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Borel sets and countable series of operations

by
H. B. Griffiths (Bristol)

Introduction

In [1] Z. P. Dienes has raised the following question: Given two
Borel sets X,Y in a space E, there are the five possibilities

(i) X=¥, XCY¥, XD¥, X~Y=0, X~AY#0.

Is it possible to decide which of these hold by means of an “Operation 1)’
(which he defines vaguely as a succession of 0, comparisons of integers
for size). If it is possible, the problem is ‘“decidable D’. He goes on to
shew that given & Gj-set on the real line E!, then the problem of decid-
ing whether or not the set is empty, is decidable D.

Now, his question has two sides, one logical, the other topological.
His vague notion of an operation D induces in us the intuitive picture
of two magicians M,, ),, each with this property: if o is a countable
ordinal, and if for each &< a, 4 (%) is an act which a human mathema-
tician could in principle perform, then each magician can perform the
whole series A (0),4(1),...,4(£),..., and live to tell the tale. M, then
has to deseribe X and ¥ to M, by means of such a series 4, and M,
reads it and is able to recall any term at will; we want to know if there
is a series A’ such that by performing it, M, can say which of the pos-
sibilities (i) holds. This suggests that Dienes’s question might be best
rephrased as ‘““Are the possibilities (i) decidable i}l a logic with countably
transfinite rules of inference and sentence formation?” It is then con-
ceivable that a variety of other problems might be shewn to be decid-
able (or undecidable) relative to such a formal system. However, it seems
to the author, that before construeting such a system — and in order
to see what is involved and what features it is desirable to build into
the system — we should have more experience of what ought, by any
definition, to be “decidable D” problems.

We therefore give, in1) (1.3) below, a less formal definition of “de-

1) Results and statements are numbered as follows. There are eight Sections in

the paper, and (n-m), 1<<m<<17, denotes the mth item of Section n; if 2Cm<1T,
then for example (n-m2) denote: the second sub-item of item (n-m). .
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cidable D" which suffices for the purposes of the present paper, and
helps us to give a similarly provisional meaning to “given a Borel set”.

We therefore skirt the basic logical problem, as in fact it is the to-
pological side of Dienes’s question which interests us most here. Prof.

M. H. A. Newman in 1948 generalised Dienes’s result to a G5 in a com-

plete separable metric space E, and kindly gave his unpublished proof
to the author, with some advice on its extension to sets of higher order;
this was used to obtain a proof for such sets in the author’s M. Sc.
Thesis [2]. Recently, however, a new and shorter proof has occurred to the
anthor and is given here, largely for its possible topological interest.
Since we want to know how to ‘‘give’ such a space E, we solve the fol-
lowing problem: “Given an abstract, countable, partially-ordered sef,
what axioms must the ordering satisfy in order that the set be order-
-isomorphic to a basis of open sets of some complete separable metric
space?

It is desivable that it be an operation D to decide whether or
not the ordering satisties any particular axiom’. This solution enables
us to give what we call a “countable specification” of the space E, and
next we congsider the analogous notion of a countable specification for
a Gy-subset of E, and then for a general Borel set in E. Finally we de-
duce a process for deciding, by means of an operation D, whether or not
a Bgrel set, “given” by means of such a specification, is empty; and
this enables us to answer the above question of Dienes affirmatively.
We conclude by indicating some unsolved problems.

1., Notation and definition of “decidable D*

Lower case Greek letters will usually denote ordinal numbers; and
then they will be always less than 2, the first uncountable ordinal.
The set of all integers >0 will be denoted by J, and in Section 5, I will
mean the set consisting only of the integer zero. For each «, let X, denote
the (well-ordered) series of all ordinals < «, and let I denote the set of
all maps 2: X, —3 for which 2(£)=0 for all but a finite number of & <«.
Thus if « is finite, I° is the ordinary Cartesian product of a copies of J;
and in particular I'=3. Let Rye: I">3 (£ < a) be defined by R.(z)=z(£),
and for each « let C,: I"->J be some fixed function which enumerates 1%
so that O(I"'=3J and C, iz (1-1). For each ¢ 3J, let F,: &,—J enu-
merate the class &, of maps ¢: Z,—3.

We shall often find it convenient to write expressions of the form

(1.1) wit={26,0,1} (f<a)
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(sometimes suppressing the indices) to mean that u®™ e I*™, 2# ¢ I* and

z(&) it 0<E<pB,
u(§)=10 it p<E<a,
i it f=a.

(1.2) Correspondingly, {X?0,7} will denote the set of all ws*! of the
form (1.1), as »# runs through X". Also we use (1.1) to define the map
Laﬁi: 15_91114—1 by Lapg(zﬁ) = qye+L,

The class of primitive functions is defined to be the set of all alge-
braic operations in the ring of integers, all the functions R, C,, o7,
Ly, Fy, the operator {_) applied to a sequence of sets, and the opera-
tors Max, Min, applied to a well-ordered countable series of integers.

Let P be the set consisting of 0 and 1. Given maps B;: I°°—P
(1 <<i<n), we shall say that a function f*: I—J is countably recursively
defined rel E,,E,,...,E, if and only if /* has been defined by transfinite
induection in terms of the primitive functions, E,,E,,...,F,, and the

preceding functions f, < a; where « is countable.

Let M be the set of all maps of the form f: A+, where 4 C I*
for some countable «. Let C be a class of objects. We shall say that the
objects X of C can be countably specified if and ouly if there exist maps

(1.3) h:C—M, k:h(C)—C

such that kh is the identity on C. Let R(X,,X,,...,X,) be an n-ary rela-
tion (n eI) on G, which becomes a proposition when values are given
to the X;. Then we shall say that R(X,,...,X,), and its negation, are
decidable D, if and only if the objects of € can be countably specified
as in (1.3), and there is a map g: J—B which is countably recursive
rel h(X,),M(X,),..., h(X,), and such that R(X,,...,X,) is equivalent to
“g is identically zero on J”.

In considering Dienes’s problem, we shall take C to be the class
of all Borel sets over the space E, and B(X,Y) will be one of the rela-
tions (i) of the Introduetion. We shall shew in the present paper that
each such R is decidable D; the final discussion is postponed until Sec-
tion 8, in order not to interrupt the topological narrative of Sections 2-T.
It will turn out that to construct the map k: C— M we have to use the
axiom of choice; but, to return to the magicians of the Introdustion,
then h{X) is essentially the series A by which M, ‘‘gives” X to M, (for
A is the list of arguments and values of k). Thus, M, has to choose h.
However, it is after his choice that 3, receives 4, and the problem at
issue is the decision process then used by M,. His fundamental tool will
be the construction given in Theorem 2.2 of the next section.
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2. P-functions

(2.1) A P-function is any mapping 4: I*—B. For each (n,i,j) ¢ I?, weo
write for brevity
Anliyj)=A(n,5,n+1,]).

A triple (u,i,j) for which A,(i,j)=1 i3 ecalled a “segment” of 4. By
a “thread” in A we mean a mapping t: I3, such that for each ne 3,

An(tn }tn-}-l): 1 H
where (as often) we put

We shail then write
1C4.

A is reduced if and only if every segment of 4 of the form (0,%,j) .

is part of a thread, <. e. if and only if there is a thread t in 4 such that
to=1 and t,=j. Given?) 4, B we write

ADB or BCA

whenever each segment of B is a segment of 4. Our langnage is moti-
vated by the fact that we can make a geometrical model of A as fol-
lows. If we take the set of all points in the plane, with coordinates (p,—q),
(p,q €3J), then we join (n,—i) to (m,—j) by the straight segment be-
tween them, if and only if they are distinet and A (n,i,m,j)=1. If the
equation holds with n=m, i=j, we attach a loop at (r,—:i) having no
other confact with the plane. If U is the class of all such segments and
loops, then ADB if and only if ADB (as classes). Moreover, a thread
in 4, corresponds to an infinite continuous path of segments “down’
the diagram 2. This geometrical picture will be the source for motiva-
tion of several of our proofs, and corresponds vaguely with Dienes’s
»Pyramids” ([1], p. 230).

Next, for each geJ, define a P-function 4 by: ‘AT, m,n,p)=1
if and ouly if A(I+q¢,m,n+q,p)=1. Clearly "A=4 and (0,i,j) is a seg-
ment in ‘4 if and only if (g,7,j) is & segment in 4. We shall say that
A is fully reduced if and only if for each geJ, %4 is reduced.

The main result of this Section is now

(2.2) THEOREM. Given - there exisis A* such that
() A*C4,
(i) A* is fully reduced,
(iil) every thread in A is also a thread in A*,

*) Ttalic capital letters will usually denote P-functions.
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Proof. We define a series A® of P-functions, using transfinite in-
duction, as follows:

(a) A°=A,

(b) If a is a limit ordinal, then for each (i,7);

(2.3) A, j)=2in Asd,5)

(¢) Let a=xn+1. We call the segment (n,i,j) ignorable in A" if
and only if, for all peZ,
Area(j,p)=0.

If (n,i,j) is any ignorable segment in A?, define Aj(i,j) to be zero, and
for all other quadruples (p,q,7,s) € I, define A%p,q,7,8) to be A(p,q,7,8).

This completes the definition, by transfinite induction. Since the
number of triples (p,q,7) (and therefore of ignorable segments) is at
most countable, then there exists a least f<£; such that

(2.4) AP=4" whenever f<y.

We assert that A® is the required A*. .
Clearly, A°CA. To prove that for each g, 9(4% is reduced, consider
any segment t of the form (0,7,j) in A°. Then,
YAP)(i )= L =440, )

Since Af=A4f"", the segment (g,7,j) cannot be ignorable in AP and so
there exists p ¢ 3 for which

Aiald,p)=1=5A"N(1,7) -
Hence, by finite induction, there exists for each n e, a p,eJ, such
that po=1, pr=7, p.=2p, and
q(Aﬂ)n(pn5pn+1) =1.

Thus the thread p: J—3, defined by p(n)=p,, is a thread in % 4% w;;tp
initial segment 7. This proves that 9(AP) is reduced, and hence that A” is
fully reduced. . _ 'B

Next, let us prove that every thread t in 4 is also a thread in A"
By definition, we have for all n,

An(tmth) =1 5

. . . [
hence no segment (#,1,,1,41) is ignorable in A° If t1is not a thl“eii.hd in 4%
there is a least y <f such that t is not a thread in A?, 4, e. there is a least


Artur


120 H. B. Griffiths

he3, such that A}(ts,th+1)=0. Hence, y cannot be a limit ordinal, by
(2.3 b); and so y=441, say. Hence t is a thread in A% Therefore for
all meJ, AS(tm,lms)=1, so that in partienlar Ai™(t,.,,601)=1, and
therefore (h,t,,t.y) is not ignorable in 4° swhence

Aty thaa) =1

This contradiction proves that {C.4%,

Thus, 4° satisfies (i), (i) and (iii) of (2.2), and so 4" is the requi-
red A*, as asserted.

(2.5) Comorrary (of proef). 4 is fully reduced, if and only if A=dA*.
(2.6) A contains no threads, if and only if for each (i,j) ¢ I%, A¥(4,j)=0.

3. Bichains and threads in 4

Our magician M, may wish to ‘“give’ to I, a complete separable
metric space which happens to be a closed subset F of a Euclidean space.
He cannot name each point of F individually because F will not in ge-
neral be countable. But since F is closed, then :

F:n('le(F,l/n),

and G,=U(F,1/n) is an open set which can be cavered by a sequence
of neighbourhoods V,., of the form U(z,a/b), where # has rational co-
ordinates and «,b €J. Now J, can, in this case, deduce (from the for-
muljae) relations of the form V,, CV,,, without any knowledge of the
individual points concerned. Define the function 4 (n,i,m,j) to be 1 or 0
according as V,; CV, or not. Then if M, gives to M, the function %)
4: I*>%P, we shall see below (Theorem 4.16) that M, can deduce all
topologieal properties of F as a space. The problem therefore arises:
what properties must a map B: I*—>%P possess in order that it specify
a complete metric separable space in the way that 4 does F? Of course,
B can be regarded as an ovder relation on the set of pairs (n,i): (m,7)
>(m,j) if and only if B(n,i,m,j)=1. Hence we have the problem,
mentioned in the Introduction, concerning ordered sets. In this Section
and the next, we solve this problem, as follows.
For convenience, we put l

(3.1) Anyi,n,f)=A4"1,]).

3) Or rather, a slightly modified form of this.
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Given ne3 we shall mean by an n-bichain I'™ in A a diagram of
the form .

fg= Iy < e < Ip
oot I
Josm s e p

where the i’s and j’s are in J, and for each appropriate 7,

1=A"+’(i‘r’jr) =‘4n+r(‘ir7'ir+1) =‘4~n+r(jr7jr+1) .

Thus the arrows correspond to segments in the diagram of 4. We say
that I is twisted if and only if

A, Jo,n+p,i) =1,

and otherwise I is uniwisted. We call p the length of I, and if ¢<p
we call the diagram )

fg<— 1< e < {4

Pt i

Jo<— J1e e % Jo
the g-segment of I'"; clearly it is also an n-bichain, and of length ¢. Given
two n-bichains I'7,I'3, we write

T~y or Ii<Ij

if and only if I'} is the I-segment of I'f, where I = length T, A sequence
{I%} of n-bichains is ascending if and only if for each me3J

I ;’"+1 >IN n,,, .
‘We now assume that 4 satisfies the following axiom:

G,. For each ne3, every ascending sequence of n-bichains in A contains

a member which is twisted.

We shall shew in Section 8 that it is an operation D to decidfa whe-
ther or not a given A satisties €. For use in the proof, we e-sta,b.hsh the
assertion (3.2) below. Thus if we fix u, then all the bichains in 4 of
length n can be effectively enumerated ¢) in the form y,(0),7(1),...,
7u(P) ;... Define the P-function B: I*->P by: .

B(r,u,r+1,v)=1 if and only if there exists ¢ such that y(u),
yr+1(7) are g-bichains and () < 9rsa(v). For all other quadruples (r,s,t,%),
put B(r,s,t,u)=0.

‘We assert:

(3.2) A satisfies €, if and only if B* (see (2.2)) is identically zero.

.4) 1. e. the function 4, is definable in terms of 4 and the class of primitive fune-
tions (of Section 1),
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Tor if there is a segment (n,i,§) in B*, then since B* is fully re-
duced, there is & thread t in "(B*), such that for each m "B*)p (b s besr) =1

(and t,=1,t,==7). Therefore by definition of B, there exists ¢ e3J such

that ym(te) is a g-biehain, yu(tm) <ymrillmst)s and no y,(t,) is twisted.
Thus €, fails to hold. The argument reverses in the obvious way, and
our assertion is established.

Let t be o thread in A. By a sub-thread t' of t we mean a mai)ping
t': =3 such that for each neX,

(3.3) t'(n)=t(p ),

where p: I3 is monotonic increasing and p(n) >n. In order that t' be
itself a thread in 4, we now impose the following extra conditions on 4.
C,. If A@,j,n,k)=1, then A(i—1,j,n—1,k)=1 ({,n>1).

€,. A is transitive, i. e. if

o A(@.;jri‘l‘f’)q)z‘l:*‘l(i'f"P,q’i"‘p+ﬂ'7m) (p,n>0)
en

A, i+p+n,m)=1.
G, If A@,f,i+p,K)=1, then A(%,j,i+r,k)=1, where p>0 and
r=0 and 1.
(3.4) LmmmA. If ' is a sub-thread of a thread t in A, then t'CA.

Proof. If for each n, t;=1,, as in (3.2), we have to prove that

An(tp(n) ’ tp(n+1)) =1.

Now, since t is a thread, and p: I3 is monotonic and strictly increas-
ing, then
1= A p(toe s bot+1) = Apt+1{tom+1 s Tpery +2) = -0
= Apprv-1llpe1-1, bpin+n)
=A(p(0), e, P (n41) hwrn) DY tramsitivity (€)
= A1, 50, (0 +1) = (p(n) =)} tyrs) DY Tepeating

=An(tp(n)7tn(n+l)a by 6;4 I3
ag required.

If 5, t are threads in A, we write
(3.5) s<t or t>s
whenever, for each n €3, then (see (3.1))
A"t s)=1.
(3.51) Note that, by @, if 5, t, u are threads in 4, then

s<t & t<u imply s<u.
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(3.6) Liemma. If t' is a sub-thread of t, then t' <1
Proof. Suppose t, t' satisty (3.3), so that p(n)>n. Then
1=A(ts, o) = - = A ilbpin—1,Tpm) 5
so that by repetition of €,
1= Aultnstors) =An{tuias brss)= oo = Aallom—1; boea) -

Therefore by G,
1=A,{tnstpm)s - & T=A.(t: 1),

whence, by €, 1=A"(t,,t), so that t>1', as required.

(3.7) Lemma. If t>s there is a sub-thread t' of t such that 1’ <s.
Proof. For each m,n ¢J, we have the n-bichain

By <lpi1 < oo < lagm
Ty = { I t

S 8pp1e e Sntm
since t>s. Hence, if » is fixed, the sequence
Fnly-ru‘zg -~~a«rnm,"-

is ascending, and so contains a twisted member, by €,. Therefore for
each n there is a least r(n)=r ¢J such that

(3.71) A()173n5'71+77tn+r):1 -
Hence, by €,
(372) An(snytn—\-r) =1.

Now An—i—r(tn-(-r’tn-!-r-i-l):ly 50 that An(tn+r7tn+r+1)=1 by 6:2- Therefore
A"(yryturrsr) =1, by €, 80 that by G, and (3.72), A"(Susbntrrr) =1-

Thus we may suppose that the sequence fr(n)} in (3.71) is mono-
tonic increasing. Hence so is the sequence {p(n)}={n+r(n)}h and p(n) >n
sinee »(n)>0. Therefore, if we put f,="tpwm, then t': JI—+J is a sub-
thread of t, and by (3.72) s>t'. This completes the proof.

The last result enables us to classify the threads in A into disjoint
equivalence clagses. Thus, we write

(3.8) s=t

if and only if there is a thread u in A, such that u<s and u<t. In (3.7),
t' <t, so that

(3.81) If s<t, then s=t.
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(3.9) THEOREM. The relation (3.8) is a genuine equivalence relation.
Proof. We have to show
() t=t (for by G,, t<t);
(if) s=t implies t=s (immediate from the definition);
(iii) if r=¢ and s=t then r=t. ‘
To prove (iii), there exist by definition threads a, b, such that a <v

and a<s, while b<<s and b<t. By (3.6) there exists a sub-thread '
of 1, where

viw)=xlp), pr+1)zpn)>n,

and 1’ <a. Sinee a<s, then for all » 3, A"(8n,a,)=1; while Ay, r)) =1
because 1’ <a. Therefore by G,

(IV) A"(,S‘,,,T,',) =1.

Similarly there is a sub-thread s’ of s, where

(v) s'(n)=s(g(n)), g@m+1)>q(n)>n
such that

(vi) Aty sy =1

for all ne3. In particular, by (iv)

A" (850 Tagm) = 1
80 that by G,
(vii)

But by (v) and (vi)

4’1"(84(n)77'¢;(n)) =1.

1= A"(tn 3 Sr’x) = A"(tn ? sq("))

30 that by @, and (vii)
(viii) Aty rp) =1,

Define 1: 33 by x”(qz)=t’(q(n)), ‘80 that since by (v) ¢: I3 is
monotonic increasing, then by (3.4), t” is a thread in Aj; and by (3.7)
1" <r. Moreover, by (viii) " <t. Therefore, by definition, r==t as re-
quired.

This completes the proof that we have defined a genuine equiva-
lence relation on the set of all the threads in 4. Hence the equivalence
classes [t] of these threads t are disjoint. In the next section we shall
tum.n this system of classes into a topological space, with the classes [t]
as its points. First, however, we shall give the following result; which
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is needed in Section 3. For convenience, if t is a thread in A4, then given
neJ we define "t: I—3J by

(3.10) "ty =t(n+j).
Clearly, "t is a sub-thread of t.
(3.11) LmmmA. For each ne3, let 1" be a thread in A for which [t"]
=[t""=x. Then there exists s ez such that for each ne3J
"S < _tfl .

Proof. Since % {' ez, there exists by definition a thread 1 in A
such that v<t® and r<{. Define 1% 1! to be 1, v respectively, so that
1< 1% while f'=Yr<r<t! so that by (3.51), ' <t Now suppose that
we have defined threads

P> >.L > (in )
such that v <t' (0 <j<p). Then ¥*=**, by (3.81), while {* ={*"* (given);
hence t*=1"*!. Therefore, by definition, there is a thread 1 in A4, such

that u<r’ and u <t’*', Define 17+ to be u. By induction on p, this de-
fines a sequence of threads 1/ in A, such that for each j,

R
Now define s: I3 by
(i) s(n)=1"(n);
we assert that s is the thread we require.
For
1=A4,(tz,tn11) (because t" is a thread)
=A"N 0 (because t7>1"1Y)
30 that

1=d, L, 00
=An(sn ’8n+l)

(by &)
(by (i) above),
and 80 s is a thread in 4. Moreover "s < t" if and only if, for each m €5, -
Aty ,"spm) =1; but
1=A,(tn,rw) (since t">1")
=A@, n4+m, 7,  (by G, since r* is a thread)
=d(m+m, e n+m,in)  (since " >rtm, by (3.51)).
Henece, by ¢, again,
1=A (m,th ,n+m, 1%
=A(m,th,m,"Em)  (by &)
=A"(tn,"sm)  (by (i) ahove and (3.10)),

i. e. 1">", as required.
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4. Complete separable metric spaces

For each thread f in A, let [t] denote the equivalence class of t as
defined above. Given ¢,j 3, define U;; to be the set of all classes [t]
(if any) for which there is an s e[t] with s(¢)=14. Otherwise, put U;;=0
(the empty set). We now form a topological space 4=A4(4), whose
points are defined to be the classes [t] and for which the sets U;,4,j €53,
are by definition to form a basis for the open sets. Note that, if w=T[t],
then ) xe Uy; so that the system

(4:1) f%:{l.’vn_,[hz,...,l‘rim,...}
is a covering of 4. We need the following lemmas.

(£.2) Lemms. If A(n,p,m,q)=1, and n<m then U,,2U,, provided
that U, 0.

Proof. By hypothesis, U,,50, so that there is a thread g such
that ge U,, and '

g(n)=p.
Let @ e U then there exists a thread ) ez, such that
. bm)=q.
Define y: I—=J by
. a(j), Jn,
T B
() {E)(m—n—{—j), j>n.

Then A,-(v'j,7‘j+1)zAj(gj,g,-.H):1, if j<n (since g is a thread) while if
j>mn,
Ay ps0) = A Rty Hmns 1)
. . :-Am—n-i—j(hm—n+j1hm—n+j+1)=1

by &,, since h is a thread.

Finally, An(7y;7n1) =Au(Pyhms1); nOW A(n,p,m,q)=1 (given), and
A(m,q,m+1,hmsa)=1, since b is a thread and h,=g. Therefore by &,
(since m =n),

Am,pymA1, ) =1=A(n,p,n+1,hys1} by €, (since m>n)

=A,(P, 1) by definition of 4,,,
50 that

An(Tm’"n-{-l): 1.

Hence we have proved that v is a thread over 4.
Define the sub-thread v’ of t by

Pi= T,
50 that

o
=Ry,

%) For typographical reasons, we shall denote t(i) by (i) (on subscripts).
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4. ¢. ' is a sub-thread of h. Therefore by (3.5), r' <y and 1’ <h, i. e. t=0h.
Hence z=[h]=[1]. But r,=g,=p, whence x=/[r]e U,,. Thus :

Umq g Unp:
a8 required.

(4.3) LemMA, If xe Uy,nUs (r>n), then there exists m e, such that
Z€ Uy CUpy ~U .

Proof. Since xe U, and xe U, there exist threads a,bes with

a(n)=p; b(r)=s, and a=b.
Hence, there exists a thread ¢ e » with ¢ <a, ¢<b. In particular therefore
(4.31) ATty e )=1=A"(b,,¢;)
50 that if we apply the last lemma to the second equality, we get (since
b,==3) .
(4.32) U, nCU,s, e(r)=c.
But since a iy a thread, then by €, (since r>n)
A(n,a,,r,a)=1,

so that by @; again, and (4.31),
(4.33) A(n,a.,r,6)=1;
hence by the last lemma (since a,=p)
{4.34) Crecn CUp -
Combination of (4.32) and (4.34) now gives the required result.
(4.4) Leaxva. The space A, defined with (1.1), is a Ty-space.

Proof. Let z,y he points of 4 such that every neighbourhgod of »

meets y. It suffices to prove that z=y. Let a e x, b e ¥ be threads over A.
Then by definition, for each n €3,

&€ ['Tn,a(n) 3 Ye Un,b(u) )
while ¥ € U,am by hypothesis since U, m is a. neighbourhood of. wx.
Hence ¥ €U, um ~Unpnys 80 that by (4.3) and (4.31), there is a (first)
%(0) €3 such that
Y€ Uouo) Cloam nUopey a0d  A%Nag,10)=1=4bg, %) .

Suppose now that we have defined u(0),%(1),...,u(m)e3J, such that

Afusui1)=1, 0<<i<< .
(4.41) Allag,u)=1=Ab;,u;), 0<i<m,

Ye Ug,u(o) [aNTTR A (7,,,,,,(,,,) .
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Then
Ye ( Um+1,a(m+1) m Um,u(m)) m ( Um,u(m) [ Um+l,b(m+1))=ra ™ Vﬂ::r (Sa'y) -

Hence, by (4.3), (4.31) and (4.34), there exist P,¢ €3 such that

Ye Um+1,p _(_:_Va ’ Am+1(am+1:p)= 1=Am('“’(/m) 72)) ’

(4.42) . ~ bl -
YeUningCVs, A" (bpur,0) = 1=-Am('“(m)7 Q) .

Applying (4.3) and (4.31) again gives the existence of o (least) g ey
for which

Ye U’m-&-l.g_c_: U‘m+1,p ~ Um-l»l,q E I7«:1 m Trﬁszg

and A" p,g)=1=4""(q,g).
Using the equations of (4.42) and applying §; gives

Am+1(“M+l )= 1=A"" (b, 4 14) =Am(u (m), g) -

Put g=wu(m-+1). Then, by finite induction on m, we have proved the
existence of a map u: I->J satistying (4.41) for all m. Thus w=u is
a thread over 4, and u<a, u<b. Hence a=b, i. e. w=[a]=[b]=1y, as
required.

(4.43) CoroLLARY. Note that the proof shews that the intersection of
Al the Uyupy (for any thread a) is at most o single point.

We shall now ensure that 4 be regular, by imposing upon A the
additional axioms:

&. Given p,n e, then it is impossible that for all me3, Apin(p,p)=1.
C. If A(m,p,m,q)=1, and pq, there exists s>n such that for all
t,a,b, if
A(m,_q,a,b):l:A(s,t,a,b)
then
A(n,p,s,t)=1.

(4.5) Lumma. A is regular. .
s Proof. Let ¢ A and let V be a neighbourhood of z. Then there
exists Uy, such that x¢ U, CV, and there is a thread q ez such that
a(n)=mp.

By G, there exists m >n such that a(m)s£a(n) (since a is a thread).
Let: .Vt.7= Unmam; We assert that ¢) 2e WEU,,. That ze W follows by
definition of U, .m. To prove that WE Uw, we apply @ for
Afn,pym,a(m) =1 (since a is a thread and G, holds) so that there

5) X@l’ means that the closure of X is contained in ¥
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exists s >n satisfying the conditions of G;. Given y e W—W, then every
neighbourhood of y meets W. In particular then, y ¢ Uy for some d
(by 4.1) and U,u~W=:0. Hence, by (4.3), there exists b ¢ such that
Uy CUy~W and, by (4.31) and (4.33)

A(m,ay,s,dy=1=A4(s,d,s,b).
Therefore, by G
A(n,p,s,d)=1;

and so, since U,, 70, then U, CU, by 42. Hence y ¢ (W—W)~U,,,
and, since W=Uuam CU, (by (4.2) again), then WCT,,, as asserted.
Therefore

xeWEU,,CV,

. 6. A is regular at z, and therefore everywhere.

This completes the proof.

Tt is desirable that each U,, should in most cases be non-empty.
To ensure this we shall suppose that 4 satisfies the following two axioms.

€,. 4 is fully reduced (in the sense of (2.1)).
Cs. For all p,q,nel, if Aup,q)=1, then

¢ Au(p,p)=1, O<m<n.

(4.6) Leampra. Given n,p €3, suppose that there exists ¢ €I such that
Ap,q)=1; then U,,70. ’

Proof. Since 1=4,p,q)="4,p,q), and "4 is by G, reduced, then
there is a thread a over "4 with a,=p, a;,= g, and such for all m €3,

"A(myamym 1 0m) =1, G A(MAFRyQn, M+ NA+L G =1.
In particular, 4(n,a,,n+1,a)=1 (=d.ae,0)) and so by G
(4.61) Am(ag,a)=1, 0<m<n.
Define & 'new mapping b: I—+3J by
b()=a, (0<j<n), b(n+jl=alj), je3.
In view of the above equations,
Aibjbj)=1 for all je3,

so that b=>0 is a thread over 4. Moreover, if j <=, then b(j)=b{n)= ao.;_p,
and therefore [b]e [7;,. Hence, in particular, [b]e Uy, and so U, #0,
as required.
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(4.7) COROLLARY. For all n,p €3,
Unpg Un+1‘p .

This holds because either

(i) Upwtip,=70, in which case the inclusion is trivial;
or

(i) Upy1,70, o that there is a thread a with a(m+1)=p, and
Apia(P,@mi2)=1. Thus the hypotheses of (4.6) are satisfied, and so (4.61)
holds with #+41 for n. Therefore by (4.2) Upsr, C Uy for all m<n.
Thus, Ump D Upss, for all n,p €3, as required.
(4.8) LEMMA. If UpD Up#0 then either

(a) n<m and A(n,p,m,q)=1
or

®) Up=Ung. .

Proof. Since there exists @ € Un, C U,,, there exist threads a,b e
guch that

@ alm)=gq, bn)=p;
and since a,bex, there exists a thread ¢ with
{ii) c<a, c<b.
First suppose n<<m. Then by (ii), we have
' A uy0)=1= 4t ),
and since ¢ is & thread, then by G,

A(nye,,m,6m) =1.
Hence by (i) and G,
A('n'yp7'm7Q)=1
a8 required.
If n>m, a similar arguoment gives

A (m,q,myp)=1,
whenee by 4.2, U,y C Uyp; with U, C Uy, we geb

Upg=Upp -
This completes the proof.

(4.9) LEMMA. Let v: I~ be such that for each je3
Ujun Uprroy+n#0 .

oo
Then M\ Ujuy 8 precisely one point.
i=0
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Proof. By 4.8, since j<j+1, we have
Av5,000)=1,

and therefore p=1v is a thread over 4; moreover, by definition [»] € Uj.
Hence

(4.91) X= " U790 .
J=0

By (4.43), X is at most a single point, and so, since X is not empty, the
result follows.

Note that to obtain .91, we did not use the fact that each Uj,,
contains the closure of Ujiiugey (and not just Ujpiugen itself).

By (4.1), each system £, is a covering of 4. It will be convenient
if B, is actually a basis for 4, and to ensure 7) this we shall assume that
A satisfieg the further axiom

€,. Given n,p,qeT such that

An(p,q)=An(p,p) =1
then
A" p,q)=1.

If A satisfies @, then we have
(4.10) LemwmA. If U,py;50, then U, ;="Upia,;.

Proof. By (4.7) Up;D Uptr,;, 80 that we need to prove the reverse
inclusion. Let then x e U,;, so that there exists by definition a thread
acex, with a(p)=j, and, in particular,

@) Ap(apya'p+1) =1.
Since U,41,;7#0, there is a thread 5C A such that [b]e U,ia; and
b(p+1)=7j, while

Apia(batrybpr2) =1.
Therefore, by g,

(i) Ap(bps1sbpa) =1

Hence applying @, to (i) and (ii) (since j=a(p)=0b(p+1))
(iif) AP ap00) =1,
Now, since a is a thread,

(iv) Apia(@pi1, pr2) =1,

"} We have made no attempt to investigate the independence or otherwise of
the axioms &€,-§,.

Fundamenta Mathematicae, T. XLIV, 10
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$o that applying €, to (iii) and (iv) gives

(v)
Define a thread ¢: I—3J by

Apia(f, Gppe)

a{n), mwFEp+1,

c(n)= .
™ { iy m=p+1.

That ¢ is a thread follows from the fact that a is a thread and by (ii)
and (v). Moreover a <t; for applying €, to the equations An(Gyy Qpir) =1
gives A"a,,a,)=1, i. e

A'es,a)=1 if wsEp4-1

while by (iii) 47 epur,pya) =1.

Thus a < ¢ follows by definition. Hence z=[a]=[c]. But cp+1)=j,
i. e [eUppr;, and 80 U, C Upyay; from which the lemma follows.
(4.11)

Proof. We have to shew that given ¢4 and an open set G con-
taining @, then there exists U, e B,, such that

Lemya. For each n, B, is a basis for A.

{i) " 2elUmCE.
Now since by definition ‘ Cj B; constitutes a basis for A, then there
j=0
exist p,ge3 such that
velU,, CG.

It p>n, then by (4.10), U,,=U,, since U,,50, and so U,, is the ele-
ment of B, required in (i). Suppose therefore that p <n. Since 2 € Up,,
there exists a thread a ez for which a(p)=g¢, and, in particular,

1=Ap(apa ap-}-l) =Ap+1(ap+1 1 ap+2) = ---=An—1(a‘n—lyan) 3

therefore by €, A(p,a,,n,a,)=1, and so by (4.2) (since U,,#0),
Uit = Upan 2 Unawy- Bub, by definition, e Unaty, because aewx, and
80 Ze Upeiy C Upp C G Therefore U, is the element of B, required
in (i). This completes the proof.

(£12) CorOLLARY (of proof). B,,1C B, .

(4.13) We have now shewn that B, is a “fundamental sequence of neigh-
bourhoods” in the sense of Whyburn [4], p. 2. Also, by (4.3), (4.4) and (4.5),
conditions (1)-(6) of loc. ¢it. are satisfied; therefore by op. cit. Chap. I,
5.3, p. 7, 4 is metrisable, say, with metric g- A property of a complete
metric space is that (4.9) holds (cf. Hausdortf [3], p. 130, known a§ the
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Second Intersection Theorem, since clearly diam Uiety—0 28 §—o0).
We now prove the converse in
(4.14) LEMMA ®). With the metric o, 4 is complete.

Proof. Since 4 has a metric p, then by Hausdorff [3], p. 106, we
can complete 4 to A with metric g, and can regard 4 as being included
in 4. Given y ¢ 4 and a real number 6>0, let U(y,s) denote the set
of all y ¢ A with § (y,5") <. For each, n,m €3, define 7,,C 4 to be
the union of all U(y,é) for which y e U,, and

Uy,0) ~AC Ty -
Then it can be verified that
(a) U=V A )
and (by (4.11)) that the system

_ $r’l={IYnO;any~--,17nm7---}
is a basis for A4. .
Let {z,} be a Cauchy sequence in 4. Since 4C 4, there exists z ¢ 4
such that, in 4, 2,—=. Since each B, is a basis for 4 and 4 is regular
then there exists »: I3 such that ZeVum e By and

(b) KV 11,004 C Voow (K = closure in 4).

Now Vium is a neighbourhood of z in A, so that there exists r=r(n)eJ
for which Lrn) € V,,,v(,,), and so

(e)

By (b)y Unt1p0:1) € Unyy € Be, 80 that by (4.9) there exists ze4 for
which

T

@i € Vo n A=Tnuy  (by (a) above).

o
N Un,v(n =%.
n=0

From (c), @,m—2 in 4, whence

limey,=2 in 4.

n—-»0o
Therefore z=u1; i.e. every Cauchy sequence in 4 has a limit in A,
whence A is complete, as required.
To sum up, we have proved

(4.15) THEOREM. If the P-function A satisfies §,-C,, then the space
A=A(A) is separable and has @ complete metrie.

®) This lemma appears in essence in [2), p. 14.
10%*
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Conversely, we have

(4.16) THEOREM. Given a complele imetric separable space S, there is
a P-function A such that S is homeomorphic to A(A).

Proof. Since 8 is separable, there is a countable set (by,by,...,0,,...)
of points of S, which is dense in 8. Hence the system of all neighbourhoods

Ulbyy(1+n)),

is & basis for S. Let it be enumerated in the form W,,W,,...,W,,..., where

Jyned,

p=0(j,n)

in the enumeration C,: I*-+3J of Section 1.
Define 4: I*—P by

(4.161) A(n,p,m,q)=1 if and only if

w21,
diam W,<2/(1+m), and either

diam W, < 2/(1+n),

p=¢q.& . m=n+1 or »n
or

p#q.&W,2W,.

Put A(n,p,m,q)=0 otherwise.

If now we draw the diagram % of 4 as in (2.1) we observe that,
owing to the transitivity of equality and 3, 4 immediately satisfios @
and through each point (p,0) there is a vertical ‘‘chain” of segments
which terminates after at most (1 diam W,)™" steps. Hence A satisfies G.
¢, and €, are equally simply verified. §; is obvious, and §, holds for
the following reason.

‘We have to shew that each segment (n,p,q) of 4 is part of a thread
in "d. Now if 4,(p,q)=1, then diam W,<2/n-+2, and there exist u,v,
such that W,=U(b,,v"). Since § is regular and metrie, we can con-
struct (by induction on j) a sequence

(4.162) Wq=Wa(1)@ Wa(z)@ ) W,,(j)@ Wa(j+1) ..

of neighbourhoods of b,, such that diam W, <2(n+j-+1) and ﬁWa(j)= by.
==

Put a(0)=p, so that A.(a,,a)=1 (given) while A,,H(a,,tijﬂ):l (by
4.162). Hence a: I—3, defined by a(j)=ay, is a thread in "4 with
initial segment (n,p,q) as required. This proves that A satisties .
It remains to verify that A4 satisfies €, and G,.

Concerning @, it suffices to prove that if W,€W,, then there
exists s such that for all je3I for which U(b;,s*) ~W,50, then
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U(b;,sY)EW,. To this end, let W,=U (by,k™),

Wo=U{(by,r~) and
let s be the first integer satisfying

s>2/{% _ (% +g(b,,,b,,))= (o = metric of §).
We assert that this is the required s. For if
ye Ub;,s~) AW, and zeU(b;,s),
0(bus2) < 0 (buy bu) + 0(buy ) + 0(¥,2)
< o(by,ba) kT 2570
<olboyb) KT+ (T — kT — o by, By)) =1t
Hence U{b;,s)€ W,, as asserted.

Finally, to prove that A satisfies €, suppose the contrary. Then
there exist threads a,b in A, with b <a, and such that, in particular,

(4.163) A0,b,n,a,)=0

for all #. But since q <b, then by definition and (4.161), we have the
diagram
W‘?(O)é—Wg(l) e, ,T,(,,)<—"...

|
Wb(o)e Wb(l) €. % Wb(,,)«‘— ey
where X —Y means “X€Y or Y=Y, and

(4.164) diam W < 2/(n+1)—=0  as

7 —-00;
and so by applying the Second Intersection Theorem see ((4.13)) in §,

F‘O\ Wam is a single point, say z,. Since for each n, W CWyy then by

n=0

(==}
the same argument, (M Wy is a single point a; and a,=ax, since
n=0
" M Wiy 2 Wiy -

Therefore Wy is a neighbourhood of #, (as is each W,y); and so since
8 is regnlar, there exists by (4.164) an integer p such that

Wator € Wa -
Hence

A(0,by,p,0,)=1,

which contradicts (4.163). Thus 4 satisfies €,, and this completes the
proof that 4 satisfies §,-C,.
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‘We now have to prove that § is homeomorphic to the space 4 = A(4).
First we shall collect some results. We recall from (4.12) that B,= GQ,,_

n=0
(4.17) A sequence {Wy,} in B, will be called a proper sequence if and
only if for each ne3J, Wiy €Wy, and diam Wy <2/(n+1). As re-
marked after (4.164),

(4.171)

n=

We shall say that {Wy,) is over z,. Also from (4.162),
(4.172) The map a: I—3J 45 a thread in A, and

(4.173) Given x e W,, there exists a proper sequence { Wam} over @ such
that W,,(o)=Wj. >

From (4.163) and (4.164) we have

W 8 a single point, x,.
A !

(4.174) a<Db implies x,=x,.

Now ¢=> if and only if there exists o with a<¢ and q< b, whence
L=, and x,=x;. Therefore
(4.175) a=Db implies z,=x.

Next, let {Wyw}, {Wuym} be two proper sequences over the same
point z(=mz,~wx,). Then, using (4.172),
(4£.176) u=o.

For, it follows easily by induction on # that there is a proper sequence
{Wuwm} over , such that for each ne3,

Wty € Wogy ~ Woen s
whence, using (4.172) and (4.161),
A”(un’wn)':A"(”mwn) H

i.e. m<u and w<p. Therefore u=1 as required.
As a sort of converse to (4.172), we have '

(4177) Gliven a thread a over A, there is a sub-thread b of a such that
{Weea} is a proper sequence over m,.

For by definition of a thread and (4.161), we have
W= Womy=...
=Wa(pay-1) dWao0) = oo = Wapar-1) DWa(pe) = ...

=Wa(en-1) 2Wa(ot) = o =Waip10-1) D Wapis4n) = oo
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50 that the sequence {p(j)} is monotonic increasing; therefore the map
b: I3 defined by b(j)=a(p(j)) is a sub-thread of a, and

00 (=]
4 —
O Wain = () Watp) = Za-
J=0 i=

Therefore {Wy,} 18 2 proper sequence over x,, as required.

Now let us establish the homeomorphism of A on.S.»By (4.175),
2, remaing constant when a runs through [a]. Define this constant va-
lue to be
(4.178) flal.

We assert that f: 48 is the required homeomorphism..

First, f(4)=48. For if »ed, then by (£.173) there is a proper se-
quence {Wun} over z, and so by (£171), (£.172) and (4.175), z=a,=f[a].
Thig proves that f is onto, as required. 1

Secondly, 7 is (1-1). For if f{a]=f[b], then f[a]zx,,z]‘[b]fxb; there-
fore the proper sequences {Waw}, {Waw} are over the same point. Hence,
by (4.176), [a]=[b]); which proves f to be (1-1).

Thirdly, for each je3J
To prove this let [a] € Us;, 50 that by definition there exists b e[a] with
5(0)=j. Now f[a]=us=() Wi € Woy =W, so that f(Us)EW;. Con-

n=0 X
versely, given y ¢ W;, theve is by (4.173) a proper sequence {Wm} over y
with ¢{0)=7; hence (using (4.172)) the thread ¢ is such that [¢] e Us;-
But y=z,=f[c]. This proves that W;C f(Uy); and so f(Up)=W; as
asserted. L.

Hence fYW;)=U,;, since i is single—valuec}. Thus 7, f md’uce
order-preserving maps f,: $0->71)=(W01,W1,...), fe: @»QO; an.d since
B[W) are bases of A[8], then f and f~ are both (.:ontmuous. This com-
pletes the proof that f: A—-8 is a bomeomorphism, and thus Theo-
rem 4.16 is established.

5. The Borel sets of A(4d)

Let § be the complete metric separable space of 4.}6, with asso-
ciated $p-function 4=A(8). Then by (4.16), the topologlca,l_propen]:;es
of § are those of 4, and we shall from now on assume that 8 is 4. Thus
in the notation of (4.178) we have

(5.1) fla]=[a]

- and so by (4.179) we can write the basis Bo=(Uooy Ugzy---) 8 (W“’Wl"“)'
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A Gsset of 4 is any set of the form
o0
Gs=6G, G, openin A,
n=0

We shall make a model of G, in the form of a P-function B C A ag fol-
lows. Define a P-function B(G;)=BC 4 by -

(52)  Bln,p,m,q)=1..(Ad(n,p,m,q)=1.&. Unp C G- &. Uy C Q) .
Define A4 (B) to be the set of all # ¢ 4 for which there is a thread q in B
such that aez.

(5.3) LEMMA. 4(B)=G,.

Proof. Tet ¢ A(B)=B. Then there exists a thread qex in B:
so that for each » 3, '
By(an;tp11) =1.

Therefo‘re,. by (5.2), Upew C G,. But, by definition, [a] ¢ Usawy; and so
z=[a] i5 in every @,. Thus Tels, 1. e

(5.31) BCG;.

T'o prove the reverse inclusion, let Y € Gs. Then for each = €3, yel,.
§mce each B, is a basis of the (regular) space A, there exists (by }ndllc'~
tion on n) a proper sequence U,,,a(,,)=U.,,a(,,)=W,,(,,) over ¥y such that
for each #n 5, ' ’
(1) Gn QWa(n) € =‘Bn .

?Sy (4.172) a is a thread in 4, and so by (5.1) and (i)
it follows that a is a thread in B. Therefore, by d
in the notation of (4.171),

) (since Wy =0, )
efinition, [a] e B. Now

Y=[(Wan=2a=f[a] (by (4.178))

=[a] (by (5.1)).
Hence y ¢ B, 1. e. GsC B. With (5.81), the Proof is complete.
We shall later require
(8.4) LEMMA, If 5,1 are threads in 4 such that ¢ <t and t C B, ther s C B.
Proof. Since t CB, then by (5.2) B

An(tnytn—(—l) =1 & U’n,l(n) _C; Gn L]
for each n 3. Also, since s <t, then

An(tnvsn) =1,
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so that by (4.2) Unun D Unsen (since [t]e Uy #40). Therefore Uy
C U, C Gy, while, since s C 4 (given),

Aul$ny8n31) = 1.

Therefore, by, (5.2), By(s,,8::1)=1, 7. &. s CB.

Now let us pass to the Borel sets of higher order in 4. We recall
from Hausdorff [3], p. 178, that the Borel sets of order 1 are the @, sets
of A, and that a Borel set of order a>1 is any set of the form

oo

M X,

n=0

(5.5) X, (a even), (a odd),
n=0
where each X, is a Borel set of order < a.
Moreover there is an ordinal » <, (depending on A) such that every
Borel set in 4 of order >» is also one of order ».
=] .
A set of the form | X, is empty if and only if each X, is empty.
n=0
Hence we shall confine our attention to Borel sets of odd order, of the
form

00 oo

(5.6) X =N UXy,

i=0 j=0
where each Xj; is of odd order < order (.Y). How can we use the P-func-
tion 4 to make a model of X? One method is given below. It will be
necessary to introduce some new concepts, guided by the following con-
siderations. We note that in particular, a set of order 3 is of the form (5.6)
where each X;;is a Gy, 7. e. a set of order 1. This suggests that we write
a set of order 2p+1, where p is finite, in the form

X=N1J e OV U 03,100,023 S0 @ )

ip) J(p) ip—1) jlp—=1) (1) Q1)

where the 4’s and j’s run from 0 to co. By induetion on p, a necessary
and sufficient condition that # ¢ X is easily seen to be that there exist p
integer-valued functions (corresponding to existential quantifiers)

o fi(n),i(r+1),.i(p)  (L<r<p),
such that for all §(1),i(2),...,i(p) €3, @ e X (u,v); where
w=({(1),4(2), ., 4(p)),
o= a,(i(2),i(r +1),...,4(p))

V== (g, gy, Tp) €1

and
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If we call the correspondence u—v 2 compound function, denoted by
a: 1”5 I”, then the above takes the form

(5.7) A necessary and sufficient condition, that x e X, is that there exists
a compound function a: I7—I7 such that, for all ueI”,

.L‘eX(u,a-(u)).

Such a relatively neat statement hag no immediate simple analogue
when p becomes infinite (as will be apparent to the reader if he reflects
on the case p=w). Hence we have to introduce the complicated defi-
nitions of B-domains, etc. below. We shall require the notation of Sec-
tion 1. ,

Given z ¢ I% then since only a finite number of values z(£) are non-
-zero, we can form the sum of all z(£), as £ runs through X,, to form an
integer .

{5.8) a(#)=5(0)+5(1)+...+=(&) ...
Next let us write for brevity
(5.81) E,=I"xI
50 that every ze E, is of the form
s=uxv, u,vel®.
Using transfinite induction on «, we now define the term a B-domain
of E,. Such a domain is a subset 4 C E, given by the scheme:
(3.82) (a) A=F, if a=0 or 1;
(b) if a>1, then every zeA is of the form ?9)
z={u,0,i} x{»,0,j}

and it is required that for each fixed ¢,j ¢ I, the points u X » run through
the whole of a B-domain 4;;C E.;j, where a(i,j)<a.

This completes the definition. The collection of all 4;; will be called
the associated domains of A.

{5.83) Let G be the set of all P-functions of the form B((@;) defined
in (5.2), as G; runs through the elass of all Gs-subsets of 4. An element
¢ G will be called a Borel map of order 0, and we shall often write

fo: By G.

By a Borel map of order a>0, we shall mean a map f°: A4— G where
ACE, and is a B-domain,

®} The notation is defined in (1.1).
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We can now associate with 7* a Borel set
M(f)C 4
of order 2e¢-+1 using transfinite induction, as follows., First
A(fy=A{f) (2 G)

in the sense of (5.3); if «>0, and f*: 4— G is a Borel map of order a,
let the associated domains of 4 be A;;, as above. Define f;: 4;;-G by

(5.84) fuslw X v)=[*({u,0, 1} X {v,0,]})

where {u,0,i}, {1,0,j}eI® and u,veI*” with a(i,j)<a. Then f;:
A;;—~ G is a Borel map of order a(i,j); so that on putting

(5.9) ' M) =) U M(fiy),

i=0 j=0
M (f°) is defined inductively, for all o, and is a Borel set of A, of order «
(cf. (5.6)).

The analogue of (3.7) for infinite a leads us to define the system
&(4), where 4 is a fixed B-domain CE,, by the following scheme.
&(4) is to consist of all subsets @ C I such that
(3.10) (a) @=I% a=0 or 1;

(b) a>1, @ is of the form

12 =H{¢i7075}

where there exists ¢: I—3J such that for each i3,
Q),‘ € G(A,‘,,p(,')) .

The @’s in &(4) are the analogues of the set of all (i(1),4(2),...,2(p))
in (5.7). As-analogues of the compound function « in (5.7) we define the
elements of the system S(d) to consist of all maps p: @—I° where
@ e (4) and such that

(3.11)  (a) if e=0,1, p is arbitrary;
(b) if a>1, and if @ is a3 in (5.10b), then for each i3,

#(n,0,i)= (F'(i)(u) 0,9 (l))

where ue®; and p®: &,—»1°% is an element of M(4; ), (i) <a.

The statement corresponding to (5.7) is now as follows. Let f: A—FE,
be a Borel map of order a.
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(5.12) LmMMA. A anecessary and sufficient condition that e M(5%) is

that there exists @ e &(4) and in M(4) a map p: G1I1°, such that for
each ue®, :

@ e M(f'(u xp(w)).

Proof. The result is trivial if a=0,1; now suppose it holds for all
Borel maps of order <. By (5.6) and the result for a=— 1, we M(f) if
and only if there is a map ¢: I3, such that for all iel,

@ e M(fion)

where the f;; are as defined in (5.84). By the inductive hypothesis, there
exists @;e &(4;,0) and a map p@: &;—~I" (a(i)<a) such that for all
£ Qi )

(i) @€ M{frofs x p0(2))) .

Define @ ¢ &(4) to be _G{(D,-,O,i} and define p: ®—I“ as follows. Bach
‘ueqﬁ is of the form {z:zii}, ze®D; put

#(u)={p(2),0, 00 (3)} e I",
so that by definition, p e S(4). Moreover

2 € M{fignz X pO(2)))

=M(f*({=,0,i} x {1(=),0,0(3)}))

= H{f*{us x g (w)))
as required. The argument reverses in the obvious way to prove the
converse, and this eompletes the proof, by transfinite induction.

We recall that 4 is the PB-function associated with the space A(4).
(5.13) LEMMA. A4 necessary and sufficient condition thai e M (f) s
that there exists a thread o C A, together with p: &I in M(A), such that
w=[a] and for each ze®,

() aC (= x p(z)),
where ) z= g(z).

Proof. The result is (5.2) if a=0; now suppose it to be true for all
f, B<a. Then © e M (f") if and only if (i) of the last lemma holds. But
by the inductive hypothesis, a necessary and sufficient condition for
(5.121) to hold is that there exist a thread t"‘)g A such that for each u ¢ @;

(i) “OC fonfe X 5®w), wu=o(w), and [ =e.

1) o{z) was defined in (5.8), and :a in (3.10).
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By (3.11), there exists in x a thread s C A such that for each i €3,
i . Therefore s <“®, and so by (i) and (5.3),

5 C fraofie X 1O ) = (5 % (2))

for all z e P, where @ and p are defined as in the proof of the last lemma.
But z={u,0,i}, so that o{z)=o(u)++¢, and therefore s=1i+4wu. Hence

s C f*(=x p(2))

for each = e ®, as required. The argument reverses in the obvious way;
and the proof is complete, by transfinite induction.

If to be “given’ a Borel set X of order « is to be given a .Borel map
f*: 4= G with X=21 (f*); and if we wish to shew in an operation D t}'mt
there exists an @ in X; then clearly (5.13) is a better tool for the job
than (5.12), in view of (5.5). However, there are still tolo many elements
in &(4) and M (4) to examine collectively in an operation D, and so we
must refine (3.13) further.
(5.14) To this end, then, let ¢ €3, let @ be as in (5.13) and let Z,(P)
denote the set of all s € d such that r=g—o(z) eI ™). Then 74 0(z) =g,

so that
i) Zy9) C ZyrD),

(1) =0 Z®),

(5.141)
(i) @ = (;joz,,(q)).

It is now easily verified that (3.13) is equivalent to
(5.142) e M(f*) if and only if for all g€,
[ x 2@z (@gyaq42) =1,
or all z e Z(P).

Our next objeet is therefore to seek to characterise those s.ubsets
of I° which are of the form Z,(®), & ¢ &(4), without having to fz.nd D;
for we shall see that the number of such subsets is countable, while the

number of @ in &(4) is not. This characterisation is the concern of the

next section, and enlminates in the cruecial Lemma (6.15).

6. The sets Z,(D)
Given P e&(4), and as in (5.10h), we assert that

(6.1) Z,(®) = L:Jo (Zoi(D),0,3} .

1) I e. gzo(z).
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For if ze¢Z,(®D), then ze® and is of the form 5=(u,0,p), 0<p<y,
where ue®,. Since ze Z,(P), then by definition

g—o(z)=q—(o(u)+p)=(g—p)—o(u),

and s0 u ¢ Z,_,(P,); whence z ¢ {Z,.,(P,),0,7}. The argument is revergible
and so (6.1) follows.

Now, if a=0 or 1, ®=1I" and so Z,(®) is finite. Therefore, by (6.1)
and induetion on « we have
(6.2) Zy(®) is a finite subset of I°

Next we define a certain system Z,(4) of subsets of I° by the fol-
lowing scheme (the associated domains of A are 4y as in (5.84)):

(6.3) (a) a=0 or 1; Z,(d4) possesses the single member Z,(I%);
(b) a>1; X eZ,(4) if and only if there is a map

e(X)=p: Z()—3
such that

X= ,.Q, {Xgms,0,0}
where X, ;e Z,_i(diy), 0<i<yq.
This completes the definition, by induction; we see immediately that
(6.31) If XeZ (), then X CI® and is finite.
The significance of Z,(4) appears in
(64) LEnmna. If @ « §(4), then Z,(P) € Z ().

Proof. The resnlt is obvious if a=0,1; suppose its truth for all
B-domains in I, f<a. Asin (5.10b) let

o0
D= &Jo{¢i7077‘}7 D e G(Ai,w(i)) .
Then by (6.1),
q
Zq(qj) =_L=Jo {Zq—i(éi)yoji} 3
now define p: Z(3J)—+3J by 1) ¢=¢|Z,(3). Then by the inductive hypo-

thesis, Z, (D) e By dipw), s0 that (6.3b) is satistied by Z,(®). This
completes the proof.

Given X e Z,(4), Y« Zy:1(4), we define the relation X <¥ inducti-
vely by the scheme:

¥#*) I. e. the restriction of ¢ to Zo(T).
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() a=0 or 1; X <Y if and only if X=2/(I%), ¥Y=2Z,41(I");

(6.5) a . .

(b) if a>1, and X =) {Xg1,0,10), X ey idiowy)s
i=0

+1
Y :qU {Yq+1_;,0,'i}, Yq+1—i € Zq+1~I(Ai,1(i))
i=0

where o=p(X), =1¢(¥); then X <¥ if and only if
O‘('L)-: T(l) and .Xq_i<yq+1_.,‘ (0 <l<q) .
This completes the definition, by induection on « and ¢. Clearly
(6.51) X <Y implies X C Y. . .
An immediate eonsequence of (6.1) and (6.5) (in view of (6.4)) is
(6.6) Given ®e&(A) and g3, then Zy(D)<Zy\(P).
Corresponding to (5.141) ((i) and (iil)), we have
(6.7) Leama. If >0 and for each ¢, X, Zy{d) and Xq<Xgy1, then

(@) I:C_joxec;(m :

and
by X,=2,X).
Proof. The result is obvious if a=1; hence suppose the result pro-

" ved for f<a Then by (6.4), there exists o: I—3J defined by 0]|Z,(3)

=g(X,), such that, for each g ¢ 3,

() Ko=) (Xage1,0,3},  Xogmr € Boildig)
i==1

(6.71) ]
(i) Xgp—i < Xgrrgr-is 0<i<y.
Hence
[=-] (=] q . .
UXq =uJu {lq,q—i’oﬂ}
g=0 4=0i=0
= ( A{Xq,q—-hO;i})
i=0 gz=i
oo
(6.72) = {J{®:,0,i} say

0

T

where @; = () X, ;.
<

Theref(fr/e’ D e E(4dipp) by the inductive hypothesis on (a); for
then X, ;e B, i(digw), and by (i) X< Xgg42-- Hence, by (5.10b),
and (iii), the inductive hypothesis on (a) is justified for «, and so (a)
of the Lemma follows by induction.

The condition (b) follows immediately, by induction, from (6.72).
This completes the proof of the entire Lemma.
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It is now necessary to define the “finite” analogues of the elements
of M(4). Thus we define FHM,(4) to be the set of all maps v: X —I% with
the properties that X e Z,(4) and
{(6.8) (a) v is arbitrary if a=10,1;

(b) i a>1, and X is as in (6.3b), then given =z X, z2={u,0,i}
where wueX, ;e Z, i(diyn)-

It is required that v(z) be of the form {v(u),0,0(i)}, where v;:
Xy 1) s in G, (4, ) and a(i,0(i)} <a.This completes the de-
finition, by induction on .

Corresponding to (6.4) we have
(6.9) LmMMa. Let p: ©@—I° be in M(A). Then for each qe3J, p|Z,(D)
is in My(4).

Proof. The result is trivial if ¢ =0 or 1; therefore suppose that it
holds for all < a. By (6.1) .

BIZ(P) =] D 1Z,(8),0,5) (=, (say))

therefore, if z e Z,(®), then » is of the form z = (u,0,i) where u e Z,_;(P;)
and p.(z) is of the form

#q(2) =p(z) = {pD(u),0,p(i)}  (by (5.11b))
where p®: @17 iy in HM(4;.0). Hence, by the inductive hypo-
thesis, if '
vi = pD|Z,_i A i)
then v; e Z,_(4;.); therefore
po(2) = {3(u),0,0(i)},

where g: Z,(J)—3 is defined to be @|Z,(J). Thus the conditions of (6.8Db)
are satistied by p,: Z(®)~I% s0 that p,e Zy(4).

The Lemma now follows, by induction.

In (6.7) suppose that, for each ¢ ¢ 3, there iz given a map v,: X,—~1°
such that v, e M;M(4) and B)vy=v 1| X,, — a state of atfairs which we
express for brevity by writing

B

(6.10) vg<vgrr I geJ.

We saw in (6.7) that C.)Xq (= say) belongs to &(4); and we shall
={

now prove !

(6.11) There exists in M(4) a map p: @—I1° such that, for each q ¢,

P'qu =Vvg-.

®) This statement is legitimate, by (6.51).
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Proof. Given = ¢ @, there exists a least g e 3, such that z e X,, since

@ = () X,. Define »,(5) to be v(z). Thus
=0
"*qu =Y. .

It remains to prove that v,: @—I° is in SHM(4). This result is ob-
vious if a=0 or 1, and we now assume it for all ordinals f<a. If =z € X,
as above, then by (6.71), = {X,,;,0,i} for some i, and therefore by
(6.8b), v,(=) is of the form

(6.111) ()0, 001}
where v§: Xpq i~ T2 is in M,_(4;,;). Hence

) (¢4
“ql = ”;)+11Xq,q—i .

q=>i

the inductive hypothesis, to conclude that

By (6.71ii) and the fact that &, =1{JX,,, (in (6.72)), we can apply

(P, 1 By Jolie®)
i in M(Aign). Since w2 | X, =+?, then by (6.111),
va(%) = vy(%) = {’g)(u)rof o(4)}, welXy, 1 C &

and therefore, by (5.11b), v, is in &H(4). The required result now fol-
Iows by induction on a.
A sort of converse to (6.11) is

(6.12) LEMMA. Given p: $~I% in PM(A), then for each e,
8| ZP) < p|Zy11(D).

The proof is an immediate consequence of (6.6), (6.9), and the de-
finition (6.10).

We are now in a position to state (5.142) in the following form:
(6.13) LEMMA. Given the Borel map f°: A4->G, a necessary and suffi-
clent condition that x e M(f°) is that there ewists

(1) o thread a ez,

(i) for each g an element vg: Xg->I% of Zy(A) satisfying va<vyi1,
such that for each qel and ¥ zeX,,

(iti) (fa("‘ X vq(z))q_‘z (@g,0q41) = 1.

—_—_—

) We recall from (5.8) and (5.14) that 2=0(2).
Fundamenta Mathematicae, T. XLIV, 11
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Proof. The necessity follows from (5.142), with X,=Z (D), by (6.12);
for “r" in (5.142) is just ¢—= by definition. The sufficiency follows be-

L
cause by (i) and (6.7), if X =(JX,, then X e&(4), and X,=Z,(X);
q=0

and v*qu =g,

and since v, < v,1y, then by (6.11), v,: X —1° is in M(4),
(5.142), [a] € ML (f%),

50 that (iii) is exactly (5.142) with r= ¢ —2. Therefore, by
as required.

Using the last lemma, we now construct a P-function @: I'—%,
to be used as a ‘‘test’’ funetion (described in (6.15) below). Given f“:
A—G, then A is a countable set, and therefore by (6.2), so is Z,(4)
for each ¢ e 3. If X e Z(4), then the number of maps v: X —~I°is count-
able, becanse X is finite; hence M (4} is countable, with an enumera-
tion whose jth element is #,;: X,;—+I% We recall from Seetion 1 the
enumeration functions C,: I2—3, and F,: S,—3; and note that 3,.1=Z,3J).

Now define @: I*— by:

Q{Cali 17), Colley8)) =1 if and only if
(6.24) (&) woi < wgran ond Fopy(r) <Fiofs),

(b) for all z¢X,;,

fu(" X "lqj(z))q_z(Fq-%—l('r) (@), Fgalr){q+ 1)) =1,

(¢) for all e X 11y,

= x B 1{®)) g4y (Fas2(8) (g +1), Fouals) (g +2)) =1.
For all other quadruples (n,i,m,j),

Q(n,i,m,j)=0.
Then we have
(6.15) LeEMMA. A necessary and sufficient condition that M(f*)5:0 is
that @ contains a thread.

Proof. By (6.13), if M (f*)540, then (i), (ii) and (iii) are satisfied.
For, let v, be %59 Xpjp-+1° in the above enumeration of G (A1), and
let a|Z,(J) be F,.a(ry). Then by definition of @, and by (iii),

Qo CHi(@)7a), C2(j (g +1),7g4)) =1
for each ¢e3J; so that if we define b: 33 by

b(@)=C*(j(q),7)
then b is a thread in @, as required.
Conversely, given a thread b in ¢, the argument rveverses in the
obvious way. The proof is then complete.
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7. Operations with Borel maps

In. Section 5 we shewed how the Borel maps gave a model of the
Borel sets of the space 4. Our next task is to find operations which
model those of intersection, and complementation. With the notation
of (5.84) we shall write

(7.1) 1= /‘\\j/fu-
If f,9¢G, define a new element of G, foyg, by
{7.1a) (fegy(n,i,m,f)=minff(n,i,m,§),g(n,i,m,)].
Clearly, foge¢§G; moreover
(7.2) M(fog)=M(f)~ M(g).
For if t is a thread in fog, we have for each nel,
1= (f o 9ultn, tnra) = mIN[F, (s, tr1), Gultn s tnss)]

whence 1= /f,(t,,tps1)=gultsstps1), 50 that t is a thread in both f and ¢.
Hence

(1.21) M(fog)CM(f) ~ M(g).

Conversely, if xe M(f)~M(g), there exist, in 4, threads sCf, tCy,
such that z=[s]=[t]. Hence there is by definition a thread 1 C 4, with
u<s, u<t; and so by (5.4), uCf and uC g. Therefore by definition
and by (7.1a), uCfog. This establishes the inclusion reverse to (7.21)
and (7.2) follows.

Now suppose that we have defined a product % ¢° of the maps f*, ¢°
for all a,8 <y and such that

(7.3) M(f*o gf) =M (f*) ~ M (gf) .

H

Then we can define f*o ¢’ (y>p8) by
f'°!lﬁ=/i\y ("> ¢, (Fodly=Fhods,

where 8) COy(r,s)=j and ¢ =4 if B=0; for f}, ¢7 are Borel maps of
orders < y. Therefore by (5.9) h

Mo df) = VI M((F o i) = (VU M(fi o gfe)

= LJJ (M (o) ~ M( %)  (by the inductive hypothesis)
= VUM (f) ~ VU M (gh) =D () ~ M (o),
i r i s
¥) Cy: I*+ G is the enwmeration function of Section 1.

11*
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so that the inductive hypothesis (7.3) is justified. The “product” fog
is therefore defined for Borel maps f, g, of all orders, and satisfies (7.3).

Next, given f e G we shall construct a sequence of maps K,(f)e G
such that

(7.4) CM(f) = L_JOMKn(f) )

where CX=-complement of X in the space A. By definition of G and
- (=]

by (8.2), f=B(N G,) where @, is open in 4, and so M(f) = () G,. It fol-
n=0

n==0
lows quickly from the definitions that also M (f)= (" G7, where G; is
n=0
the union of all U/, for which there exist m,q ¢ I such that B(n,p,m,q)=1.
Hence CH (f) = GCG,’,; but then each CG, is closed in 4, and so
. n=0

06 = (\U(61, 1 +1) = fj, Gy (s8y) -

We define K,(f) to be B(()G.); clearly K.(f) e G and satisfies (7.4).
j=0
If also ge G write
Euf,9)=FKJg) (cG),

so that, as one easily verifies,
ME(f,9)=M () ~CM(g).

Now suppose that f, ¢ are Borel maps of orders 8,0 respectively.
Define a Borel map K;;(f,g) of order § by

Kij(fyg)=fir°KS(g)7 02(718)=7.;
so that

AU IEf,9)= O Ml Kilg)
= LJJ (M (fi) ~ MEg)) by ((7.3))
=N M (fi) ~ L MES{g)]
=0 M {fir) ~ CM(g)] (by (7.4))
=M (f)~CH(g).

Therefore, 'by (7.1) and (5.9),

(7.5) M(f) ~ 0M(9)=M(/i\ }/Kij(f,y))-

-
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If g* is a Borel map of order 1, the result is different; we have
M (HnCH () =M )~ O CH(gy)
=U LIJ [M(f) ~ CM (gi))
= U NN MEf,g)) - (bY (75)
=U (O Lq) M(h,,))  say,

where Ry, =X} 0i;), and Cy(p,j)=r. Therefore
M(f) ~ CH(g') = UM(AV Eplf,917)
i r q
= Ef,g") say,

where Ki(f,g) =AV Enllf,95), Cop,j)="r, and Ki(f,¢') is 2 Borel map
r q

of order a.

We can now make the inductive hypothesis that %) for each «, given
Borel maps %, gf, where 0 <f8<é < a, we can construct a sequence
{E(f*¢f)} of Borel maps of order «, such that

(7.6) M)~ CH () = p ME(f"¢%).
Then
M(F) ~ OM (g") = M) ~ L (Y CIE(gh)

= UN M)~ O (g
=U O [L,J ME,(f',gi)]
by the inductive hypothesis, since g7; is now of order < 4. Define
Kif59) = AV EAlf 60,
80 that by (5.9) and the above
M(f')~ CM(g") = U ME(f,q").
Therefore (7.6) is justified for all 8,a, by transfinite induction.

1%) Note that the inductidn is on 4.
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8. On propositions which are decidable D

We now return to the considerations of Section 1. With the nota-
tion used there, we take C to be the class of all -functions, i. e. maps
of I* into . Then CC &M and in what follows we take h,k in (1.1) to
be the identity maps. On C let Ry(A4) be the relation “There is no thread
in A”. We recall the functions C,: I3 defined in Section 1, with in-

verse (;'=G,. Now in (2.3¢), a quadruple (»,%,m,j) gives rise to an
ignorable segment in A" if and only if

[1~A%n,i,m, )+ (1 — (0 —m))® + max A"(m,j,m+1 ] =0.
el

Denote the expression on the left by H*(C, (n,i,m, j)); we have avoided
use of the functions Ry of Section 1 for clarity, writing #-m for
Buln,iym,§) — Ryg(n,i,m,j). Then, by (2.3¢), for each ke,

(8.1) ATHG (k)= min [A"(Gy(k)), (k)] ,

and by (2.4), if ¢ is a limit ordinal,
A%(Gy(k)) = m<m [47(64())] -

Let f be as in (2.4), and let g: 3P be 4°6,. Then g is clearly countably
recursively definable and by (2.6) R,{A) is equivalent to g=0. Therefore,
by definition, R,(4) is decidable D.

(8.2) On C, let R{4) be the relation: “4 satisfies axiom ;”, i=1,...,9
(of Sections 3 and 4). To shew that R,(4) is decidable D is a simple ex-
tension of the above, and the above itself shews that R,(4) is decidable D.

For the rest, the corresponding funection g; required can he defined di-
rectly aceording to the following scheme:

C,: g.z(u)zgg(Cﬂ(i,j, "‘11‘:))
=min(i,l)-mm(‘n,l)ml(i,j,n,k)-[l—A(z‘—l,j,)L—l,k)];
C,: gs(u):ga(Gs(iyj7k:Q7lﬁm))
=max(i—k-+1,0) - max(1+k—1,0)-4(7,§,k,q) A (k,q,l,m)-

'[1_A('igj:l7m)]§
&: g;(u)———g,,(G;(z',j, m ;k))

=A (], m, k) -max (1-+i—m,0)[2— A(i,,i,5)— A ([,],i +1,k)];
€2 ga(u)=gs(Go(p,n)) = Min A, m(p )
me€
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C: gslut)= ﬂs(G4(” P 7"“‘7@)
=An,p,m,q)p—q) 1\5151 {BKI:? [4 (nyq,a,0)4(5,t,a,D) (1—4(n,p,8,0)]}3
n--1
6o: gl =alGap 4] =4 (230)- X, (1= AP0}

€,: golt) = GolGa(, D, 0)) = Aulp, @) 4ulp,2) (L= A" (D 10) -

Clearly cach g; is countably recursively defined, and Ri{(4) is equivalent
to ¢;=90. Hence each Ri{4) is decidable D. ' »

Now let us consider Dienes’s problem. For this we take (‘3 to be
the class of all Borel sets over the complete separable metm.e space
A=A(4d) of Section 6. A given Borel set X can be express.ed in many
ways in the form (5.8) and so X will have assoclateq .\vmh it many dif-
ferent maps f: 4— G where 4 is in some I" for sufflc.lently high a. We
therefore use the axiom of choice, and choose a definite map fx: A= G
for which M (fx)=2X. Then define h: C— &M by WMX)=F: 4 xI*=B,
where F(u X ©)=[fx(u)(v). Define k: R{C)—~ C by k(F)=M (fx), so that,

$ i 3), kh=1. : '
* me)isi?i,er first on C the relation R(X): “X=0". To shew that this
is decidable D we construct the $p-function @ of (6.14), and then use
the result at the beginning of this section. For, X=0 if and OTlly if
M(fx)=0, and by (6.156), this is equivalent to R(,.(Q), where R, is the
relation of having ne thread, as in (8.1). It remains to shew that th.e
map ¢ in (8.1) is countably recursively defined rel 7(X); and for this
it suffices to shew that Q is recursively defined in terms of f.x and A.
But by (6.14) @ is reeﬁrsively defined if and only if tl?e same is true. of
the seb of maps pz;: X,;—1° of (6.14); and this follows in obvious fashion
by induction on (6.8), since the functions F, of Section 1 belQng to the
class of primitive functions. Hence, since (@) was gshewn in (8.1) to
he decidable D, so is “X =107 1), o

As Dienes points out in [1], to decide which of the possibilities (i)
of the Introduction holds can be reduced to deciding whether or no_t
a certain set Z is empty. This is obvious for the last two (:f the Dossi-
bilities, and for the others it follows from the fact tha,t‘; .A _C_ Y if m}d
only if X ~CY=0. Therefore given the countable speclflc&mon.s h(X),
h(i’) with the Borel maps fx,fy, then by (7.3), the map fxofr is recur-

17) In a different context, we have the following application of the method].llFor
each 1 ¢ T, 166 6= {@g, Uuys-res Gy oo} bE A group and R, G, ‘+1—>(:},, a 11om0.morp ism.
Let G be the inverse limit of the system {G,,%,}. Define .A (n,z,:m,;;) to he 1 1.f and onlliy
i @y =Tlpkpyy e By y(@,y). Then the above argument (with a slight and ohvious modi-
fication) shews that “@ is trivial” js decidable D.
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gively defined rel fx,fy, and XAY=M(f)~M (fy)=M (fxofy); hence,
by the above, “X~Y¥=0" is decidable D. To investigate X~ CY, we
have, by (7.6),

XACT =M ()nCH (fr) = U ME 1)

80 that XY~ CY=0 if and only if for each ¢ eI, ME(fx,fr)=0. But
we have shewn, above, that there is & map g;: 3—~%, countably recur-
sively defined rel K;(fx,fv) such that 1)

J’I.Ki(fx,fy) =0.<—>.g,’50 .
Define g: 3% by )
gn)=gj),

where Cy(i,f)=n. Then g=0 if and only if for each 4,4, =0. But g is
clearly countably recursively defined rel fx,fr (and so relh(X),h(Y)),
whenee “X ~CY =0" is decidable D. In this way all the possibilities (i)
of Dienes’s problem are decidable D.

We conclude by indicating some unsolved problems. Certain topo-
logical properties of a set X (given by means of an 4: I*—>P) are ob-
viously decidable D (e. g. connectedness, having trivial Cech homology
groups, ete.); but an obvious one which seems very difficult, is to de-
cide by an operation D, whether or not a given pair X,Y, of subsets
of 4 are homeomorphic; or even whether or not two P-functions satis-
fying axioms §,-G, represent homeomorphic spaces. Are there objects
with a countable specification, for which certain predicates are wndecid-
able D? A more purely topological problem is this: — Suppose that 4
is & homogeneous space, with the property that, say, all the neighbour-
hoods (U4, Ug,...) are homeomorphic. Then the diagram of the P-func-
tion A4(A), regarded as a graph, has the property that, if the part of
the graph below each node is G(P), then for all P,Q, G(P), G(@) are
isomorphic. Is the number of graphs with this property countable? An
affirmative answer might throw light on the conjecture that all (locally
connected) homogeneous, connected, locally compact metrie spaces are
locally Euclidean. What is the number of graphs @, if each G(P) is iso-
morphic to G? If we regard a graph as an algebra, this leads us to the
following problem. Let X be a class of algebras (e. g. of groups, of rings, ...).
Bow many algebras X are there in X with the property that all the pro-
per sub-algebras of X are isomorphic (i) to each other, (ii) to X?

1!)

We are implicitly assuming here, that if f € G, then the sequence K () of (7.4)
is recursively definable in terms of f. From the definition of K,(f) given after (7.4),
it is clear that K,(f) is so definable, but for brevity we omit explicit display of a func-
tional representation of K ,(f) of the sort (8.1).
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