\}; \]

\[g_{12}(u) = g_{12}(G(n, p, r) \cdot \max_{n \in \mathcal{P}} \left\{ A(n, p, s, s, t) : \right\}; \]

\[g_{13}(u) = g_{13}(G(n, p, r) \cdot \max_{n \in \mathcal{P}} \left\{ A(n, p, s, s, t) : \right\}; \]

\[g_{14}(u) = g_{14}(G(n, p, r) \cdot \max_{n \in \mathcal{P}} \left\{ A(n, p, s, s, t) : \right\}; \]

Consider first on \(C \) the relation \(R_0(X) \): "\(X = 0 \)." To show that this is decidable \(D \) we construct the \(\mathcal{P} \)-function \(Q \) of (6.14), and then use the result at the beginning of this section. For, \(X = 0 \) if and only if \(\mathcal{I}(f) = 0 \), and by (6.15), this is equivalent to \(R_0(Q) \), where \(R_0 \) is the relation of having no thread, as in (8.1). It remains to show that the map \(g \) in (8.1) is countably recursively definable rel \(h(X) \); and for this it suffices to show that \(Q \) is recursively defined in terms of \(f_X \) and \(A \). But by (6.14) \(Q \) is recursively defined if and only if the same is true of the set of maps \(p_{X_1} : X_1 \to I_1^* \) of (6.14) and this follows in obvious fashion by induction on \((6.8) \), since the functions \(F_0 \) of Section 1 belong to the class of primitive functions. Hence, since \(R_0(Q) \) was shown in (8.1) to be decidable \(D \), so is "\(X = 0 \)."

As Diens points out in [1], to decide which of the possibilities (i) of the Introduction holds is reduced to deciding whether or not a certain set \(Z \) is empty. This is obvious for the last two of the possibilities, and for the others it follows from the fact that \(X \cap Y \) is empty if and only if \(X \cap CY = 0 \). Therefore given the countable specifications \(h(X) \), \(h(Y) \) with the Borel maps \(f_X, f_Y \), then by (7.3), the map \(f_X f_Y \) is recursively decidable, and so is "\(X = 0 \)."

1) In a different context, we have the following application of the method. For each \(n \in \mathcal{P} \), let \(G_n = (G_{n_1}, G_{n_2}, \ldots, G_{n_m}) \) be a group and \(h : G_{n_1} \to G_{n_2} \) a homomorphism. Let \(\mathcal{G} \) be the inverse limit of the system \((G_n, h_n)\). Define \(A(n, m, p) \) to be 1 if and only if \(a_n = h_{n_1} a_{n_2} = \ldots = h_{n_m} a_{n_m} \). Then the above argument (with a slight and obvious modification) shows that "\(G \) is trivial" is decidable \(D \).
naturally defined rel f_X of f_Y, and $X \cap Y = M(f_X) \cap M(f_Y) = M(f_X \cap f_Y)$; hence, by the above, "$X \cap Y = 0" is decidable D. To investigate $X \cap CY$, we have, by (7.6),

$$X \cap CY = M(f_X) \cap CM(f_Y) = \bigcup_{i=0}^{\infty} MK_i(f_X,f_Y),$$

so that $X \cap CY = 0$ if and only if for each $i \in \mathbb{Z}$, $MK_i(f_X,f_Y) = 0$. But we have shown, above, that there is a map $g : \mathbb{Z} \to \mathbb{R}$, countably recursively defined rel $K_i(f_X,f_Y)$ such that g_i is a map $\mathbb{R} \to \mathbb{R}$, countably recursively defined rel $K_i(f_X,f_Y)$ such that Π.

$$MK_i(f_X,f_Y) = 0, \iff g_i = 0.$$

Define $g : \mathbb{Z} \to \mathbb{R}$ by

$$g(n) = g(i),$$

where $C_i(i) = n$. Then $g = 0$ if and only if for each i, $g_i = 0$. But g is clearly countably recursively defined rel f_X,f_Y (and so rel $h(X), h(Y)$), whence "$X \cap CY = 0" is decidable D. In this way all the possibilities (i) of Dienes' problem are decidable D.

We conclude by indicating some unsolved problems. Certain topological properties of a set X (given by means of an $A : P \to \mathbb{N}$) are obviously decidable D (e. g. connectedness, having trivial Čech homology groups, etc.); but an obvious one which seems very difficult, is to decide by an operation D, whether or not a given pair X, Y of subsets of A are homeomorphic; or even whether or not two \mathbb{N}-functions satisfying axioms $\mathfrak{C}_1, \mathfrak{C}_2$ represent homeomorphic spaces. Are there objects with a countable specification, for which certain predicates are undecidable D? A more purely topological problem is this: Suppose that A is a homogeneous space, with the property that, say, all the neighbourhoods (U_0, U_1, \ldots) are homeomorphic. Then the diagram of the \mathbb{N}-function $A(A)$, regarded as a graph, has the property that, if the part of the graph below each node is $G(P)$, then for all $P, Q, G(P), G(Q)$ are isomorphic. Is the number of graphs with this property countable? An affirmative answer might throw light on the conjecture that all (locally connected) homogeneous spaces are locally Euclidean. What is the number of graphs G, if each $G(P)$ is isomorphic to G? If we regard a graph as an algebra, this leads us to the following problem. Let Σ be a class of algebras (e. g. of groups, of rings, \ldots). How many algebras X are there in Σ with the property that all the proper sub-algebras of X are isomorphic (i) to each other, (ii) to X?

1) We are implicitly assuming here, that if $f \not\in G$, then the sequence $K_i(f)\{i \in \mathbb{N}\}$ is recursively definable in terms of f. From the definition of $K_i(f)$ given after (7.4), it is clear that $K_i(f)$ is so definable, but for brevity we omit explicit display of a functional representation of $K_i(f)$ of the sort (8.1).

References

Reçu par la Rédaction le 19.11.1966