Category theorems

by
M. K. Fort, Jr. (Athens, Georgia)

§ 1. Introduction. A topology for a set X is a set T of subsets of
X such that: X e T, the empty set @ is a member of T, the union of any
set of members of 7' is & member of 7', and the intersection of any finite
set of members of 7' is a member of 7.

L(?t T and T™* be two topologies for a set Y. T is categorically related
to 7* if and 9n1y if for every topological space X and function f on X into
Y, f T:eontmuo.us (£. e. continuous with respect to the topology T*) at
each point of X implies that f is T-continuous at each point of a residual
subset of X.

In thm paper a condition («) is given for an ordered pair (T,T*)
oihil_szlll)o;:agles for a set Y, and a proof is given for a rather general theorem
w tes that if (T, T*) satisfies condition then T i i
i aies | ’ («) then T is categorically

{i number of exa.l‘nples of pairs (T',T*) which satisfy condition (a)
are gljen, and thg basic theorem is interpreted for these examples. This
procedure results in new proofs for several well known category theorems
and also a few new category theorems. ,

§2. Condition () and the basic th

. eorem. Let T' and T* be
tﬂp;)lf);gxeﬁ f01-= a set ¥. We say that the ordered pair (T,T*) satisfies
condition («) if and only if there exist sequences U,,U,,... and K,,K

of subsets of ¥ such that: ’ e
(i) U,CK, for each n;

(if) if peUeT, then there exists n such that pe U,CK,CU;

(ii) if ge U,, then there exists Ve T* such that geVand V—K,eT*

Whiegl;:r; ;re 2 n;jltlilber(of natural examples of pairs (7, T*) of topologies
y condition («). In all of the examples which we give i i
give in this

i;ze;; th{a sets U, are members of T and therefore by (ii) form a base for
polagy T. It is frequently true in the examples we consider that

the set K, is the T-closure of the set U,. In some (but not all) examples,
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-.e sets K, are T*-closed, and for these cases it is possible to verify that
(iii) is satisfied by taking V to be Y.

We observe that if the pair (T,7T*) satisfies condition («) and I" is
a topology for ¥ such that I"DT*, then the pair (T, T") also satisfies
condition ().

Basic TEEOREM. If T and T* are topologies for Y and (T,T%)
satisfies condition («), then T is categorically related to T*.

Proof. Let f be a T*-continuous funetion on a topological space
into Y. Let Uy,U,,... and K, K,,.. be sequences of subsets of Y which
satisty (i), (ii) and (iii) for the pair (T, T*). For each positive integer » we
define D, to be the set of all points « in the domain of f such that in each
neighborhood of x there exist points y andl z for which f(y)e U, and
f(2) € K,

We first observe that if § is not T-continuous at a point p in the
domain of f, then p e D, for some value of n. This fact follows immedia-
tely from (ii) and the definition of continuity at p.

We next observe that D, is closed for each n. This fact follows easily
from the definition of D, and the definition of closure.

We now prove by contradiction that each of the sets D, is nowhere
Jdense. Leb us assume for a given x that D, is not nowhere dense. Then,
since D, is closed, D, must contain a non empty open set Go. It follows
from the definition of D, that there exists ye G, such that f(y) € Uy
‘We use (iii) to obtain Ve T* such that f(y}eV and V —K,eT* Since fis
T*_continuous, there exists an open set G, such that y e @,CG, and f(F)CV.
It follows from the definition of D, that there exists 2z« G, such that
f(2) ¢ K. We see that f(z) € V—K,. Since V—K, e T* and f is T*-conti-
nuous, there exists an open set @, such that ze G,C@; and f(G,)C V—K,.
The definition of D, states that there exists fe Gy such that f(f) e U,,
but this is impossible since f(G)CV —K, and U,CK,. We have thus
obtained a contradiction, and it follows that each set D, is nowhere dense.

oo
We have proved that U D, is a first category set which containg

a=1
the set of all points at which f is not T-continuous. Our theorem now
follows from the fact that a subset of a first category set; is a first cate-
gory set. ’

§ 3. Real valued semi-continuous functions and the Baire
theorem. Let B be the set of all real numbers, and let T be the
usual topology for R. We define T* to be the topology for B which is
obtained by taking as base elements sets of the form {& |r<ax}. Itis obvious
that a real valued function on & topological space is T*-continuous if
and only if is lower semi-continuous in the usual sense.
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The open intervals with rational end points are denumerable and
may be writben in a sequence Uy,Us,... We let K, K,,... be t_he corres-
ponding sequence of closed intervals. It is obvious that the sets .U,, &.].l.d K,
satisfy (i) and (i) of condition («). If U,=(a,b), we can v‘ez.‘lfy (iil) by
letting V= {z|a<wx}. Thus the pair (I',7*) satisfies condlmon.(oc). As
a special case of our Basic Theorem we now obtain the following well
known theorem:

THEOREM 1. If a real valued function on @ topological space is lower
semi-continuous, then it is continuous except at points of a first category set.

The Baire category theorem for the limit of a sequence of conti-
nuous functions follows easily from the above theorem. Since this fact
does not seem to be generally known, it seems worth while to include
the proof here.

THEOREM 2. If fi,fs,... is & sequence of continuous functions on a topo-
logical space into a metric space which converges pointwise to a funection g,
then g is continuous ewcept at poimts of a first category set.

Proof. For each positive integer » and each x in the domain of the

functions, we define g,(x) to be the diameter of the set kU_ fe(2). Rach

of the functions ¢, is easily seen to be a real valued lower semi-continnous
function, and hence is continuous at points of a residual set C,. We define

0:(0%0,,. Suppose p « ¢ and &>0. Choose m 50 that ¢,(p) <&/3. Because
n=1

of the continuity of f, and the continuity of ¢, at p, there exists a neigh-
borhood V of p such that if ¢V then g,(x)<s/3 and the distance from
ful®) t0 f(p) i less than &/3. It follows easily that the distance from g(x)
to g{p) is less than e, and this proves that g is continuous ab p. Since €
is a residnal set, this proves our theorem.

§ 4. The compact-open and point-open topologies. In thig
paragraph we let A be a locally compact, separable metric space, we
let B be a separable metric space, and we let ¥ be the set of all continuous
functions on 4 into B. If n is a positive integer, 0y, ..., C, are subsets of 4
and @,...,6, are subsets of B, then we define W(Cy,...,Co; Gy,...,G)
={f|fe¥ and f(0;)CG&; for 1<j<n}. The compact-open topology for ¥
is the topology obtained by taking as base elements all sets of the form
W(01,...yCnyGy,s..., @) where each set C; is compact and each set G, is
open. The poini-open topology for Y is the topology obtained by taking
as base elements sets of the form W(Cy,..., 03 Gey..., @) where. each
set C; contain only one point and each set @; is open.

‘We let T be the compact-open topology for ¥ and we let T* be the
point-open topology for Y. There exists a countable base L for 4 such

Cadegory theorems 279

vual each member of L has a compact closure. We define M to be the
eollection of all sets which are the closures of members of L. We let N be
a countable base for B.

There are only a countable number of sets of type W(C,,...,Cp;
Gy,...,G,) where n is a positive integer, each Cje M and each G;eXN.
Therefore, these sets may be arranged in a sequence U,,U,,... If U,
=W(0,,....Cri; &4,.., Gy), then we define K,=W(C,,..., Cp;Gy,...,G.,). The
sets K, are closed with respect to the point-open topology, and it is easy
to see that (i), (i) and (iii) are each satisfied. Thus the pair (T, T*) satisfies
condition (a).

If we apply the Basic Theorem to the above example, we obtain the
following form of a well known theorem concerning functions of two
variables.

TeEEOREM 3. Let P be a topological space, let A be a locally eompuect
separable metric space, and let B be a separable metric space. If 1 is a function
on PxA into B which is continuous in each variable separately, then there
ewists a residual subset @ of P such that f is eontinuous at each point of
QxA.

Proof. We define ¥,T and T* as above. We define a function F
on P into ¥ by letting F(u)(z)=f(u,v). Since f(u,v) is continuous in v for
each fixed u, it is clear that F(u) ¢ ¥ for each u ¢ P. Since f(u,v) is conti-
nuous in v for each fixed v, it follows that F is continuous with respect
to the T* topology for Y. Thus there exists a residual subset @ of P such
that F is continuous with respect to the 7' topology for Y at each point
of Q. It follows easily that f is continuous at each point of Q x A.

‘We next prove a theorem about transformation groups.

THEOREM 4. Let § be a second category topological group and let A
be a locally compact separable metric space. We assume that for each s e S, F,
s @ homeomorphism of 4 onto A; and we assume that F,F,=T,, for all s
and t in 8. If Fy(w) is continuous in s for each fized m, then Fy(x) is simulia-
neously continuous in s and x (i.e. ¥ is continuous on S x4 into 4).

Proof. Let H be the group of all homeomorphisms of A onto A.
We define g on § into H by letting g(s)=ZF, for each s ¢ S. Then g is an
algebraic homomorphism on § into H. Moreover, since F(z) is conti-
nuous in s for each fixed », g is continuous with respect to the point-open
topology for H. It follows that there exists a residual set of points in § ab
which g is continuous with respect to the compact-open topology for H.
Sinee § is second eategory this residual set is mon empty.

The product operation in H is continuous with respect to the compact
open topology, and hence continuity of the homomorphism g at one point
of § implies continuity of g at every point of §. The continuity of g with

.
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respect to the compact-open topology, however, implies the continuity
of F as a function on §xA4 into A.

. erlap topology. Let C Dbe the set of all continuouns
real iasluerfl‘h;mzéons (}; 8 rI:aal variable, let C* be tth ‘su’l.)set of ¢ which
consists of all functions which have continuous der%vatwes, and let D
be the function on C*into ¢ for which D(f) is the derivative of f for each
f e Ct. The function D is not continuous relative to any of the.standa,rd
non trivial topologies for € (i. e. uniform, compact-open, pomt‘opey),
On the other hand, it would be useful to have a topology T* for C with
respect to which D would be continuous; and.wh.ich would be such that
(T, T*) would satisfy condition («), where T it the compact-open topo-
logy for C. We will now define such a tOpOlOg}'f‘ . )

Let 4, B and ¥ be the same as in § 4. If Uis an open set in 4 and V
is an open set in B, we define

AU V)={f|f ¢ ¥ and {TU)~V+0}.

The collection of all sets of the form Z(T,V) forms a subbase for a topo-
logy T* which we call the overlap topology for Y. The overlap t‘opol.og.y
is obviously at least as coarse as the point-open topology for ¥Y(i. e. it is
contained in the point-open topology)-

Let us now prove that if 7' is the compact-open topology for Y,
then (T, T*) satisfies condition («). We define sets Uy ,V. asin § 4. Sinee (i)
and (ii) are obviously satistied, it is sufficient to prove that each. set K,
is closed in the T* topology. -

Lt Ky=W(Cy,e.r, O Gyyorey G) and assume f ¢ K. Then f(C;) non CG;
for some j. Sinee C; is the closure of an open set, there exists a point p
interior to € such that f(p)¢ &;. There is a neighborhood V of f(p)
such that ¥~ G;=0, and there is a neighborhood U of p such that UCC;.
Tt is easy to see that Z(U,V) is a T* neighborhood of f, and that if
g < Z(U,V) then g ¢ K,. This proves that K, is closed in the T™ topology.

Leywma 1. If both C and C' are topologized by the overlap topology,
then D 18 continuous. :

Proof. Let ge C* and let Z(U,V) be a4 neighborhood of D(g). (In
order to prove D continuous at g, we may without loss of generality
consider only subbasic neighborhoods of D(g).) We let g'= D(g). There
exists p ¢ U such that g'(p) ¢ V. We choose >0 so that the 2e-neigh-
borhood of g¢'(p) is contained in V. Since ¢’ is continuous, there exists
an open interval U*CU such that pe U* and |g'(z)—g'(p)| <e for all
2 ¢ U*. We choose distinet points p, and p, in U*. There exist open sets
U,,U,,V1,V, such that

p1e U;CU*, Bae U,CU*, U,~U,=0, g(p:) V1, g(P) eV,

@ ! ,
Im Category theorems 281

and such that if

€ Uy, Ty € U, eV, YpeVy
then
(91— 9(p)—g(ps) | e
[ &y— 2 Pr—DP: |

Now let feZ(Uy,Vi)~2Z(U,,V,). There exist @, ¢ U, and 2, e U, such
that f(z,) e V; and f(x,) € V,. Therefore,

| fmw) —f(@s) _ g(ps) —g(ps) <s.
&Ly —Ls Pr1— D2 '

By the mean-value theorem, there exist ¢ and » in U* such that
@) —fle)=(m—z)f' (@)  and  g(p)—g(ps)= (P, —P2)g'(r).

Thus [f'(q)—g'(r)i<e, and since lg'(r)—g'(p)| <e it follows that
f'(¢) —g'(p)] <2&. Therefore f'(q) ¢V and f(U)~V@. This proves that
D(f)={" e Z(U,V).

THEOREM 3. Let P be a topological space, let R be the real number
system, and let f be a function on P » R into R which is continuous in each
variable separately. If g(u,v)=3"f(u,v)/év" exists and i3 continuous in v
for each u ¢ P, then there exists a residual subset Q of P such that g is conti-
nuous at each point of @ x R.

Proof. Let ¢ and C* be as before. We define F' on P into C! by letting
F(u)(v)=f(u,v). If D is the derivative function on (' into (, then D"F
is a function on P into C.

The continuity of f(u,») in u for fixed » implies that F is continuous
with respect to the point-open topology for €. Hence F is continuous
with respect to the overlap topology for €. Using Lemma 1 and induction,
we see that D"F is continuous on P into C with respect to the overlap
topology. Therefore, there exists a residual set § in P, at each point of
which D"F is continuous with respect to the compact-open topology.
It follows that ¢ is continuous at each point of @ x R.

A slight modification of Lemma 1 and the above theorem yields the
following lemma.

Levua 2. Let V, be the set a3+ ...+ ap <1 in Buclidean n-space and
let 8 be any topological space which is second calegory ai each point.
Let F(g;2y,...,%,) be a continuous funciion defined on SxV, and let
Fi(g; T1seen, Tn) =0F (g5 X1y ..e, )] 0; -exist and be continuous in x for any
fized g in 8. There exists a set Q which is dense in 8 such that F; is simulta-
neously continuous in all variables at each point of Q xV,.
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Proof. Let ¢ be the set of all continuous real-valued functions
on V,, and let O; bethe subset of ¢ consisting of those functions whose
partial derivative with respect to the jth eoordinate exists and iy conti-
nuous. A subset U of ¥, will be called a segment paraliel to the jth awis
if and only if there exist p e Vy and & >0 such that

U ={z|w,=px for k] and p;—e<wz; <p;+ e}

We let T* be the topology generated by subbase elements of the form
{fI{U)~V+£0} where UCV,,U is a segment parallel to the jth axis, and V
is an open subset of the real number system. We let T be the compact
open topology for C. Now let D; be the funetion on C; into ¢ for which
Dj(f) is the partial derivative of f with respect to the jth coordinate. If we
topologize € and C; by the topology T*, then D; is continuous on C;
into € (proof as in Lemma 1). We define @ on § into € by letting &(g)(w)
=F(g,x) for all ge S and zeV,. @ is continuous with respect to the T*
topology for C;, and thus D;® is continuous with respect to the 1™ topo-
logy. It is easily seen that (T,T*) satisfies condition (x). Thus there
exists a residual (and hence dense, since S is second category at each
point) subset @ of § such that D;® is continuous with respect to T at each
point of @. It follows that F; is continuous at each point of Q X V.

The above lemma is a generalization of a lemma due to Montgomery
(see [8], p. 384, Lemma 1). If we use our Lemma 2 instead of Montgo-
mery’s Lemma 1’, but otherwise follow the proof given in [8], we obtain
the following generalization of Montgomery’s Theorem 1.

THEOREM 6. If G is a second category growp which s a transformation
group of a manifold of class C* and if each transformation of G is of class C,
then the dertvatives of the functions which define the transformations locally
are continuous in all variables simultaneously.

The above theorem is proved in [8] for locally compact groups @,
and Montgomery observes that his proof also goes over for certain other
groups G (including complete metric groups). It is not clear, however,
that Montgomery’s proof will hold for every second category group.

§ 6. The space of functions which are infinitely differen-
tiable amd have compact supports. In this section we let ¥ be
the set of all functions f such that: f is & real valued function of a real
variable, f is infinitely differentiable, and f has a compact support (i. e.
f vanishes outside of some bounded interval). We let D be the derivative
funetion on ¥ into ¥.

We say that a sequence f;,f,,... in ¥ S-converges to f if and only if
there exists a bounded interval J such that each f» vanishes outside of J,
and not only does the sequence f,,f,,... converge uniformly to f, but for

®
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each positive integer % the sequence D, D¥f,,... converges uniformly
to Dkf.

THEOREM 7. Let X be a topological space which satisfies the first axiom
of countability, and let F be a function on the set X into the set Y. If F is
continuous relative to pointwise convergence in Y, then there exists a residual
subset Q of X at each point of which F is continuous relative to S-convergence
in Y.

Proof. Since X satisfies the first axiom of countability, sequential
continuity and continuity are equivalent for F. Since D is continuous
relative to the overlap topology for ¥ and ¥ is continuous relative to the
point-open (and hence the overlap) topology for ¥, each of the funchions
DF,D?F,I*F,... is continuous relative to the overlap topology for Y.
It follows that there exists a residual subset @, of X such that at each
point of @, the functions F, DF,D*F,... are all continuous relative to the
compact-open topology for Y.

For each positive integer n, we define 4, to be the set of all points
2 X such that in each neighborhood of x there exist points y and z such
that F(y) vanishes outside of the interval [—n,n] and F(z) does not vanish
identically outside of the interval [—n,n]. It is obvious that each set 4,
is closed. Since F is continuous with respect to the point-open topology
for Y, it is easy to see that each set 4, does not contain a non empty open

set. Thus Q=X —@A,, is a residual set. We define Q@ =0,~0Q,.
n=1

Now let p e Q and let »;,2,,... be a sequence in X which converges
to p. There exists a positive integer n such that F(p) vanishes outside
of [—n,n]. Since p € 4,, there exists a neighborhood ¥ of P such that
F(x) vanishes outside of [—n,n] for each x e N. Therefore, there exists
a bounded interval J such that each of the functions F(z,),F(w,),... va-
nishes outside of J. Since each of the functions ¥, DF,D*F,... is conti-
nuous at p relative to the compact-open topology for Y, it follows that
F(x,),F(a,),... converges uniformly to F(p) and D"F(x,), D"F(x,),... con-
verges uniformly to D"F(p) for each poritive integer n. This proves that
F is continuous at p relative to S-convergence in Y.

CoROLLARY 1. If X is a second category melric group and F is an al-
gebraic homomorphism of the group X into the group Y (addition being
the group operation in Y ), then F is continuous relative to S-convergerice
in ¥ if and only if F is continuous relative to pointwise convergence in Y.

§ 7. Some miscellaneous theorems. The theorems in this section
are concerned with situations in which the closures of base elements for
one topology for a space are also closed relative to a second coarser
topology.
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TEEOREM 8. Let f be a function on a topological space X inio a sepa-
rable meiric space Y, and let B be a base for the topology for Y. If f7(¥)
is closed for each V ¢ B, then | is continuous ai each point of & residual
subset of X. s

Proof. Let T be the given topology for X. The set of all sets of the
form ¥ ~V, V e B, forms a subbase for a topology T* for Y. It is obvious
that (T, T*) satisfy condition («), and that fis T*-continuous. It follows
that f must be continuous (i. e. T-continuous) at points of a residual
subset of X.

The following theorem is related to Theorem 2 of [9].

TeEOREM 9. If f is an algebraic homomorphism of a second category
group X into a locally compact separable metric group Y, then f is cmm-
nuous if and only if {7 takes compact sets into closed sets.

Proof. Suppose /™ takes compact sets into closed sets. Choose a
base B for Y such that each member of B has a compact closure. By The-
orem 8, f is continuous at points of a residual subset of X. Since X is
second category and f is an algebraic homomorphism, f is continuous.

THEOREM 10. Let f be a function on a topological space X into a sepa-
rable Banach space Y. If f is continuous with respect to the weak topology

for X, then there ewists a residual subset of X at each of whose points f is .

continuous with respect to the norm topology.

Proof. Since it is well known that (norm) closed spheres in ¥ are also
closed in the weak topology, this theorem follows at once from Theorem 8.

The above theorem was proved by Alexiewiez and Orlicz (see [1],
p. 108, Corollaire (1.2)).

For the special case of the I” spaces, p>1, we are able to obtain
a slightly stronger theorem than Theorem 10 if we replace the weak
topology by the topology of convergence in measure.

We restrict ourselves to real functions on the unit interval J, and
we let m be the Lebesgue measure function. If feI” and £>0, we
define N.(f) to be the set of all functions g € I7 for which m{z o ed and
If(z) —g(x)] >} <e. The sets N,(f) form a base for a topology T* for I°. We
call T* the convergence in measure topology for I”.

If E is a measurable subset of J and f e I, we define I(f, B) = ( Hf[” e,

Thus, L{f,J) is the usual norm of f in I”. We let T be the topology mduced
on I” by this norm.

TerorEM 11. If F is a function on a topological space X into I ond F
48 continuous relative to the convergence in measure topology T*, then there

exists a residual subset of X at each pomt of which F is continuous relative
to the norm topology T.

®
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Proof. We wish to show that (I, 7T¥) satisfies condition («). Since
the metric topology induced on I” by the norm is separable, it is obvious
that it is sufficient to prove that norm-closed spheres in Z” are also closed
sets relative to the T™ topology.

Let § be a norm-closed sphere in L” having center f and radius 7.
Suppose g ¢ 8. We define e=L(g—f,J)—r. Because of absolute continuity,
there exists 6, >0 such that if ¥ is a measurable subset of J and m(&) <oy,
then L(g—f, ) <e/3. There exists d,>0 such that if K is a measurable
subset of J and lg(x)—h(x) <4, for all x e K then L{g—h,K)<e/3. We
let 6 be the least of the numbers 4,,0,,2/3.

Now suppose that he Ns(g). There exists a measurable subset &
of J such that m(E)<é and [hx)—g(z)/<é for all x eJ—E. Since p>1,
it is easy to see that L(g—/f,J)<L(g—f,E)+L(g—f,J —E). It follows
that

Lh—1.0)>Lh—f,d —B)>Lig—f,J —B)—L{—g,J — E)
>IL(g—f,J)—Llg—f, B)—Lh—g,J —E)>r-+e—e/3—e/3>r.

Thus % ¢ 8, and hence S~ N;(g)=0@. This proves § is closed in the T*
topology.

§ 8. Semi-continuous set-valued functions. Let § be a topo-
logical space, and let C(8) be the set of all closed subsets of S. If D is
a directed set and = is a net (see [6]) on D into C(S), then we define:

Iim n(@) ={=z|for each neighborhood U of , n(d)~ U+
deD N

for all d in a cofinal subset of D}:
lim n(d)={x|for each neighborhood U of X, n(d)~U#0@

deD
for all ¢ in a residual subset of D}.

If X is a topological space and f is a function on X into C(8), then,

(a) 1 is upper semi-continuous at p ¢ X if and only if
im f(n(d)}C]‘(p) for each net n that eonverges to p.
‘deD

(b) f is lower semi-continuous at p e X if and only if

]jilf(n(d)pf(p) for each net n that converges to p.

0eD

The concepts of semi-continuity defined above have been investi-
gated by Choquet in [2]. These types of semi-continuity differ in general
from those types studied by the author in [3] and [4].

For the remainder of this section we assume that S is a separable,
metrizable space, and that B is a countable base for the topology of §.
If @ is a subset of §, then we define

Nia)={b|beC(S) and b~a=0}

i
|
|
i
}
!
;
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and
Ny(a)={b|be C(8) and b~ az=0}.

The set of all sets Ny(V),V e B, forms a subbase for a topology T,
for C(8). The set of all sets Ny(V),V ¢ B, forms a subbase for a topology
T, for O(8). The set of all sets Ny(V),V e B, forms a subbase for a topology
T, for C(8). The topology T, is independent of the particular base B
-used for its definition, but in general both 7, and 7, depend on B.

The proof of the following lemma is quite easy and is omitted.

Lemma 3. If f s a function on a topological space X into O(8) and
peX, then
(&) [ is lower semi-continuous at p if and only if f 4s Tp-continuous at p;
(b) if fis Ty-continuous at p, then f is upper semi-continuous at p;
(¢) if V is compact for each V e B, then wpper semi-continuity of f at p
implies Ty-continuity of f at p;
(@) if | is Ty-continuous at p, then [ is upper semi-continuous at p.
Levva 4. (T,,T,) satisfies condition (x).

Proof. The sets of the form M Ny(V;), V; ¢ B, form a countable base
Jj=1

for T, and can be arranged in a sequence U,,U,,.. If U,,:("jl NyV5),
j=1

we define K,,:JQI Ny(V;). The sets K, are closed in the T, topology, and

it is easy to verify that (i), (ii) and (iii) ave satisfied.
: LEMMA 5. If the boundary of V is compact for each V ¢ B, then (T,,T,)
satisfies condition (x).

Proof. The sets of the form n: Ny(V,), V; e B, form a countable base
J=
for T, and can be arranged in a sequence U,,U,,... If U,,:(’Z'\N1(I7j),
J=1

. m
then we define K,,:Q1 Ny(V;). The sets K, are closed in the T, topology,

f:]?d it is easy to verify that (i), (ii) and (iif) are satisfied. The hypothesis
hat the members of B have compact boundaries is used in verifying (ii)

Levmma 6. Both (T, T,) and (Ts,Ts) satisfy condition ().
Proof. This lemma follows from the fact that each of the topologies

T, and T, have countable bages whose members are closed with respect

to the other topology. Thus in each ca i
and let K,=T,. se we can choose a base Uy, U,,...

Not all of the results obtained in the
for the proof of the next theorem. (

Preceding lemmas are needed
In particular, Lemma 5 is not used

@
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at all.) These extra results have been included for the sake of comple-
teness, and because they may be of some slight interest in themselves.

TaeoREM 12. Let f be a function on a topological space X into O(S).
If f is lower semi-continuous on X, then there exists a residual set in X ab
each point of which | is upper semi-continuous. If S is locally compact
and f is upper semi-continuous on X, then there exists a residual set in X
at each point of which f is lower semi-continuous.

Proof. Suppose that f is lower semi-continuous on X. Then by

~ Lemma 3, f is Tp-continuous on X. Since (7,,Ts) sabisfies condition («)

by Liemma 6, it follows from our Basic Theorem that there exists a resi-
dual subset ¢ of X such that f is Ts-continuous at each point of @.
Lemma 3 then implies that f is upper semi-continuous at each point of @.

Now let us assume that S is locally compact (as well as separable
and metrizable) and that f is upper semi-continuous on X. Choose the
base B so that ¥ is compact for each ¥ ¢ B. Then, by Lemma 3, f is T,-con-
tinuous on X. Lemma 4 together with the Basic Theorem implies that
there exists a residual subset @ of X such that f is Th-continuous at each
point of Q. By Lemma 3, f is lower semi-continuous at each point of Q.

§ 9. The space of measurable sets. Let F be a Euclidean space,
and let u(4) be the Lebesgue measure of A for each measurable subset 4
of E. We let ¥ be the set of all subsets of B which are measurable and
have finite measure. If we define d(4,B)=u(4d—B)+ w(B—A4) for all 4
and B in ¥, then d is a metric for ¥ (provided we identify sets which
differ only by a set of measure zero) and the resnlting mefric space is
separable.

We now define two topologies for ¥ which are related to d in a fairly
obvious way. If 4¢Y and & >0, we define:

Nyd,e)={B{BeY and u(d—B)<e},
and
Ny(d,e)={B|BeY and u(B— 4)<e}.

The sets N,(4,¢) form a base for a topology T, for ¥, and the sets Ny(d,¢)
form a base for a topology T, for Y. Both 7', and 7, are perfectly sepa-
rable. It is easy to prove that {B|Be Y and u(4—B)<e} is closed in
the T, topology, and that {B|B ¢ ¥ and u(B—A4)<e¢} is closed in the T
topology. Using these faets, it is easy to show that both (T,T,) and
(T,,T,) satisfy condition («). We thus obtain the following theorem:
TasorEM 13. Let f be a function on a topological space X into Y.
If f is continuous with respect to either of the topologies T, or T,, then there
exists a residual subset Q of X such that f is continuous with respect to the
metric d at each point of Q. '
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Example. Let ¢ be the set of all continuous real valued functions
on the unit interval. We assume that ¢ is metrized by the usual uniform
metric. We define a function f on € by letting

flu)y={t|u(t) >0} for each weC.

It is easy to verify that f is continuous with respect to the T, topology,
but that f is not continuous with respect to the T, topology. It follows
from Theorem 13 that f is continuous with respect to d on a residual
subset of C. It is easy to see that f is d-continuous at « if and only it
pitu(t) =0} =0.
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Uber eine
Dimensionstheorie in topologischen Verbinden

yon

H. Hofmann (Niirnberg)

Die mengentheoretische Topologie hat weitgehende Verallgemeine-
rungen zu einer Topologie der Vereine und Verbiinde erfahren (Nobeling
[3] und Sikorski [4]). Insbesondere ist auch die Menger-Urysohn’sche
Dimensionstheorie von R. Sikorski auf gewisse topologische Verbiinde
(C-Algebren (Sikorski [4] und [5])) tibertragen worden. Allerdings ver-
wendet Sikorski [5] einen globalen Dimensionsbegriff, mit dem sich nicht
alle Sitze der Punktmengen-Dimensionstheorie formulieren lagsen. Die
vorlicgende Arbeit hat nun zum Ziel, unter Zugrundelegung einer allge-
meineren, lokalen Dimensionsdefinition eine Theorie zu entwickeln, in der
noch fehlende S#tze bewiesen werden konnen. Es wird sich dabei zeigen,
daB dieser lokale Dimensionsbegriff fir C-Algebren, hier S-Verbinde
genannt, mit dem Sikorski’schen zusammenfillt.

Die vorliegende Arbeit stiitzt sich auf G. Nobeling [3] und verwendet
die dortigen Begriffe, Bezeichnungen und Sitze.

Ein fiir alle Mal sei ein klassiseh-topologischer Boole-Verband B
vorgelegt.

Definition. ¥ heiBie speziell ein Sikorski-Verband oder kurz ein
S-Verband, wenn B ein o-Verband, regulir und T,-topologisch ist und
auBlerdem eine abzihlbare Basis 1) besitzt.

Es kann leicht gezeigt werden, daB jeder S-Verband eine abz#hl-
bare regulire Basis besitzt. Ein S-Verband ist demnach dasselbe wie
eine Sikorski’sche C-Algebra.

In Anlehnung an die Stoffeinteilung Mengers [2] behandelt die vor-
liegende Arbeit nach der Formulierung der Dimensionsdefinition (§ 1)
die Dimension einzelner Somen (§ 2), Summen- und Zerspaltungssitze
(§ 3), die lokale dimensionelle Struktur von S8-Verbinden (§4), Uber-
deckungssiitze (§ 5), die Beziehungen globaler Trennungs- und Zusammen-

!) .Basis® ist immer als offene Basis gemeint.
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