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To the memory of my dearly beloved,
prematurely dead Master: professor T. Szele.

We treat in this paper the following group-theoretical problem for
a certain characterization of cyclic groups among all groups. Let @ be
an arbitrary (and thus not necessarily abelian) group. The kth power
of the group G is a subgroup G* generated by the set of the kth powers
of all group-elements. An arbitrary group & is called group with pro-
perty P if there exists fo every subgroup H a rational integer k for which
H=6" holds. E.g. any eyclic group has the property P.

We shall prove in this paper that the property P postulated for
groups and the cyclic behaviour of the groups are equivalent, namely
that a group with property P is always cyclic. ‘

As we do not assume the group-operation to be commutative we
write it multiplicatively. We call the neutral element of the group the
unity and denote it by 1. A group is ealled torsion free if it has no ele-
ment of finite order other than the unity. Moreover a group is called
a torsion group if every element of the group has finite ovder. A torsion
group is & p-group if the orders of group-elements are the powers of a fived
prime number p. A torsion group is called an elementary group it the
order of any grounp-element is a square free number. We refer here to
the ground theorem of finite abelian groups, according to which every
abelian group with finitely many elements is the direct produet of (‘ycli(c
groups.

Every subgroup of an abelian group is evidently a normal subgroup
of the group. A mon-commutative group is termed hamillonian if every
subgroup is & normal subgroup of the group. E. g. the quaternion group Q
generated by the elements ¢ and » for which the relations a ‘ba=b""
and #*=5b* are true is a hamiltonian group. The fundamental theorem
of R. Baer supplies an explicit description of all hamiltonian groups:
every hamillonian group is the direct product of the quaternion group and
of an abelian group whose 2-component (7. e. the set of all group-elements
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of 2-power order) is an elementary p-group. It is obvious that the factor
group G/Z of a hamiltonian group G by the centre Z of the group @ is
always commutative [1].

We now prove the following theorem:

THEOREM. An arbitrary group G is cyclic if and only if the group G
has the property P.

First of all we prove some Lemmas.

LEmma 1. Every homomorphic image G of a group G with property P
has likewise the property P.

Proof. Let @ be an arbitrary group with property P. If ¢ is a homo-
morphic mapping of @ onto the group G, then there exists in the group G
a uniquely defined complete inverse image H=¢ }(H’) of an arbitrary
subgroup H’ of the group G'. There exists a rational integer k for which
H=G" holds. Let he H and A’ « H’ be given so that ¢(h)=F'. Then we
can write that h=gf...¢f e H=G* where g¢,,...,g. ate snitable elements
of @. For this reason evidently %' e(G')%, therefore o(G5)C(G')* holds.
On the other hand, if g G. then g* ¢ H, therefore by (&)*Cg(G*) ob-
viously H'=(&)* is true.

Levma 2. A group with property P is finite or lorsion free.

Proof. If g« G is an element of finite order and O(g)=n >1, then
with a suitablé rational integer k the connection {g}=6" holds. There-
fore the order of any group-element is no greater than kn, namely G is
at most kn-bounded. In this ease G has only finitely many different
powers, whenee only finitely many different subgroups, namely @ is
itself finite.

LevmA 3. If an abelian group has the property P, then it is cyclic.

Proof. Let G be an abelian torsion free group with property P.
Then. there exists to the element 1+£ge G a rational integer n=0 for
which {g}=@" holds. Then the mapping x-»x* is evidently an isomor-
phism of @ into itself, tnerefore the group G is in this case eyelic.

Now let G be a finite abelian group with property P, which is by
the above-mentioned ground theorem the direct product of eyelic groups.
It is evidently sufficient to prove our Lemma for p-groups, bzeause every
p-component, as a direet factor, has by Lemma 1 likewise the property P,
and therefore from this proof of our Lemma already follows the eyelie
bhehaviour of @ itself. There exists a direct factor 4,5={1} ot the p-com-
ponent G, of the group & for which with a suitable subgroup B, obviously
@,=4,% B, holds. Then 4,=¢, and we can assume that s=p~ (m>0).
In this case 4,—A}x B;, and thus 4,=4;, namely s=1. Therefore the
subgroup G, and the group & are eyelic.

16*


Artur


240 F. Szasz

The proof of the theorem. Let & be an arbitrary group with
property P. Then every subgroup of the group & is by the definition
of the kth power of the group G a normal subgroup of G. Let Z be the
centre of @, then the factor group @/Z is by the above-mentioned ground
theorem of R. Baer on the hamiltonian groups, necessarily abelian,
and by Lemma 1 bas the property P. Therefore G/Z is by Lemma 3 cy-
clic, which is evidently equivalent to the commutativity of the group G.
But then @ is by Lemma 3 likewise cyclic.

On the other hand every cyclic group has the property P, and there-
fore the proof is complete.
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On antipodal sets on the sphere and on continuous

mvolutions *
by

J. W. Jaworewski (Warszawa)

L Preliminaries

1. The sphere S,. Let S, be the n-sphere in the (n--1)-dimensional
Euclidean space E,y, 1. e., the set of points @ ¢ B,y with |z|=1. We de-
note by a the antipodal mapping of 8,; it is defined by a{z)= —=z, for
every x e S,. The set 4CS, is called antipodal if a(d)=A.

2..True chains. Let 3 be a metric space and > 0. By an s-simp-
lex of M we understand a finite subset of M with diameter <e. In a known
manner we introduce the notions of e-chains and s-cycles modulo 2 of M.
Since in the sequel we shall use the homology theory modulo 2 only
{with the exception of Chapter IV), the words “modulo 2? will be omitted.
The boundary of a chain » we denote by &x». By the boundary of a 0-di-
mengional simplex we understand the number 1 considered as a rest
modulo 2. The rests 0 and 1 modulo 2 may be considered as (—1)-di-
mensional cycles. A p-dimensional e-eycle y? is said to be 5-homologous
to zero in M if there exists in M a (p-+1)-dimensional #-chain »#+! such
that dxpil=yr,

A sequence of chains »={x;} is called a p-dimensional true chain
of M if there exists a compact subset € of M and a sequence {&} of po-
sitive numbers convergent to zero and such that » is a p-dimensional
g-chain of (. A true chain y={y;} is called a true cyele if 9y= {8y;}=0.
Let y={y:} be a p-dimensional trune cycle of M. Then ¢ is said to be
homologous to zero in M if, for every £>0, there exists an i, such that
v; is s-homologous to zero in M, for 1 >1y; it is called convergent in M
if the true cycle {y;~ y:y1} iz homologous to zero in M; if there exists
a number 5 >0 such that no cycle y; is »-homologous to zero in M, then
the true cycle y is called tofally unhomologous fo zero in M.

We shall denote by B?(3) the p-dimensional homology group (mo-
dulo 2) of M based on the convergent cycles.

* The main results of this paper were published without proof in [7] and {8].
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