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Families of compacta and some theorems on sweeping
by
K. Borsuk (Warszawa)

1. Families of compacta. Let @ be a function attaching to each
point « of a metric space X a compact subset (z) %0 of a metric space Y.
The function @ is said to be upper semi-continuous (see [7], p. 32) if for
every neighbourhood V of ®(z) (in Y) there exists a neighbourhood U
of # (in X) such that,

$(x')CV  for every «'eU.

‘We shall call such a function @ a family of compacta over X 1). We
refer to X as the basis of the family & and to the sets @(z) — as the
elements of @. The sum of all elements @(x) attached to the points x be-
longing to a subset X’ of X we shall denote by &(X').

Hence
(1) o) = U B(0).

In particular, the set P(X) will be called the field of the family @.
Evidently, if X’ is compact then also @(X’) is compact. -

A family @ will be said to be compact if its basis X is compact, it
will be said to be simple if its elements @(x) are disjoint.

Let 27 denote the space of all not empty subcompacta of ¥ with
metric funetion ¢ defined by the formula of Hausdorff (see [5], p. 293):

o(4 ,B)=max [sup o(z,B), sup oly,4)] for A,Be2Y.
x€A Y€B

The family @ is a map of the basis X into the space 2%. If this map
is continuous, we shall say that the family @ is continuous 2).

1) Compare 3. Eilenberg and D. Monfgomery [3], where an analogous notion
appears under the name of the multi-valued continuous transformation. .

?} The concept of the continuous family of compacta can be considered as a genera-

lization of the concept of the covering in the sense of B. Eckmann [2], p. 145. Namely,

if X is a compact subset of the space 2Y, then putting &(x) == for every = ¢ X we obtain

a continnous family @ with the basis X, constituting a covering of the set $(X)=U P (2).
X

X€
Moreover, if the elements @(x) are disjoint (4. e. @ is simple), then they constitute a de-

composition of the set &(X) in the sense of B. Eckmann [2], p. 145.
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2. Examples. 1. Let X be an arbitrary space and 4 a compactum.
Setting

P(x)=(2) x ACX x A for every xeX?3),

we obtain a continuous funetion mappi]ig X into 2%*4, Then the field
&(X) is identical with the set X x 4 and for x4z’ the sets @D(x) and O(z’)
are disjoint. It follows that the Oartesian product X x.A constitutes
the field of a simple and continuous family with basis X and elements
P(2)=(x) X A homeomorphic with 4.

2. Let @ be a simple family over a compactum X. Putting

21p)=z for every pe®B(x),

we obtain a continuous mapping of the field &(X) of & onto its basis X.
Now let us assume that every element &(z) of & is homeomorphic with
a fixed compactum 4 and that for every z ¢ X there exists a neighbour-
hood U, (in X) snch that the Cartesian product U, x 4 can be mapped
onto the set #(U,) by a homeomorphism % satisfying the condition

wh(x,y)==2 for every (w,yje U, x A.

In this case the set B(X) is said to be a bundle over X with projection y
and the fibres ®(z) (see [10], . 3).

3. Let Y be the space obtained from the square N
Q=F e[ <7; [y} <7]
)

by the identification of every point of the form (0,y), ly| <2, with the
points (0,—y—4) and (0,—y-+4).

It is evident that set ¥ is not homeomorphie with the square. Let L,
denote the segment composed by all points of Q with the abscisse 2. It is
evident that by this identification the segment L, is mapped onto a simple
arc, which let us denote by ®(z). It is clear that the function & defined
in this manner constitutes a simple and continuous family, its basis X
being the interval —7 <o <7 and its elements being simple ares &(x).
Observe also that the sets @(x) do not constitute a bundle of fibres, be-
cause no neighbourhood of the element @(0) is homeomorphic with the
square.

4. Retaining the notation Q,X and L, as in example 3, let us put
a,=0 and a,=1/n for every n=1,2,... Let us identify in the square Q
every point of the form (a,,y) with the points (G, —y—4) and (@, —y+4)
for every n=0,1,... It is easy to see that the space ¥ obtained by this

3) X XA denotes the Cartesian product of X and 4.
16*
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identification from the square @ is the field of the continuous @ with the
basis X and the elements ®(x) obtained from L, by the same identifica-
tion. Let us observe that the space Y is not locally contractible4). To
show this, let us consider the set F,CQ, which is the sum of two segments:
one with the ends (1/n,0), (1/(n4-1),0) and the other with the ends (1/n,4)
and (1/(n+1),4). By this identification the set F, is transformed into
a simple closed curve 0,CY. It is clear that for sufficiently large » the
curve O, lies in an arbitrarily given neighbourhood of the point y,e ¥
obtained by the identification of three points, (0,0), (0,4) and (0,—4).
Let U denote a neighbourhood of ¥, (in ¥), which does not contain the
point ¥, ¢ ¥ obtained by the identification of two points, (0,2) and (0,—6).
It is easy to see that C, is not homotopic to zero in U, hence Y is not
locally contractible at the point y,.

It follows from this example that local contractibility of the basis
and of all elements of a simple, confinuous, compact family does not
imply the local contractibility of the field.

5. Consider the family @ with the basis 0 <2< 1 and the elements
@(x) defined as subsets of the Euclidean 3-space H, by the following
formulas:

14

Blz)= E[pz(mcos(’zz(1fm+t)), sin(2a(1/a+ ), (1—t44)-27"); 0<t< 1]
£ \
for O<ax<1.

Bvidently @(0) is a segment, @(a) for x>0 is a simple arve and @ is
a eontinuous, compact family. Let us show that it is simple, . e. that
D(@)~D(2') 0 implies z=2a'. Sinee (1—1t/4)-27">0 for 0 <z <1 and
0<i<1, we have O(x)~ P(0)=0 for 0<x <1. Suppose that B(z)~d(x')#0
for some x,2">0. Then there exist two numbers ¢,¢’ such that

(m cos (2(1/z+1)), sin(2=(1/w+1)), (1 ~t/4)'2“1""')
= (m cos (21 /e’ 1)), sin (2a(1fa/ + 1)), (1—1/4)-27" )

and that 0<t<1, 0<t'<L. It follows that there exists an integer k
such that ljz4t=1/2"+t+k Since the hypotheses concerning r,t
and 2',t' are symmetrical, we can assume that % :>0. Moreover we have
(L—t/4)-27F=(1-¢/4)-27" and consequently

(2) 2 (1—tiy=2""F - (1— ' j4).

%) A space M is said to be locally contractible at the point p if for every neigh-
bourhood U of P there exists a neighbourhood ¥ of p homotopic to zero in U. A space
locally contractible at each of its points is said to be locally contractible.

. P
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But the funection
¢(t)=2" (1—tj4)

is increasing in the interval 0<¢{<1. Hence
O (l—pd)<2-(1—1/4)=82 and  2"7F.(1—t4) =28

It follows by (2) that 2%<3/2, hence k=0 and t=t. We infer by
lir+t=1jz'+t 4k, that e=x',

Thus the family @ is simple. Let us observe that each of the sets &(z)
is a simple arc and the set @(X) is a non-locally connected continuum.
It follows that the local connectivity of the basis and of all elements of
a simple, continuous and compact family does not imply the local con-
nectivity of its field.

6. Let S denote the (n—1)-dimensional sphere (i >1) defined in the

Juclidean n-space E, by the equation

s o =16.

Let us assign to every point x e S the continunm @D(x) defined as
follows:

1) If x lies on the straight line joining the point a=(0,...,0,5) with
the centre e=(0,...,0) of §, then ®(x) denotes the segment ax.

3) If x does not lie on the straight line joining e with ¢, then let
us denote by P, the plane in E, spanned by the points a,c¢ and z. The
intersection of P, with the (» —1)-dimensional hyperplane z,= 0 is a straight
line containing exactly two points p, and p; lying at the distance 2 from e.
Let us denote by K. and K two cireles in P, with radius 1 and with
centres p, and py respectively. By @, and @ we denote the bounded re-
gions determined in P, by K, and K respectively. It is easy to see that
the segment ax cuts at most one of the regions G, and G;. It follows that
either the set az-(Gx+Gx) is an open segment L, or it is empty. In the
firgt cagse we denote by C, the circle which lies in P, and for which the
segment L, constitutes the diameter. In the second case we set C,=0.
Now we set

P(r)=(az+ Cx) —(G.+G:) for every ref.

It is easy to see that @ is a continuous family over § with elements
@(xr) being either simple ares or 1-dimensional curves of the homotopy
type °) of the circle. Moreover, x e @(z) for every x ¢ 8. The field P(S) of
the family @ is a subset of E, such that the bounded component G of
the set E,—S is not contained in &(S).

) In the sense of W. Hurewicz, See [6], p. 125.
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7. Retaining the notation used in example 6, let us assign to every
point @ e § the poinb f(x) ¢ § such that the common part of the straight
line joining & and 2 with S consists of the points # and f(z). It is evident
that f(x) is a continuous mapping of the sphere 8 onto itself satistying
the condition f{f(z)]=a for every z e S. If we set

Bo(7)=[D(2)w Pf(z)]~ G

then we obtain a continuous family @, over S with elements lying in G.
Moreover,

for every xeS,

zeDy(x)=D[f(x)] forevery zel

and if 2,y ¢ 8 and a£y£f(x), then Dy(x)~ D (y)=0. Let us observe that
the region & is not contained in the field of the family @,.

3. Families with acyclic elements. Let X be a metric space.

For every point a of X and for every ¢>0 let us denote by X(a,s) the
e-neighbourhood of ¢ in X, i.e. )

X(a,e)=FweX; ola,a)<e].

LEMMA. Let @ be a compact family with basis X and elemeénts D(x)
acyclic in the dimension k). There exists a positive function ao(n) defined
for 1>0, satisfying the condition

N

(3) . limag(n) =0
0

and such that for every point a < X each k-dimensional n-cyéle lying in the
st D[ X(a,n)] is asln)-homologous to zero in the set @]:X(a,ao(n))].

Proof. If such a function does not exist, then there exist a positive e,
a seqlience of positive numbers {n:} converging to 0 and a sequence of
points {a;}CX such that in the set D[ X(a;,m;)] there exists a k-dimensio-
nal n; -cycle y; not e-homologous to zero in D[ X(a;,7;)]. Evidently, if {n,}

*) By a L-dimensional z-simplex of X we understand a set of diameter <& composed
by k-1 different points of X. In the known manner one introduces the notion of an
Orienied e-simplex of X, of an e-chain of X with arbitrarily given coefficients and of
an s—c?de of X. Two e-cycles y and 3’ of X are said to be e-homologous in X (notation:
Ve y"in X) if there exists an e-chain » of X, whose boundary 9x is equal to y—9'. By
& k-dimensional irue eycle of X we understand a sequence 7 ={,}, where y, are k-dimen-
sional £ -oykles of X with ‘_h:; g =0. The k-dimensional true cyeles of X constitute
& group with the group-operation defined by the formula: W3+ =ty It
7={7} and' 7' = {y}} are two true cycles of X and if there exists a sequence 7; — 0 such
that Vi y;in X, then 7 and 4’ are said to be homologous in X (notation: y -~y in X).

A compaet Epace X is said to be acyelic in the dimension & if every k-dimensional true
cyecle v of X (with arbitrary coefficients) is homologous to zero in X.
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is an increasing sequence of indices, then the sequences {a,} and {n,} sa-
tisfy the same conditions as {#} and {5;}. It follows that we e.an assume
(since X is compact) that the sequence {a;} converges to a point a, e X.
Let us set

onz“X(“oy'?/Q)o

A;=X(a;,m;) for

i=1,2,..

Since @ is upper-semicontinuous, there exists a sequence {3;} of po-
sitive numbers converging to 0 and such that the set &(4;) lies in the
Brneigh bourhood of the set ®{a,), for every i=1,2.. It follows that
¥: 18 (- 2B;)-homologous in the set P(4;)+D(a,) to an (ﬂi—l—:zﬂ,:)-eyele
¥ lying in @(a,). But a;—a, implies that there exists an index i, such
that for 44, it is o(a;,a,) <e/4, p;<e/4 and f;<<e/4. It follows that

4;,C4,CX(a;,¢) for every i>i,.

and n+2p<e

Consequently, for %>i,, the set @(d;)+ P(a,) lies in the set
B(A,)CP[X(as,¢e)]. Since n;+2p;<e, it follows that the k-dimensional
(m:-+2B;)-cycle y; is not e-homologous to zero in @(4,) and consequently
it is also not e-homologous to zero in the set @(a)CP(A,). But this is
impossible, because 7;+ 28;—0 and the set @(a,) is acyelie in the dimen-
gion k.

4. Homomorphism #. Now we shall prove the following

LeMma. Let @ be a family with compact basis X and elements D(x)
acyclic in the dimensions <k. Let ¢ and y be two continuons functions
defined on X and satisfying the condition

#H ), plr) e P(x)

For erery e >0 there exist an n>0 and a howmomorphism ¥ assigning
to every i-chain = of dimension 1<k lying in X an (I-+1)-dimensional
e-chain #(x) lying in &(X) and such that

(3) S[B()]= gloe) — () — 9(9),
(6) if for a point ae X the chain = lies tn X(a,n),
then 9(x) lies in O[X(a,e)].

for every xeX.

Proof. If I=—1 then » is an element of the group of coefficients
and it suffices to set 9(»)==0. Assume now that the statement is true for
chains of dimension <%’'<k, 4. e. that there exist a positive function a;(#)
defined for » >0 and satisfying the condition

r- Iim X =
) Ma(n)
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and a homomorphism # assigning to every x-chain x of dimension Z<.k’
Iying in X an (I+1)-dimensional a,(n)-chain 9(x) lying in ®(X) and satis-
fying (5) and

(8) it » lies in X(a,y), then 9(x) lies in !D[X(a,,al(n))].

Sinee ¢ and y are uniformly continuous on X, there exists a funetion
Aliy) defined for 5 >0 and such that
(9) 0 <y =<p(n),
and

if 02X'CX and 6(X')<y then .8(p(X"))<pln) and B(w( X)) < Bln).

Lim B(n) =0,
70

Now let us assign to every l-dimensional n-simplex A lying in X
and positively oriented ) one of its vertices a,. Then ¢(94) and w(aA)
are (I—1)-dimensional f(n)-cycles lying in B[X(as,n)ICO{X(as,A())]-
By the lemma of section 3 there exists in @[X (@4, aop"(n))] an l-dimensional
aoB(y)-chain 1 such that

(10)

=g(9d) —p(3 ).

By the hypothesis of induction, the a;(y)-chain 9(24) lies in the get
@{X (a,a,(n))] and satisfies the condition

{11) A[B(24)]=p(24) —p(24) —H29A) = p(24) —p(21).
Putting
as(17) = aoB(1y) + ay{n)
we infer by (3) and (9) that

(12y lim ay(27) = 0.

70
Moreover, it follows by (9), (10) and (11) that A—9(o4) and
A—g(d)+9(4) are oyy)-cycles lying in the set @[X(a_q,az(n))]. Apply-
ing again the lemma of seetion 3 we conclude that there exist in
@[X (ad,aoa,(rz)}] two (14 1)-dimensional toas(n)-chains g, and u, such that

S=2—B(ad),  dppy=A—g(d)+y(4).

Now let
(13}
and

() = agaa(n) + 5

Hy=pty — pa.

) The set of all oriented n-simplexes of X can be decomposed into two disjoint:
sets P and N such that of every pair of oppositely oriented #-simplexes 4 and —A one
belongs to P and the other to N. The simplexes belonging to P are said to be positively
orienied, and the simplexes belonging to ¥ — negatively oriented.
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Then #{d) is an ay(y)-chain such that
BN =04 —8ps= A — 9D A) — A4 9 4) — p(4) = () — () — B(2.1).
Hence 9(4) satisfies condition (5). Moreover, if A lies in X(a,7), then

X(as, a00(n))C X(a, aaln))

and consequently #(4) lies in @[X(a,as(n))].

Finally, it follows by (3), (12) and (13) that lm ey(5)=0. Conse-
quently there exists for every >0 an 7>0 such that if 4 lies in X(a,7)
then 9(4) Hes in S[X(a,e)].

Now if » is an arbitrarily given 7-chain of the dimension I=%'+1,
then

Ll
= Z a;Ad;,
i=1
where .y,..., .1, are positively oriented y-simplexes of X. For every sim-
plex A; there exists in &(X) an e-chain #(4;) sach that

(14) ()] = (i) —p(4;) — HoA,).
Putting 9(x)=D a,;8(4;) we infer that
=1

A[B(2)] = p(x) — () —H(3x).

Moreover, if for a point a ¢ X the chain x lies in X(a,n), then H(4;)
lies in ®[X(a,e)] for i=1,2,...,m and consequently #(x) also lies in
P[X(a,e)]. This completes the proof of the lemma.

5. Homologies in families with acyclic elements. Now we
can establish the following

THEOREM. Let @ be a family with compact basis X and elements O(x)
acyclic in the dimensions <k. Let ¢ and y be two continuous functions
defined on X and satisfying the condition

#(®),9(z) € P(x)

For_every k-dimensional true eyele y={y;} lying on X the true cycles
7)) ={p(y)} and p(y)={p(y:))} are homologous in &(X).

Proof. By the lemma of section 4 there exists for every £>0 an
7> 0 and a homomorphism # assigning to every 7-chain of dimension <k
lying in X an e-chain 9(x) lying in &(X) and satisfying (5). But y={y;}
is a true cycle of X. Hence there exists an index n, such that

for every xeX.

7 ds an  y-cykle for every i>n,.

It follows that S y)l=w(y:) —yply:) for every i>u,. Hence g(y;) ~y(ys)
in &(X) for every 1 >n,. This shows that g(y)~yp(y) in D(X).
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OROLIARY 1. Let @ be a family with compact basis X and elements
acyclic in the dimensions <k. Suppose that there ew'ists.a point 0{0 common
10 all clements ®(z). Then for every continuous function ¢ defined on X
and satisfying the condition

@lx) e ®(m) for every meX
and for every true cycle v of X of dimension <k the true cycle @(y) is homo-
Iogous to zero in D(X).

Proof. It suffices to apply the last theorem, putting w(x)=a, for
every e X.

CoROTLARY 2. Let X be a compact subset of the Buclidean n-space B,
and a, a fized point of E,. Let © be a family with basis X and acyclic ele-
ments ®) satisfying the condition

o, € D(@)CE,  for every xeX.

Then every bounded component of E,—X is contained in O(X).

Proof. Let p be a point lying in a bounded component G of E,—X
and ¢ a point lying in the unbounded component @ of E,—X. Then
there exists (see [9], p. 912) in X an (n—1)-dimensional true cycle y modulo
2 not homologous to zero in the set E,—(p)—(g). By corollary 1 (whe‘re
we put @(x)=ur for every x ¢ X) the true eycle is homologous to zero in
O(X)CE,—(g). It follows that p e O(X).

Remark 1. If n=2 and if the family @ is continuous, the statement
of corollary 2 is equivalent to a theorem on sweeping, due to S. Golab [4].
A partieular ease of corollary 2 (for arbitrary ») is also contained in my
paper [1]. : .

Remark 2. Example 6 of seetion 2 shows that in corollary 2 the
hypothesis of the acyclicity of elements in all dimensions cannot be
omitted.

6. Families of (n—1)-dimensional spheres in E,. We shall
establish a theorem constituting a generalization of a theorem on swee-
ping due to F. Leja. First we shall prove the following

LeMuma. Let @ be a compact family with basis X and with elements
®B(x) lying in the Euclidean n-space E (n>1). Suppose that all elements
@(x) are closed (n—1)-dimensional manifolds (in the classical sense) and
that there exist a point ay € B, lying for every x ¢X in the bounded component
&, of E,—®(x). Then the family @ is continuous and so is also the family T’
defined by the formula

Ia)=0(x)+ G, for every zeX.

%) A compactum F is said to be acyclie if it is acycli¢ in all dimensions. See foot-
note ¢).
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Proof. Let z, ¢ X and £>>0. Since $(x,), as a manifold, is an ANR-
-set *), there exist two neighbourhoods U and V of &(z,) in E, and a ret-
raction r of U to &(z,) such that

a,¢B,—UCE,—V,
o[z,r(@))<e  for every zeV,
the segment ar(z) lies in U for every zeV.

Since @ is upper semi-continuous there exists a positive 5 such that
for every o' « X{(x,,77) we have &(z')CV.

Let " be an (n—1)-dimensional true cyecle modulo 2 in &(s') not
homologous to zero in @(x’). The retraction r maps ;' onto a true cycle
r(y’) in D(x,). Since 21(z)CT for every z eV, we have r(3' )~y in U.
It follows that r(y')+0 in E,—(a,) and consequently #(y')+0 in @(z,).
Consequently @(x )]=>D(x,). But the distance between &(z’) and
[®(x’)] is <e and consequently also the distance between D(x,) and
D(z') is <e. Hence the family & is continuous.

Moreover, if & point p e B, lies at a distance >¢ from I(z,), then

7' ~r(y')~0 in E,—(p).

Sinee y'~+0 in @), it follows that p ¢ I'(#'). Similarly, if a point p'el,
lies at a distance >& from I'(z’), then

y)~'~0 in  E,—(p).
Sinee r(y")~0 in D(w,), it follows that p’ ¢ I'(w,). Thus it is shown

that the distance of Hausdorff between I'(z,) and I'(x’) is < and con-
sequently the family I' is continuous.

7. Generalization of Leja’s theorem on sweeping. Now
we shall prove the following

TaeoREM. Let X be a compact subsel of the Euclidean n-space B,
(n>1) and a, a point belonging to the unbounded component of E,—X.
Let @ be a family orver X with elements &(x) satisfying, for every x e X, the
following conditions:

1° &(z) is homeomorphic to the (n—1)-dimensional sphere,

2° 15 eD(x)CH,,

3° a, belongs to the bounded component of B, —O(z).

Then each bounded component of the set E,—X is a subset of the field
D(X).

) By an ANR-set one understands a metric compact space M such that if N
is a metric space and M’ a subset of N homeomorphic with JMf, then there exist a neigh-
bourhood T7 of M’ in ¥ and a continuous function » mapping ¥ onto M’ in such a man-
ner that for every « ¢ )" it is (%) =x. The function 7 is said to be a retraction of U to M’.


GUEST


250 K. Borsuk

Proof. If we adjoin to E, a point in the infinily aw, we obtain
a space S, homeomorphic with the n-dimensional sphere §,. Let I'(w)
denote the sum of @(z) and the bounded component G, of the set B, —P(x)
and let I"{x)=_8,—@G,. By the lemma of section 6 we infer that I" and I
are compact and continuous families with acyeclic elements such that

ayel(x)  and O € ["(x)  for every .relX.

Let us suppose that there exists a point p lying in a bounded com-
ponent of E,—X and not belonging to ®(X). Then there exists a com-
ponent X, of X such that p lies in a bounded component of E,—X,.
Let us show that
{15)

pel'(x) for every zelX,.

By corollary 2 of section 5 there exists a point x, ¢ X, such that
p € I'(z,). Let us deecompose X, into two disjoint sets X; and X}, the first
composed by all x ¢ X, such that p e I'(z). Since I' is continuous and
p € E,—®(x), the set Xy is also compact. Hence the continuum X, is
decomposed into two compact, disjoint sets X; and Xy. Since Xj;=£0 it
follows that Xy'=0, i. e. relation (15) is proved.

Now consider the family I, whose elements lie in the space
E,=8,—(a,). Applying corollary 2 of section 5, we conclude that there
exists a point x, ¢ X, such that pel”(zy). By (15) it follows that
p € (@)~ I"(2,) =®(a,), which is contrary to the assumption that p ¢ B(X).
Thus the theorem is proved.

In the case where n=2 and X is a simple closed curve, and under
the hypothesis that the family @ is continuous (by the lemma of section 6
this last hypothesis is superfluous) the statement of the theorem is equi-
valent to the theorem of F. Leja on sweeping (see [8], p. 422).

8. Involutions. Let X be a metric space. A continuous mapping f
of Xinto itself satisfying the condition

Ha)=2x

is called an snvolution on X. Evidently every involution on X is a homeo-
morphism mapping of X onto itself.

A mefric ¢ in X will be said to be consistent with an involution f
on X if

for every zeX

olz,y) = off(x),ftw)) for every a,yeX.

If f is an arbitrarily given involution on X , then setting

ela,y)=max[o(z,y), of(®),y))] for every w,yeX
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we obtain a metric o consistent with 7 and topologically equivalent to p.
It follows that we can always assume that the metric ¢ in X is consistent
with an arbitrarily given involution.

Examples. 8. Let S be the (n—1)-dimensional sphere defined
in E, by the equation

Ll =1
For every integer ! such that 0<I<n let us set

where y;=—ux; for 1<i<l

i>1
It is clear that f; is an involution on § and the Euclidean metric

in § is consistent with f,. The involution f; is the symmetry relative to
the hyperplane H; defined by the equations

Tr(B5eee s B} = (Y15 e 3 Yn)

and y;=a; for

L==0 for i=1,2,..,L

In particular, f, is the identity and f, the o called antipodal map-
ping. Evidently the degree of f; is equal to (—1).

9. Let X be the Cartesian product of the spaces X;,X,,...,X,, and
let f; be an involution on X;. Setting

{186) f(ml!"‘7mm)=(f1(ml)7“')fm(mm))

we obtain an involution on X. In particular, if X; are spheres then the
formula (16) gives an involution of a generalized torus.

As a simple application of the theorem of section 3 we obtain the
following

for every (2,...,%m)eX,

THEOREM. Let X be a compact space, | an involution on X and @
a family over X with elements D(x) acyclic in the dimensions <k and satisfy-
ing the condition

x,f(x) e D(x) for every xeX.

Then every true cycle y in X of the dimension <% 4s homologous in ®(X)

" with f(z).

Proof. It suffices to apply the theorem of section 3 setting g(x)=z
and p(xr)=f(z) for every e X.

CorOLLARY. Let | be an involution on & compact subset X of the Eucli-
dean n-space E, and v an (n—1)-dimensional true eycle in X such that

+~fy) in X.
Let @ be a family over X with acyclic elements salisfying the condition
z,f(2) e D(x)CE,
Then the field ®(X) contains at least one bounded component of B,—X.

for every xze X.
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Proof. Since v+ f(r) in X, we infer (see [9], p. 912) that fhere exists
a bounded compénent G of E,—X such that for every point p ¢ G the
true cycle y—f(7) is not homologous to zero in E,—(p). But the last
theorem implies that y—f(y)~0 in &(X)CE,. Hence p ¢ H(X) for every
pe@, i.e. GCHX).

In particular, we infer that if @ is a family over the (n—1)-dimen-
sional sphere SCE, with acyclic elements satisfying the condition

z,fi(z) e D(w)CE, for every x el

{(we use here the notation of example 8), then for odd ! the bounded com-
ponent @ of E,—8 is contained in @(X). In fact, if ¢ is the true cycle
constituting the basis for (n—1)-dimensional homology in &, then fi(y)
is not homologous with v in X. By the last corollary we infer that
GCPH(X).

9. Families consistent with an involution. We shall say that
a family @ over X is consistent with an involution f on X if

D(z)=D[f(x)] {for every ng.

As we have already remarked, we can assume without loss of gene-
rality that the metric ¢ in X is consistent with the given involution f.
Under this assumption let us prove the following

Lemma. Let | be an involution on a compact space X and @ a family
over X with elements acyclic in the dimensions <k consistent with f. Let ¢
be a continuous mapping defined on X and satisfying the condition

o(x) e D(x) - for every weX.

Then for every e>>0 there exist an 7 >0 and a homomorphism &, assigning
to every n-chain » of dimension 1<k lying in X an (I+1)-dimensional
s-chain 9y(x) lying in &(X) and such that

@amn A[Fooe]=p(x) — pf () —0o(9%),
(18) Bolx)=—B[ ()],
19) if for a point a e X the chain x lies in X(a,n),

then  9y(x) lies in B[X(a,s)].
Proof. If I=—1 then we set ¥y{x)=0. Assume now that the state-

Dflellt is tn.le for chains of dimension <% <k, i. ¢. that there exists a paosi-
tive function a,(n) defined for 5>0 and satisfying the condition

(20) lim ay(n) =0
-0
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and that there exists a homomorphism &, assigning to every 7z-chain x
of the dimension I<% lying in X an (I41)-dimensional a,(n)-chain
Do(x) lying in H(X) and satisfying conditions (17), (18) and (19), with
& =a,(n). Consider now, for every n-simplex 4 of X, the set {4} of four
y-simplexes A, —4, f(4), f(—4). Evidently two sets {4} and {4} are
either identical or disjoint. By the axiom of choice there exists a class X
containing exactly one simplex ‘of every set {A}.

Let I=k'+1, let 4 be an l-dimensional simplex belonging to X and
let a4 be one of its vertices. Let ay(n) be a positive function satisfying
the statement of the lemma of section 3. Then there exists in the set
@[X(aﬁ,ao(ﬂ))] an I-dimensional ay{7)-chain A such that

(21) =g(34)—gf(24). i

Moreover, we can assume that in the case of 4=f(4) we have 1=0.

By the induetive hypothesis the homomorphism 4, is defined already
on 94 and the a,(n)-chain $,(94) lies in the set @[X(ad,a4(17))] and satisfies
the following condition:

A[Bo(94)]=p(34d) —gf(24) — B, (294) = (2 4) — gf(34).

Let us set

az(1) = ao(n) + aa(n).
Then the chains

(22) A—B494)  and  A—g(d)+f(4)
are [-dimensional az(n)-cycles lying in di[X (@ aﬁ(n))] . Applying the lemma.

of section 3 we infer that there exist in the set dﬁ[X(aA,aoasA(n))] two
(1+1)-dimensional agas(n)-chains p; and u, such that

du=A—D0o(34),  dus=A—p(d)+¢f(4).

Moreover, we can assume that in the case of 1—9¢(94)=1—g(4)+ ¢f(4)=0
we have p,= p,=0. Setting :

(23) ag(n) = agas(n)+ 7

and

(24) Po(A)=p1— pie

we obtain an gn)-chain #,(4) such that

(25) A[Bo(A)] =2 —Bpa=p(A) —f(A) —Bo(34)-
Moreover, if A lies in X(a,n), then <

X (a4, 25(1))C X(a, ax(n))
and consequently 9,(4) lies in @[X(a; as("?))]'
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Thus the operation &, is defined for ail I-dimensional #-simplexes .1
belonging to X. Setting
(26) Do(—A)=—y(4)

we extend the operation ¥, to the simplexes —. such that 4 e X Hvi-
dently conditions (17) and (18) are satisfied. Finally, we put

{27) Bulf(4)]=—18o(4)
if 4 or —4 belongs to X. If A=f(4), then A=0 and
A—DofA)=— 0 [If(A)]=—B[f(24)]1="2(24).

Hence the chain #,(24) (with integral coefficients) is equal to its opposite
—94(34). It follows that du,=2—3(94)=0 and also that dppp=2—p(4)—
—@[f{4)]=0. By the hypothesis made by the construction of the chains A
and u, we have in this ease y;=p,=0 and consequently also 9(d)=".
It follows by (26) and (27) that in this case 9,[f(4)]=—9,(4 y=0¢(4)=0.

If, however, f(4)=—4, then the value of 9, on £(4) given by formula
(27} is consistent with the value given by formula (26). Hence formula (27 )
does not lead to a contradiction.

Let us show that the operation 9, defined in this manner for all n-8im-
plexes satisfies conditions (17), (18) and (19). If 4 e X, relation (17) is
a consequence of (25) and relation (18) is a consequence of (27). Rela-
tion (19) follows by (26) and the definition of uy and p,. It follows also
by (24) that relations (17), (18) and (19) are satisfied if —4 ¢ 5. Finally
if (17), (18) and (19) are satisfied for a simplex 4, then we infer by (27)
that

3[B(f())] = — AMBo( A)] = — p(d) + A f(4) ]+ B(24)
=~ A)]+9lf( )] B H24)] = o[ A)] - gl fH(A)] —D,[37( )],
i. e. the chain f(4) satisfies (7). OOndl’tion (18) follows immediately by

(27). Finally, if for a point a « X the simplex f(4) lies in X(a,#), then 4
lies in X[f(a),n]=f{X(a,u)] (since the metric ¢ is congistent with f).

Then d,{4)= —#[f(4)] lies in @{X(f(u),as(n))]:';b[ f(X(a,aﬂ(n)))] and con-
sequently condition (19), for e =ag(n), is satisfied.

Now if % ig an arbitrary z-chain in X of the dimension =% +1,
then /='=§‘x a;d; where A,,4,,...,4, are 7-simplexes in X. For every 4,

the ay{y)-chain #,(4,) (with integral coefficients) lying in &(X) and such
that

Mol A)]=pd) —pf(d) =0(24)),  Dy(A)= —BH(4))]

is already defined.

[
Ot
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Putting

3o(x)=_217 ad(4;)
we infer that

Ao()]=@(x) —f() —Bs(92)  and  Ho(e) = —Bf(2)].

Moreover, if for a point a ¢ X the chain x lies in X(a,7), then 9,(4;)
lies in @[X(a,as(n))] for 4=1,2,..,m and consequently #,(») lies in
(B[X (a,a,,(ﬂ))]. To obtain the statement of the lemma it suffices to observe
that lim ag(n)=0.

>0

10. Triangulations consistent with an involution. Consider
now the case where X is a polytope (in general, curvilinear). If T is a
triangulation of X, then we shall say that an e-simplex A= (@gy@yy.ne s )
belongs to T if there exists in T a geometrical simplex with vertices
gy, 0. A triangulation T' of X will be said to be consistent with an
involution f on X if for every e-simplex A= (ay,a,,...,a4z) belonging to T
the simplex 7'(41)=(f(au),f(a1),.'. ,f(ak)) also belongs to T and moreover
the equality 4= +f(4) implies f(a;)=a; for every i=0,1,...,k.

Example 10. Let X be the Euclidean (n—1)-dimensional unit
sphere § in E, with centre ¢,=(0,...,0) and let f, be (as in example 8)
the symmetry relative to the hyperplane H; defined by the equations
#=0, i=1,2,...,,. The hyperplane H' defined by the equation.z,=0
intersects S along the (n—2)-dimensional unit sphere 8’ (called equator
of 8). Putting

fil@)=fix) for every zed’,
we obtain an involution on 8 constituting also the symmetry relative
to H;. Let us assume that there exists a triangulation 7' of §' (with
spherical simplexes on §‘) consistent with f;; for n=1 the existence of
a such triangulation of 8’ is evident. Let us denote by p and p’ two points
of 8 (poles of S) of the form

»=(0,...,0,1), p'=(0,...,0,—1).
Putting for every simplex A'=(ay,...,a;) of T’

PA = (P, g, 1), A =(p"ya0,...,0)
we easily see that the simplexes pA’,p'A’ and their faces constitute
a triangulation T of § consistent with f,. It is easy to see that by the
iterated process of barycentric subdivision we can obtain from T a trian-
gulation of § consistent with f; and having all simplexes with arbitrarily
small diameter.

Fundamenta Mathematicae. T. XLIL 17
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TrrorEM. Let f be an involution (different from the identity) on an
(n—1)-dimensional (curvilinear) pseudo-manifold X lying in the Bucli-
dean n-space B, and let {T.} be a sequence of triangulations of X consistent
with § and such that the diameiers of simplewes of T, converge with 1fv to
zero. Moreover, let @ be a family over X consistent with the involution f,
with elements O(x) acyclic and satisfying the condition

2e®@)CE, for every welX.

Then the bounded component of E,~X is contained in the field O(X).
Proof. The (n—1)-dimensional psendo-manifold X, as lying in &,

is orientable. Let us choose an orientation of X and let 4,1,4,a,..., 4., be

all (n —1)-dimensional simplexes of T, oriented positively. Then the chains

’J’;v=Av1+Av2+ oo +Avm,,

constitute a true cycle y={y,} not homologous to zero on X. If the
involution f changes the orientation of X, then y~f(y) in X and we infer
by the corollary of section 8 that $(X) contains the bounded component
of E,—X.

Suppose now that the involution f does not change the orientation
of X. Sinee T, is consistent with f, we conclude that f(y,)=y, and con-
sequently .
fdu)=4,;;y for ¢=1,2,...,m,,
where j(i) depends on 4. Let us denote by 4, the sum of all 4,; such that
j{i)=1. Then y,—1, can be decomposed into the sum of two chaing x
and f(») with different simplexes. Hence

Yo= 4 (%) + As

and
(28) 2, -+ 3f(52,) + 94, =0.

Moreover, let us observe that the hypothesis that f is not the identity
implies that for almost all » we have »,5%0 and also

(29) #,—f(2,) 550 mod 2.

Let us observe that 94,=0. Otherwise there would exist an (n—2)-di-
mengional simplex 4 appearing with the coefficient 1 on the boundary
of a simplex 4,; belonging to 4, and with the coefficient —1 on
the boundary of a simplex 4, belonging to %, or to f(x,). Hence
Au#E Ayt f(Aw)#A,;. Bub f transforms 4,; identically, hence f(d)=4
and consequently the simplex f(4,r) is also incident to 4. But this is
impossible becanse only 4,; and 4, among positively oriented simplexes
of T, are incident to A.

®
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Hence 1, is a cycle and also wx,f(x,) is a cycle. It follows that
(30) (93} = —9u,.

Now let ¢ be an arbitrary positive number. By the lemma of section 9
there exists an 5>0 and a homomorphism 9, assigning to every #-chain
of dimension I<n lying in X an (14 1)-dimensional e-chain #(x) lying
in @(X) and satisfying, for ¢ constituting the identity, conditions (17),
(18) and (19). But for almost all » the chain », is an 7-chain. Consider
the chain #4(x,). By (17) we have ’

(31) B o(,)] = 2, — f(2,) — Bo(9%,) .
Let us show that
(32) #o(d22,) =0 mod 2.

Since x, is the sum of some (n —1)-dimensional simplexes of the triangula-
tion T, of the pseudo-manifold X, the chain 9%, is of the form

A, =A1+ A5+ ...+ 4L,

where A3,4;,...,4; are (n—2)-dimensional simplexes of T,. It follows
by (30) that for every 1<j<r there exists a 1<j'<r such that

(33) H(4)y=—4j.

Since the triangulation T, is consistent with the involution f, we have
f(4)s=—4 for every simplex 4 of T,. It follows that the indices §,j’,
satisfying (33), are always different. We conclude that 9%, can be repre-
sented in the form

= [L,—f (.uﬂ) .
Applying (18) we infer that

Bo(9s,) =B 11,) — Fof () = 200(5) s

and consequently (32) holds.
It follows by (31) that

oty —f(2%,) = [By(2,)] mod 2,

and consequently yi=x,—f(x,) is a cyele modulo 2 homologous to 0
in $(X). By (29) the (n—1)-dimensional cyecle y,,-—f #,)=%0 mod 2 and
consequently »,—f(x,)+~0 mod 2 in 7,.

It follows that the (n—1)-dimensional cycles y, (modulo 2) con-
stitute a true (n—1)-dimensional cycle 7'={y;} modulo 2, not homeolo-
gous to zero in X, but homologous to zero in $(X)CE,. It follows that
the bounded component of B,—X is contained in &({X). Thus the theorem
is proved.

17*
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In particular, it follows that if we join every point & of the (n—1)-
-dimensional sphere 'S, lying in F,, with its antipode #* by an acyelic conti-
nuum (z) = d(z*) and if G(z) constitute a family over S, then the interior
region of § is swept out by the sets P(x).
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Examples of sets
definable by means of two and three quantifiers

by

A. Mostowski (Warszawa)

There are many categories of mathematical papers. On the one
hand we have first-class papers which -are read with interest by many
mathematicians and which further the development of mathematical
thought. On the other hand we have also papers which are studied exclusi-
vely by referees appointed for that task by editors of bibliographical
journals and which even by these casual readers are put aside with
a sigh “why do these people publish so much?”

The present paper belongs to the second rather than to the first
category. I have collected in it a number of very special results which
belong to the theory of recursive functions. More explicitly I consider
fractions of the form 10 *a(2,y) where a is a primitive recursive function
and investigate the set of those integers y for which lim 10 *a(z,y)

exists and belongs to a preassigned class of real numbers. A %ypica,l result
is given in the following theorem (cf. theorem 7 below): The set Zz® of
those ¢’s for which lim 10 "a(x,y) exists and is integral is the most

general set of the class Qg”, 4. ¢., the most general set definable in the
form F[]N]]R(y,u,v,w) with a recursive R. The expression ‘‘most

generay” umleags that if a Tuns over the set of primitive recursive functions,
then the set Z® runs over the whole class Q%

Investigating this example and other similar omes I encountered
some phenomena which I found interesting. If, for example, we narrow
down the variability of o’s to the set of functions for which lim 10 a(z,y)

always exists (4. e., exists for y=0,1,2,...), then the GOITBSPOIchding sets Z9
cease to represent arbitrary sets of the class Q. As o runs over the nar-
rower class of functions, the set Z® runs over the whole class Qf which
is known to be different from Qg). No such reduction oceurs if in-
stead of Z® we consider sets Z® containing all such y’s for which
lim 10 ¥ a(x,y) exists and is irrational. In this case the set Z® runs
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