Sur une propriété des nombres ordinaux

par

W. Sierpiński (Warszawa)

Le but de cette Note est de démontrer, sans utiliser les formes canoniques des nombres ordinaux, le théorème suivant:

Théorème 1. m et n étant deux nombres naturels donnés quelconques (égaux ou non) les égalités $a\beta = \beta a$ et $a^m\beta^n = \beta^n a^m$ sont équivalentes pour les nombres ordinaux a et β .

LEMME 1. Si a et β sont des nombres ordinaux tels que $\alpha\beta > \beta\alpha$ et si m et n sont des nombres naturels, on a $\alpha^m\beta^n > \beta^n\alpha^m$.

Démonstration du lemme 1. Soit s un nombre naturel et supposons que le lemme 1 est vrai pour les nombres naturel s m et n, où $m \le s$ et $n \le s$ (ce qui est vrai pour s=1, puisque $a\beta > \beta a$). Soit n un nombre naturel s on a donc $s^{\beta} > \beta^n s^s$. Or, si n > 1, on a $s^{\beta^{n-1}} > \beta^{n-1} s^s$ et si s is alors (vu que s > 0, puisque s > 0, puisque s on trouve s is s in tout cas on a donc s in s in s in s on a ainsi (vu que s > 0) s is s in s

On voit aisément qu'en modifiant un peu la démonstration du lemme ${\tt 1}$ on obtient le

Lemme 2. Si a et β sont des nombres ordinaux tels que $\alpha\beta \geqslant \beta\alpha$ et si m et n sont des nombres naturels, on a $\alpha^m \beta^n \geqslant \beta^n \alpha^m$.

En échangeant les lettres α et β ainsi que les lettres m et n, on obtient tout de suite des lemmes 1 et 2 les deux lemmes suivants:

Lemme 3. Si a et β sont des nombres ordinaux tels que $a\beta < \beta a$ et si m et n sont des nombres naturels, on a $a^m\beta^n < \beta^na^m$.

LEMME 4. Si α et β sont des nombres ordinaux tels que $\alpha\beta \leq \beta\alpha$ et si m et n sont des nombres naturels, on a $\alpha^m\beta^n \leq \beta^n\alpha^m$.

Démonstration du théorème 1. Soient m et n deux nombres naturels, α et β deux nombres ordinaux tels que $\alpha\beta = \beta\alpha$. D'après les lemmes 2 et 4 on trouve $\alpha^m\beta^n > \beta^n\alpha^m$ et $\alpha^m\beta^n < \beta^n\alpha^m$, ce qui donne $\alpha^m\beta^n = \beta^n\alpha^m$.

D'autre part soient m et n deux nombres naturels et a et β deux nombres ordinaux tels que $\alpha^m \beta^n = \beta^n \alpha^m$. S'il était $\alpha \beta > \beta \alpha$, on aurait, d'après le lemme 1, $\alpha^m \beta^n > \beta^n \alpha^m$, contrairement à l'hypothèse. On a donc $\alpha \beta \leqslant \beta \alpha$. Or, s'il était $\alpha \beta < \beta \alpha$, on aurait, d'après le lemme 3, $\alpha^m \beta^n < \beta^n \alpha^m$, contrairement a l'hypothèse. On a donc $\alpha \beta = \beta \alpha$.

Le théorème 1 se trouve ainsi démontré.

Il en résulte, en particulier, que si deux nombres ordinaux a et β sont multiplicativement commutables, des puissances quelconques de ces nombres d'exposants naturels sont aussi multiplicativement commutables. Or, cela n'est pas vrai pour les exposants transfinis, puisque, par exemple $2 \cdot 3 = 3 \cdot 2$, mais $2 \cdot 3^{\omega} \neq 3^{\omega} \cdot 2$ (vu que $2 \cdot 3^{\omega} = 2\omega = \omega$ et $3^{\omega} \cdot 2 = \omega \cdot 2 > \omega$). On a aussi $\omega^{\omega}(\omega+1)^{\omega} = (\omega+1)^{\omega}\omega^{\omega}$, mais $\omega(\omega+1) \neq (\omega+1)\omega$, ce qui prouve que dans le théorème 1 les nombres m et n ne peuvent être remplacés par le nombre ω .

COROLLAGRE. Si l'on a pour les nombres ordinaux a et β et pour les nombres naturels m et n l'égalité $a^m = \beta^n$, alors $a\beta = \beta a$.

Démonstration. Supposons que a et β étant deux nombres ordinaux et m et n deux nombres naturels, on a $a^m = \beta^n$. On a donc $a^m \beta^m = \beta^{n+m} = \beta^{m+n} = \beta^m a^m$ et il résulte du théorème 1 que $a\beta = \beta a$, c. q. f. d.

On démontre aussi que si l'on a pour les nombres ordinaux α et β l'égalité $\alpha\beta = \beta\alpha$, il existe des nombres naturels m et n tels que $\alpha^m = \beta^n$, mais la démonstration est assez longue: voir E. Jacobsthal [1], p. 484; voir aussi mon livre [2], Chapitre XIV, § 25, Théorème 44.

En modifiant un peu la démonstration du théorème 1 on démontre que pour les types ordinaux α et β et pour les nombres naturels m et n l'égalité $\alpha\beta=\beta\alpha$ entraı̂ne l'égalité $\alpha^m\beta^n=\beta^n\alpha^m$. Or, le problème se pose si l'implication inverse a aussi lieu, en particulier si, pour les types ordinaux α et β , l'égalité $\alpha^2\beta^2=\beta^2\alpha^2$ entraı̂ne l'égalité $\alpha\beta=\beta\alpha$.

Travaux cités

[1] E. Jacobsthal, Vertauschbarkeit transfiniter Ordnungszahlen, Math. Ann. 64 (1907), p. 475-488.

[2] W. Sierpiński, Cardinal and ordinal numbers, Warszawa 1956 (à paraître).

Reçu par la Rédaction le 29.9.1955