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.Introdnction. In mathematics it is often necessary to extend
a given model M=<{4,R;,...,R,> of a certain axiomatic H to model
Di*=(4* R?,...,R}> in such a way that, besides the axiomatics A in IM*
also each of the sentences of a given set € be valid. In that case seni
tences belonging to A are called primary conditions of extension, sen-
tences belonging to C — secondary conditions of emtension and, given
these two sets, we search for the necessary and sufficient conditions to
be satis.fied by the model in order that extension may exist.

'_]?yls kind of problem is ealled the problem of emtension with secondary
conditions. The simplest example is here the problem of extension of
a commutative ring to a field, where & is the axiomatic of commutative
rings and C consists of one sentence which states the existence of a con-

* Presented in part to Polish Mathematical Soci f i
] 3 ciety, Torud Section on 12. 5. 53
and at the VIIIth Congress of Polish Mathematicians, Warsaw, September 6-12, 1953.
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verse element for each element differing from 0. As it is known, a suffi-
cient and necessary condition for the existence of extension is in that
case the fact that the extended ring contains no divisors of zero.

In this paper we present the general problem of the extension of
models with elementary primary and secondary conditions; it iy for-
mulated in more general terms than above (see § 3), since in secondary
conditiong it admits the occurrence of new relations, not found in pri-
mary conditions. A general solution of the problem of extensions is given
in theorem 1.

It we revert to the problem of extension of a ring to a field and
write symbolically the condition of the absence of divisors of zero

z-y=0->(@=0Vy=0),

we see that this condition is written in the form of an open formula,
namely, a formula in which there are no quantifiers whatever ). As fol-
lows from theorem 1, the general rule is that in every defined case of
the problem of extension with primary and seeondary conditions the
necessary and sufficient conditions of extension may be found in the
form of a certain set of open formulas.

Paragraphs 1-4 of the present paper are of a preliminary character.
They contain notions and lemmas for proving theorem 1, as well as
a clagsification of the problems of extension. Paragraph 5 includes the
proof of theorem 1 followed by its general application. Paragraphs 13-16
contain details pertaining to the application of theorem 1 to various
examples of extension known from algebra. Tt is of interest to note that
such examples may be found among well known results. Besides the
problem of the extension of a ring to a field, also the problem of the
extension of a semigroup to a group has been solved (by Maleev [7])
in accordance with theorem 1, 4. e. by giving conditions without quan-
tifiers. ’

§ 1. Elementary formulas and consequences. We shall take
into consideration three elementary theories which differ as regards the
primitive signs oceurring in them. i

The first is the theory with the signs ry,7s,.. of relations and the
§igns fi,fa,... of functions, in the second theory, apart from these signs,
the signs ¢;,gs,... of relations oecur, and in the third, in addition to the
above mentioned signs, there will be a cerfain number of individual

1) The lack of divisors of zero may of course be written With quantifiers in the
form of [][] (x-y=0—-x=0Vy=0). On account of the rule of omitting and adding

z ¥
general quantifiers these sentences are deductively equivalent.
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signs g;, where the index ¢ runs over a set I. Besides the identity sign «=2"

will occur in all three theories.

The rules of constructing well-formed formulas will be the same in
all three theories. We thus assume that 7,,7y,..., ¢1,5,..., respectively,
are signs of vy,9;..., Wy, ps,...-ary relations and f,f,,..., are signs of
%y ,%y,..-ary functions. -According to well known rules we build well-

_-formed formulae from primitive signs of the theory, of propositional
connectives — (implication), v (disjunction), A (conjunction), = (equi-

valence), ' (negation), of individual variables ®;,,,..., of quantifiers 1
X

and 3, and of brackets.
X,

j

We denote by &,, &;, &, the sets of well-formed formulas of the
first, second and third theory. We obviously have
(1.1) &, C6,C6,.

Let us note that to & belong not only sentences, i. e. formulas
without free variables but also formulas in which free variables oceur,
and even those in which there occur no bound variables. We distinguish
therefore in each of the sets & a subset ; of sentences of that theory,
hence of such formulas in which there oceur no free variables, and a sub-
set O; of open formulas of that theory, 4. e. formulas in which there
occur no hound variables. Let us observe the fact that the sets &; and @,
need not be disjoint; in particular, in the third theory the common part
of these sets will contain all those sentences in which there oceur no
variables but only the signs of individual constants 0r-

In each of the three theories we shall apply the rules of inference
known from the so-called functional caleulus with identity (engere Pri-
dikatenkalkiil mit Identitiit2)). For a set &C &; we shall denote by
On, (&) the set of all formulas belonging to &; derivable from the for-
mulas belonging to & by means of these rules. Thus we obtain a certain

operation on subsets of set &;, called the operation of consequence. Let
us recall its fundamental properties.

(1.2) If C&:, then &fcon,(g)z(Jn,-(oni(g))cg,,
If EC&;, then Ony(F)= U onl ).

cE

finite

af_,;jo;:i(g‘;g’ FCE;, then ﬁeOni(SE'u(a)) if and only if

There exists such aeby, that Gni((a))=(3, 3),

(1.3)

(1.4)

(1.5)

2) See Hilbert-Bernays [3].
%) Cf. Tarski [10]. -
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The set & C&; is called consistent in & if Cny(%¥)#&;. From (1.3)
and (1.5) it follows that

(1.6) If ECE&; is inconsistent in. &;, there ewists such a finite YC,
that Y is inconsistent in &.

From (1.4) and from the laws of the sentential calculus it follows that
1.7) If aedy, FCE; and F o (a) is an inconsistent set then o' ¢ Cn(&).

Let a=a(gy,...,4,) belong to &;; we denote by a(as,,...,2;) a for-
mula which differs from o only in that everywhere in a the constant
signs g,, have been replaced by the variables ;. It is easy to prove the
following lemmas:

(1.8) If al@ey-eers,) €S53, EC G, and algy, ..., 91,) € Ong( &) then for arbitrary
Xy ooy &5, NOL OCCUTTING TR Gy ..., Gr,) We have a(Xs,...,25) e Ony(F) 2).

A pair composed of a set of formulas &; and of the consequence
('n; operating in that set we call a deductive theory. In the sequel we shall
denote this theory by the symbol of the set of formulas: &;.

§ 2. Models for &;. By a medel in theory &; we understand any
interpretation of formulas from &;, 4. ¢. a non-empty set A with some
relations, funetions and possibly constants by which the primitive signs
of formulas from & are interpreted. Sinee sets &; differ as regards their
primitive signs, the models in these theories are also different. Thus for
the theory &, we have models of the form

M=<KA, Ry, Rpy.c.y By, Fyy..>,
for the theory &, of the form
M=<CA,R,Ry,.c., F1, Fy.ee, @1,Q5,...>,
and for the theory &, of the form
‘ WM=CA, Ry, Ryyorey By, Fayees @1y @y oney {Giebier.

R; and ¢, are relations on A which interpret the signs 7; and g,
they must therefore be »; and w-ary relations, respectively. F; are func-
tions on A with values in 4, which interpret the signs f;, hence ¥; must
be a function of x; variables. Finally, &, are interpretations for the
constants g,, they are therefore elements (not mnecessarily different)
of the set A.

It is clear what we understand by saying that formula « is valid
in model M. It will be observed that for the sentence “z is valid in MM’

»

%) Cf. Henkin [1], p. 161.
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to be meaningful, interpretations in Pt must be given for each of the
primitive signs occurring in a; in particular, this sentence has no meaning
if ae&ir— 6 and if M is a model for & (1=1,2).

Let us also note that the formula o containing the free variable «;
is valid in model Mt if and only if formula [Ja is valid in 9t; in other words:

Xt

free variables are treated by interpretations in the model in the same
manner a8 variables bound with general quantifiers. This is in confor-
mity with the known rule of omitting and adding the general quantifiers.

There is no interpretation shown for the sign of identity in a model,
ag we assume that this sign is always interpreted as identity, . ¢. as a re-
lation occurring between each pair of the elements @, and no other pair.

If every formula of the set & is valid in the model M we say that
M is a model of &.

The following lemmas are well known:

(2.1) If W is a model of the set EC &;, then M is a model of the set Ony(&).
(2.2) Bach set of formulas which has a model is consistent.

Let us also note the well known

THEEOREM oF GODEL. Hach consistent set of formulas has a model.

Let it be observed that Godel’s theorem is valid for all- three theo-
ries &;, irrespective of how many primitive signs are accepted in &;°%);
in particular, it is valid for &; even if the set of the signs g, therein con-
tained is of great power. If we do not assume (as is often the case) the
set of primitive sighs to be denumerable, then the proof of Godel’s theo-
rem is ineffective, 4. e. this theorem -cannot be proved without the aid
of the axiom of choice or other similar means ¢).

§3. Submodels and extensions. Let M=<{4,R,,R,,...
and IM*=<{4* Ry, RE,..., F1,F%,...> be two models for &;.

If 4CA4* and R*]A:RI, R}|A=R,, .., F{|A=F,, I5|A=1F,,..7)
we say that It is a submodel of M*, and M* is an extension of the first
kind of the model M.

Let Bt and I* be the models mentioned above. If there exists a one-
-to-one funection ¢ mapping 4 on A* in such a manner that

Ri(a,...,a,) if and only if Rf(p(ay),..,p(a))  (i=1,2,..),
(Filar, oy e, 0,)) =F¥(plar) , . pp(ay)  (i=1,2,...),

we say that the models I and M* are isomorphic.

1Ty Fayed

%) Cf. Henkin [1], p. 164, and Y.of [4].
%) See ¥.0& [4].
?) Symbol Rild denotes the relation B; limited to set 4, similarly symbol Fiid.

icm

On the extending of models 13

With the aid of the notion of isomorphism it is possible to generalize
the notion of submodel and of extension as follows:

The model Mt is a submodel (in a generalized sense) of the model M*
if there exists a submodel (in the above sense) M? of the model M* iso-
morphic with M. If M is a submodel (in a generalized sense) of the mo-
del M*, we say that M* is an extension of the first kind of the model M.

'l‘he notions of isomorphism, submodel and extension of “the first
kind are analogously defined for models of the theories &, and &,.

Now let Mt be a model for &; (i=2 or 3). By M|j (j <) we denote
the model for &; obtained by eliminating from Wi the interpretations
of signs not occurring in &;. For example:

If M=<4,Ry, Ry Iy, Foyeee y @1, @s50eey {Grlrery then
E)Rlo_<A7R1!R27"'3F17FB7“'?Ql’QE"">
and
ML =M2(1=C4, Ry, Ry, ..., Py, Fyyed.

The model M* for & is called extension of the second kind of the
model M for &;, j< 4, if P is a submodel of IM*|j.

Moreover if 9t is isomorphic with M*/j, we say that IM* is a weak
extension of the second kind of the model .

Let us note that if MM is a submodel of M*, the formula a being
valid in Di*, then « need not be valid in M. The converse does not hold
either: if « is valid in M, « need not be valid.in M*. However, we have
the following theorem: .

(3.1) If YDt’is a model of set ¥C O;, M a submodel of M*, then M is the
model of the set &.

§ 4. Descriptions of models for &;. The notion of description
as given in this paragraph is essentially due to Robinson ®). It may be
defined for models of any theory, hence not only for & but also for &,
and & provided an extended theory with a sufficiently large number
of constants is available for the theory in question. That extended theory
for & will be & and we shall therefore limit ourselves to defining the
description of models for &;. )

Let M=<A4,R;,Ry,...,F1,Fs,...> be the model for &;. The deserip-
tion of the model M will be a certain set of sentences belonging to &;.
Let us first put T=A4; in other words, let us assume that the index of
the constants g, runs over A. Such an assumption is of course equivalent
to assummg that there are as many constants g, in &; as elements in 4
(hence T= A) and that a one-to-one mapping of T on 4 is given. We are
free to make such assumptions since, so far, we have not made any with
respect to T.

8) Robinson [9], p. T4.
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If we now consider the constant signs g, in &; as names of elements
a e A, then we shall find in &, a set of sentences describing model I as
exactly as possible. These sentences are

(i)  (ga=gs), for a,be A and azb?®);

(i1) ri(gal,...,g,,ﬂ), if Ry(ai,...,a,) holds;

(i) 1‘,-(g,,1,...,g,,ﬂ)’, if Ry(aq,...,a,) does not hold;
(V) il 19, ) =Gy I Filayyeees )=t

The set of all sentences from &; of the form (i)-(iv) will be called
the description of model 9 and denoted by D(IM).

Let us remember that

D) C S5 O,

In sentences belonging to D(IM) the signs ¢y,qz,... do not occur.
From the definition of description it follows immediately that

(43) If DIANCECS, and M* is a model of &, then M*|L is an ex-
tension of the first kind and IM*|2 an ewtension of the second kind
of the model M.

‘We shall now prove:

(4.4) If M is a model of the set £ C&;, then the set E o D(M) is con-
sistent in &;.

(4.1)
(4.2)

In fact the weak extension of the second kind %
m*=<AaR1:R27---:F17F2’"-3Q17Q2"--; {Ga}aeA>

where G,=a and ¢; are arbitrary, is in that case the model of the
set £ D(IM), hence (4.4) results from (2.2).

(4.5) If M s a model of the set ACE,, and the set A o C v D (M) where
CCE, is inconsistent in &, then there ewists such a; € Oy, that
0, ¢ Ong(A v C) and a, is not valid in M.

Proof. It follows from (1.6) that there exists such a finite set
DCD(M) that Ao Cu 9, is inconsistent in &;. Let us denote by
a=a(fa,-.-,0s,) the conjunction of all sentences belonging to D,.
A CU(a) is obviously inconsistent in &,, hence it follows from (1.7)
gl:;; (oi’;c{ig}l,ﬁ.,g,,ﬁ);hbslongs o Ony(A v C), but A CCE,, hence

-8) 16 follows that a;= a(2y,,...,2, ) bel
(4.1) and (4.2) it follows tlllat Ezlxle’ 01,. o beiones to Ou(SL e ). From

B s :
) The symbol = has two meanings in this paper: as a primitive sign occurring

in formulas of theori i ity i s s
I Dotk meam‘.ngse.ones’ and as an identity sign for elements. In this formula it is used
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a=a(gay-.-,§s,) 18 the conjunction of sentences belonging to D(M)
and from the definition of description D(IM) it follows that the ele-
ments aj,...,q, satisfy the formula afxy,...,2,) in M, thus not satisfying
afftgy .. 5 %;,), Which is to say, that «, is not valid in M, q.e.d.

§ 5. Theorem on the existence of extensions. Let ACE,
CC&,, and let M be a model of the set HA. Every extension of the second
kind IM* of the model P, which is a model of the set A C will be called
the extension of M with primary conditions FH and secondary conditions C.

THEOREM 1. In order that an extension of the model M with primary
conditions A and secondary conditions C may exist, it is necessary and
sufficient that D be the model of the set qn Cny(A v C).

Proof. Necessity. Let 0i* be an extension of M with the con-
ditions A and C; then every formula which belongs to A C and con-
sequently every formula which belongs to Cny(Aw C) is valid in W1 ¢
Tn view of I being a submodel of M*|1, it follows from (3.1) that M 2
is a model of @y~ Cny(Aw C).

Sufficiency. It follows from (4.5) that if I is a model of seb
Oy~ Cny(A v C), the set HA v CuDIM) is consistent in &, Godel’s
theorem shows that there exists a model 9° of that set. It follows from
(4.5) that Mi°|2=T* is an extension of the second kind of the model Pt
Considering that S« CC &,, and that MO is a model of that set, hence
P+ is also a model of that set.

Remark 1. If CC&,, then CC&,, hence in this case theorem 1
is of course ‘'valid. In theorem 1 we state the existence of an extension
of the second kind but by assuming CC&, we can put M*=I0[1 and
thus we obtain an extension of the first kind with conditions A and C;
in that case a condition for the existence of extension is that Dt be the
model of set O~ Cn(FA o C) because, as may easily be verified, for
F CE, we have Op ~ Cny(F)=0, ~ Ony(&E).

TarorEM 2. I] CC O, then for a weak extension of the model M with
conditions FA and C to exist it is necessary and sufficient that M be the
model of set Oy~ Ony(FA © C).

The proof follows immediately from theorem 1 and lemma (3.1).

Remark 2. It should be noted that theorem 2 is valid only for the
reason that we pass from set & to &, by adding certain signs of rela-
tions and not signs of funetions. When we do so it frequently happens
that &, differs from &, in as much as in formulas &, occur signs of fune-
tions which are not found in formulas &;. If this is the case, we may
apply theorem 1, since every sign of an s-ary function may be replaced by
the sign of an (s-+1)-ary relation, assuming this relation to be a fune-
tion with respect to its last argument. These conditions are expressed
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in the form of certain formulas belonging to &,, but not to ©,, which
must be added to the secondary conditions of extension. Thus we may
apply theorem 1, but theorem 2 is not applicable. Namely, if even the
initial set of secondary cenditions consisted of open formulas only, then,
after replacing the signs in functions by the sign of relation, we obtain
a set of conditions in the formulas of which quantifiers will oceur and
therefore the assumption of the theorem will not be satisfied.

§ 6. Characterization of O-systems®). In this paragraph we
shall make use of the following theorem, known as the theorem of com-
pleteness of the rules of elementary theories ):

THEOREM OF COMPLETENESS. If L CEy, ae b, and a ¢ Ony (&), then
there exists a model of ¥ in which a is not valid.

If CE, and Cny(F)=&, then we call & a system.

If & is,a system and F=0ny(O;~ &), then & is called O-system.

From (2.1) and (3.1) it follows that

(6.1) If & is the O-system, then every submodel of a model of the system

& is a model of the system &.

‘We shall prove the following inversion of thig theorem:

TeEOREM 3. If every submodel of a model of the system F is a model
of the system &, then & is an O-system.

Proof. Let us assume that ae & and a¢ Cny(O;~ F). It results
from the theorem of completeness that there exists a model Mt of the
set O;~ &, in which « is not valid. Putting A=0,~ & and C=%
W.e‘obtam Oy~ Cny(A o C)=0; ~ Cny(E)=0, ~ F=HA, hence the con-
dition of theorem 1 is satisfied. From theorem 1 it follows that there

"exists an extension (of the first kind) IM* of the model Pt which is a mo-

del of the system &. Following the assumption of the theorem, Mt as
a submodel of It* is a model of the system & and therefore a is
satisfied in I, confrary to the assumption. We have shown that
t}-lere exists no a e & such that a¢ On, (O, ~ &), hence F COny(O, ~ ).
Since — as is easy to see — Ony(O; ~ &) C Ony(F)=E, therefore finally
F=0ny(O: ~ F), q.e. d. ’

§ 7. Elementarily definable classes. Let 4 be a certain clags
of models. The class A is called elementarily definable if there exists such
a set ACE; that Me A if and only if M is & model of the set HA. The
set A iy then called a set of awioms of class 4.

7 10 Th:a results contained in this paragraph are given in [4].
oo This theorem is often called Gédel's theorem on the completeness of the func-
tional calculus.
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When considering definable classes we always assume that in for-
mulas of the set &, occur only those primitive signs which are essential
for the problem under consideration. Thus, for example, considering the
class of semigroups, we assume that in &; there is only one sign of a bi-
nary function corresponding to multiplication in semigroups, whereas
neither the signs of relations nor any other signs of functions oceur in
formulas of &;: At the same time we assume, of course, that in the models
in question there are interpretations only for signs oceurring in formulas
of &,. Sometimes it may not be irrelevant whether the same problem
is considered by means of a greater or smaller number of primitive signs.
For example, as we know, groups may be considered with the aid of
one binary operation — multiplication, or two operations — multiplication
and unary inversion. Only in the second case it is possible to write the
axiom of groups in the form of open formulas. From this results the
well known fact that in the first case the submodel of a group need not be
a group (it may be a semigroup only, e. g. the set of natural numbers
forms a submodel of the group of integers), and in the second case a sub-
model of a group is always a group.

If A is a given class of models, then by an A-submodel of model M
we shall understand that submodel of the model M which belongs to
the class 4.

For a given set ACE, we shall denote hy M(HA) the definable class
of axiomatic S. Obviously, if AC B, then M(B)CM(HA). Tt follows from
Godel’s theorem that M(HA)=M(B) is equivalent to Cny(A)= Cny(B)™).

§ 8. General conclusions from theorem 3. From theorem 3
follows immediately

THEOREM 4. If every submodel of a model belonging o a definable
class A belongs to A, then there exists an axiomatic H of A contained in O;.

This is, in fact, theorem 3 in the terminology of definable classes.
A more specific conclusion from theorem 3 is the following

THEOREM 5. If A=M(A) is a definable class, B is a definable sub-
class of A and every A-submodel of a model which belongs to B again
belongs to B, then there exists such a set B C O, that B=M(&A o B)13).

Tet us note here one more lemma resulting from theorem 5 and
from the known properties of elementary theories:

12) Aceording to Tarski [11] eclasses definable by means of a finite axiomatic are
called arithmetical classes. I do not use this terminology as this notion seems to be
only loosely connected with arithmetic.

1) This theorem may be also proved by repeating the proof of theorem 3. It is
in fact a generalization of theorem 3.
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(81) If A=M(A) is o definable class, a a sentence and every A-sub-
model of a model belonging to class M (A v (a)) also belongs to that class,
then to Cny(A) belongs the equivalence a=p where B is a general
sentence, i. e. a sentence of the form [] []...[ly, v e O,.

Ty Fsg s,

§ 9. Sentences persistent with respect to a given definable
class. A sentence o will be called persistent with respect to a class of
models 4 if and only if whenever it is valid in a model It belonging
to A it is also valid in all the extensions of M which belong to A.

From (8.1) we obtain the following theorem which describes the
form of persistent sentences with respect to definable clagses:

THEOREM 6. If the sentence o is persistent with respect to the defin-
able class A=M(A), then to Cny(A) belongs an equivalence a=p where p
15 an existential sentence, 1. e. a sentence of the form

22---2%

X5y ¥sg  Xsy

ye0,.

As Robinson ) has shown, every sentence persisterit with respect
to the class of all Abelian groups G (it being of no consequence whether
we treat groups as models of an azxiomatic of one or two primitive func-
tions) and satisfied in at least one Abelian group is satisfied in a certain
finite group.

On account of the definability of the class of Abelian groups, Godel’s
theorem and theorem 6, the theorem of Robinson, may be expressed
as follows:

{9.1) 1If a is an emistential sentence, consistent with the aziomatic of Abe-
lian groups ), then « is valid in a certain finite group

or in an entirely equivalent form:

(9.2) If the formzdu ae O is valid in all finite Abelian groups, it is valid
in all Abelian groups.

There are analogous theorems for the class of commutative rings 18),
bust it is false for the class of arbitrary groups ¥).

$ 19. The class of submodels of a given definable class.
For a given eclass of models 4 let us denote by sm(A) the class of all
submodels of models of class 4. As every model is, according to the

1) Robinson [8], p. 234. .
) 15) This means that set A (a) is consistent when F is a set of axioms for Abe-
lian groups. It is a guarantee of the existence of Abelian groups in which « is valid.
16) Robinson [8], p. 146. )

¥) I am greatly obliged to Professor B. H. Neuman for this information.
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definition, its own submodel, hence 4Csm(4). Frem the definition of
operation sm it follows that

(10) sm (sm (4))=sm (4).

If A is a definable class, then, according to theorem 4, 4=sm(A4)
is equivalent to the existence of such a set HCO, that 4A=M(HA). On
the other hand, in accordance with theorem 5, for an arbitrary definable
class A=M(A) and its arbitrary definable subclass B, 4 ~sm(B)=B
is equivalent to the existence of such a set BCO, that B=M(HA v B).

We thus find that operation sm enables us to express some theorems
in a very simple manner.

From theorem 1 and the above remark follows @

TaEOREM 7. If A=M(A) is a definable class, then sm(A) is a de-
finable class too, and sm(A):M((‘)lnCnl(ﬂl)).

In order to generalize this theorem we shall consider simultaneously
classes of models of &, and &,. For a class 4 of models for &, we shall
denote by A1 the class of all models 9|1, where M e A.

THEOREM 8. If A=M(A), ACE, is a definable class of models,
the class sm(A[1) is a definable class too, and sm(All):M(@ln(Jng(.-%)).

ToeorEM 9. If A=M(A), ACE,, and ALICB=M(B), BCE,,
then the class B~sm{A|1) is a definable class too, and

BA ﬁm(AIl):M[Q v (@1 ~Cng(A v C))] .

§ 11. Definability of some non-elementarily defined clas-
ses. So far we have discussed only elementary formulas, in particular
sentences, 7. e. those in which only individual variables occur. Now we
proceed to discuss a special type of non-elementary sentences, namely,
sentences of the form

PEDIEDN

( *) a 9 L

where f§ ¢ 8,, and where no signs g; occur in g for j >s. The signs ¢; occur-
ring in @ are treated in this case as variables which run over all relations,
and the signs r; and f; as constant relations and functions.

Let 9 be a model of a set ACE,. It is obvious what we should
understand by the validity of a sentence a of the form (x), in M. It simply
means that on the set 4 of the model M={4,R;,R,,..., F1,Fy,...> it is
possible to determine such relations @, ...,Q, that 8 is valid in the model
WM =CA, By Ry ooy Fyy Foynny Qrye s @

In other words: a is valid in M means that there exists a weak
extension of the second kind of the model M in which g is valid.
Fundamenta Mathematicae. T. XLIL 4
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Let us denote by M(H,a) the class of all those models of the set &
in which the sentence a is valid, From the above remark it follows that
for a of the form (x): :

(11.1) MR, 0)=M(A v (P

As will be shown below (§ 12) class M(A,a) need not be elementarily
_definable. From theorem 2, theorem 9 and (11.1) follows

_ TEBOREM 10. If « ds of the form (x) and B is a general semtence (3. e.

of the form [T IT...[1y, y e ®y), then M(A, a) is elementarily definable and

M(T,0)=M(L o (01~ Ong[ A (5)))-
THEOREM 11. If a is of the form (%), then class
sm (M(A,a)) and M(A) ~ sm(M(HA, a))
are elementarily definable and .
st (M(A, o)) =M 01 ~ Oy A ()]
M(A) ~sm (M(, ) =M (0, ~ Ona( T o ®)).

§ 12. Example of a non-elementarily definable eclass M(A,«).
Let us interpret the signs of functions f, f, as the operations of ad-
dition and multiplication of natural numbers, the signs f;, f, as num-
Ders 0 and 1 (hence »,=xy=2, #=1,=0). In this interpretation let A
be the set of all valid formulas. Set HA is, of course, a complete system.

It is well known that the M ) comprises a great number of dif-
ferent models but only in one of them the (non-elementary) axiom of in-
duction is valid.

Let a be the sentence

aL

> {%(fa) A ”[%(%)" 1 (fl(ml :f4)):| A 291(901)’}-

Class M(HA,a) is not equal to M(ZA) as it is composed only of those
models belonging to M(H) in which the axiom of induction is not valid.
This class is elementarily not definable since A i3 a complete system,
hence none of its proper subclasses is elementarily definable.

_ §_ 13. Extension of a semigroup to a group. In particular ap-
plications we shall refrain from denoting relations and operations by
the letters 7;,¢; and f;; we shall denote them in the way accepted in
the respective branches of mathematics. ’
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Let us assume that in formulas of &, there oceurs only bne binary
operation #." — multiplication. Let A, eonsist only of the associative law

(1 @) By=2y (2 X3)-
Every model of A, is a semigroup. Let set C; be composed of the
formulas

IR IPX xS

Xy Xp X3

[ ] Xz m=m,.
X1 X3 X3

Every model of HA; v C; is a group. .

The problem of extension with primary conditions A, and secon-
dary conditions C, is the problem of extension of a semigroup to a group.
From theorem 1 it follows that this problemx may be solved by giving
open formulas written with the help of multiplication only, the validity
of which in a given semi-group is the necessary and sufficient condition
of the existence of extension. In precisely such manner Malcev has
solved this problem in the first of his papers [7], and in the second he
proved that the set of open formulas forming this condition of extension
must be infinite.

§ 14. Extension of a semigroup to a ring. Let us now assume
that in &, besides multiplication - oecurs also addition +. Let C, con-
sist of the following formulas:

[TT] X 2y zy=,,

Xy Xa X3

(8yip) 2 =y (e 223),

Lyt Ly= Ly~ D1,

&y (X B) =&y - Ly Ty~ Ty

(1 @y) - d3= - L3+ T~ T3

The problem of extension with primary conditions A, and secondary

conditions C, is ‘the problem of embodying a semigroup of a ring. From
theorem 1 it follows that this problem may be solved by giving sufficient

and necessary conditions containing no quantifiers. As far as I know,
this problem has not yet been solved in this or any other form.

It we put P=M(HA,+C,) the above problem may be formulated

© thus:

find a set of axioms for the class sm(P)|L.
On the basis of theorem 8 a set of axioms for this class is the seb
O, ~ Cny( A), this being, of course, not the only setb of axioms of that class.

4%
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In purely logical terms we may formulate our problem thus:
find a set FC&; (possibly the simplest) such that

Ony(F)= 0%1((91 ~ Ong( Ay~ 02))i

It is of interest to note that the algebraic problem of extension may
be reduced to a logical one. In that case it also seems that this cannot
be of any practical value. We shall present below a case in which a si-
milar translation of a problem into terms of logic immediately yields
its solution (see § 16).

§ 15. Extension of a group to an ordered group. We call
a group G ordered if for its elements an ordering relation < is defined,
such that for arbitrary elements a,b,c,d of G: if a<b, then cad < cbhd.

The class of groups which can be ordered may be defined in a non-
-elementary way as.follows:

By » we denote the conjunction of the formulas
Q@15 %0) — 1(@p, 1),
(%55 24) A Qu(4,75) =2 (25, 205,
G123 %) V Q(7, 26) V Xg=1;.

By f we denote the formula
II..11y
X E-)
and, lastly, by o we denote the formula 8.
a1

The class of groups which can be ordered is the class U=M (AL Cy, ).
In view of the fact that p is a general sentence, it follows from theo-
rem 10 that U/ is an elementarily definable class and that a set of its
axioms may be obtained by adding a certain class FC 0, to the axioms of
the groups. A, C,. On the basis of the known theorems on ordered
groups it is possible to construct the set & which, together with Ao Cy,y

defines the class U (see [5]). It is also possible to prove that % must
be an infinite set.

i § 16. Reduction of a ternary semigroup. Let us suppose that
in the formulas of &, there occurs one symbol of operation on three ele-

ments (a,b,¢), and that H, consists of the condition of complete aggo-

ciativity of that operation
((@2,0),2,6)=(a, (b,¢,d),¢)=(a,, (0,4, ¢)).
Every model of the class T=M(S,) is called a ternary semagroup.
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A ternary semigroup is called reducible if there exists such an asso-

ciative operation on two elements that
(a,b,6)=1(a-b)-c.

During the last war Banach showed %) that not every fernary semi-
group is reducible and he put forward the problem whether every ternary
semigroup may be extended to a reducible one. This problem of Banach
may be presented as follows.

Let us assume that in &, there occurs, besides the ternary opera-
tion occurring already in &, the binary operation of multiplication — #.”,
Let G, consist of two formulas

(a-b)-c=a-(b-¢),

Will sm (M(A; C)="1
We may here apply theorem 8, on the basis of which

sm (M(A; o Clt)=M (01~ Oy Ay o G-

(a,b,¢)="(a-b)-c.

It is easily seen that formulas of HA;w C; permit only an arbitrary
displacement of brackets, which is already guaranteed by HA, for for-
mulas belonging to @;.

Thus we have %)

01 ~ 0711(.%3) = 01 n C’ng(.—%g 19 Cg)

which results in
sm (M(FA; o Cy)|1)=M (01~ Cny(FAp))=M(F;) =T,
i. e. in a positive solution of Banach’s problem.

§ 17. The problem of weak extensioms. In the general case
the problem of giving conditions for the existence of weak extengions
of the second kind of a given model 9 with primary conditions A and
secondary conditions € remains open. The example presented in § 12
seems to indicate that no conditions asserting the validity of certain
sentences of &; in M can be sufficient. This seems to be indicated also
by the theorem given below without proof, which can by no means be
regarded as a solution of the problem. I am giving it for the purpose
of drawing attention to the fact that the solution should be looked for
in the conditions imposed upon the system Ooza(,ﬂlu Cu ED(ETR)) and not
only in the systems contained in &; and &,.

1) T am greatly obliged to Professor A. Alexiewicz for this informaifion.

19) This requires a very simple proof which may be carried out for mstanc(_s .by
mapping the systems in question in a theory in which no brackets are used for writing
the individual formulas x;-os-w.-Zn.
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We shall call the system & in By w-complete if whenever all sentences
of the form a(gs), teT, ae&; belong to &, then also the sentence [T a(,),

where @, does not occur in afg,); belongs to &.

THEOREM. If an w-complete system containing Ao Cou D) exists
in &y, then there exists a weak extension of model M with the conditions
A and C. ’

The inverse theorem is valid too.

Finally let us observe that the theorems and constructions con-
tained in this paper, and particularly the method applied, are not entirely
the author’s own. The method was introduced first by Maleev [6] and
Robinson [8], [9]; some theorems, very similar to those included here,
were recently published by Henkin [2].
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O cenapa6GenbHOCTH TOMONOTMYECKHX Tpynn

A. Térx (Bpomias)

Broxme apquraBHag Mepa u(X), ompeneifHHa® Ha HEEQTODOM Texe X wox-
MHOKECTB MHOKECIBA X, BASHBACTCS cenapadetsHod, eClIn CYIecTByer Tarol caer-
merfl waace M ESMeDEMEIX MHOMECTE, 9T0 LI BGHEOT0 MEO®ECTBA X € X roreqno
MEpH H BCFEOr0 JelicTBETEILHOrO YHCId & > 0 mafizéreg B M wmmomeerso M,
yroszersopaomee yexosun u{X = M)<e X =~ M oGo3magaer CHMMETPHYECEYE
pasmocrs muomeers X o M, m. e (X— M)U (M —X).

TEoPEMA. 128 M020, 4M0GL AOKAALHO-ROMNAKMHAS MONOAOZUULCKAS 2PYNNA
G Gwaa cenapadensrodl, neodzolumo w Oocmamouno, wmobv €€ mepa Xaapa
v CeNAPAOLNBHOU.

Heo6X0LEMOCTS JCIOBHS 0UeBHAHA, TAE KAK BCAEAS GopeleBeEas perylIspHAd
Mepa B cemapaGeIbHOM IIPOCTpAHETBE cemapaGeibHa (B KauecrBe CIETHOrO waacea M
MOBHO IPEHATH KIACC CYMM EOHEIHOIO IHCIA MHOEECTB H3 6asEL OTEPHITEIX MHO-
HECTB IPOCTPAHCTBA). :

JA9 I0KA3ATETBCTBA JOCTATOTHOCTH BOCHOIB3YeMCH CIeAYOIAMA IeMMAMH.

Tevua 1. Feaz xepa Xaapa aoratswo-nomnarmuod epynnss G cenapa-
Gewna, mo epynna G ydosiemsopaem nepeoil arcuome CuEMHOCMU U caedoga~
METHO MEMPUIYeMa. ’

TorasaTernoTso. Kak msmecrHo ms Teopemsr Behxs [3] (em TaE®e 1),
cucreya uHomects [ {u(@B-—B)<e), rie p — uepa Xaapa, €@, a & — TUCIQ,

*

yloBIeTBOpENmee HepaBeEeTBay 0 < & < 2u(kE), 06pasyer MOIEYI CACTEMY OKpect-
HocTefl eIMHEIE TPYHIEL Jerk0 3aMeTHTE, 9T0 MOKHO NOIYHYHTh MOMHYW CHACTEMY
OEpecTHoCTell eTNHNIG, OTPAHEYUBASCE WHCIAME & BEJA 1/n, T 7 HATYpaIbHO®
YRGIO, & ECTH Mepa cemapafelbHa, MOKHO CBEPX TOTO OPPAHAYATECH MHOEECTBAMA
F w3 cuéTHOro Elacca ML Taxmy oGpasoM moXydaeTed CuéTHAd NOJHAS CHCTEMA
OKEpecTHOCTel eTUEATE ¥ CPYINa YIOBIETBOPEET IepBoft akcHOME CIETHOCTH. Me-
TpHSYEMOCTH TPYLUEL CIETYeT oTcoja W0 TeopeMe Hapyramm 2]

Teumy 2. Iyemy X mempuvecroe, JORAALHO-KOMIARMHOE NPOCMPUIHCINGO,
Jt — B0peLeBCRas MEPA, NOAOHCUMETIHAR 05 OMAPLUINLLEL MHOKCECMS, KOWEHHAT
B8 HOMNAKMHBIT, PELYAAPHAL U MAKAS, ¥MO OMEPLIMDIE HHOHCECTEEL RoHeunod
Mepvy mookeHo npudauscams no mepe xomnanmuvimyu. Tozda, ecan mepa p ce-
napadeasna, mo npocmpancmso X cenapadessro.
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