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Proof. There can be no model of class P, since & has no such
model. If there were a model of class @, then A’,B’,...,¢ would be
complements of recursively enumerable sets and relations and (since
ned=néd,..,Gp,q,r)=non@(p,q,r)) the sets and relations 4,B,...,¢
would be recursive. Theorem 4 follows thus from theorem 3. ‘
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Generalized dissimilarity of ordered sets*
by
F. Bagemihl (Princeton, N. J) and L. Gillman (Lafayette, Ind.)

1. Introduction. The present paper arose from an attempt to
solve the following problem: does there exist a (simply) ordered set E
of more than one element, such that, for every pair of distinct elements a
and b of B, the sets F—{a} and E—{b} are dissimilar (i. ¢., there is no
one-one order-preserving correspondence between the two sets)? An easy
argnment shows that there is no such set E of power 8y; we ghall prove,
however, that there does exist a subset of the continuum, of power c=2%,

‘possessing the property in question. Generalizations in various directions

will also be obtained. In order to motivate these generalizations as they
appear in the formal statements of the theorems in section 6 below, we
shall give here a rough indication of their underlying ideas.

First of all, it is possible to find a subset E of the continuum such
that not only is there no similarity transformation between B—{a} and
E—{b}, but there is not even a non-trivial “pseudo-similarity’ trans-
formation of E— {a} onto B —{b} (cf. Corollary 6.2 (d)), where we define
(cf. 4.8) a pseudo-similarity transformation of an ordered set M to be
a single-valued function (not necessarily one-one) defined on M that is,
with respect to some decomposition of some dense subset of M into
mutually exclusive subintervals of M, & similarity or anti-similarity on
the interior of each of these subintervals. (This is clearly a more general
kind of transformation than the “semi-similarity’’ introduced by Aron-
szajn [1]. In fact, there are 2¢ pseudo-similarity transformations of the
continwum into itself.) Then, it is not necessary that only single elements,
o and b, be removed from E in order to obtain, say, dissimilar subsets
of F; these single elements may be replaced by arbitrary distinet subsets
of B of power less than ¢ (cf. Corollary 6.2 (d)). Another generalization
is concerned with replacing the continuum by any ordered set M of
power ¢ containing a subset of power ¢ that can be imbedded in the
continwum; for any such M, we obtain a decomposition into ¢ mutually
exclusive subsets (the sets E° in Theorem 6.1), each of which has the

* Presented to the American Mathematical Society, December 29, 1953.
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aforementioned properties involving dissimilarity, and is such that every
one of its (non-empty) intervals is of power ¢. Theorems 6.5 and 6.7 deal
with other decompositions of this sort. (For additional decomposition
theorems of a related nature, ef. Ginsburg [3].)

Corollaries 6.2, 6.6 and 6.8 enumerate some of the special cases of
Theorems 6.1, 6.5 and 6.7 that apply to decompositions of the conti-
nuum itself.

Theorems 6.1, 6.5 and 6.7 themselves are derived from three other
theorems concerning decompositions of arbitrary sets (not necessarily
ordered), namely, Theorems 3.2, 3.4 and 3.6. The transition from arhi-
trary sets to ordered sets is accomplished by means of Lemma 5.2 (or
Corollary 5.3). .

Finally, the remark following Corollary 6.2 is concerned with re-
placing 2% by higher powers.

This synopsis does not take into account all the results of this paper,
but is intended merely to indicate some of the ramifications of the ori-
ginal problem that are considered herein.

The main tool used is a modification of an idea employed by Dushnik
and Miller [2] to obtain a subset E of the continuum that is not similar
to any proper subset of E (cf. also Sierpinski [7] and Ginshurg [3]).

2. Some definitions and notation. In what follows, ¢ denotes
the linear comtinuum; w, is the least ordinal number of power c¢=29%
(we make use of the well-ordering theorem); | M| stands for the cardinal
number of M; and the gsymbol C signifies set inclusion, not necessarily
proper.

2.1. Fundtion or mapping means single-valued function. The symbol
gl4 denotes g restricted to 4, g being a function and A a subset of its
domain of definition.

2.2, Definition. An x,-decomposition of a set M is a family of &,
mutually disjoint sets, each of power %, whose union is M.

2.3. The following will be convenient for dealing with decomposi-
tions of sets. Liet a be any ordinal number. Put W(w,)=set of all ordi-
nals <ws, P=P(w,)=lexicographically ordered set of all pairs (o,7)
for whieh 7 <o < w,. Clearly, P is well-ordered, of type w,; put p=7re
= (unique) similarity mapping of W(w,) onto P.

For every = <w,, define a subset P, of P according to

(2.3a) Pr={{0,7): T<0 <ws);

it is obvious that the family of sets {P,},c,, form an x,-decomposition

of P. Let g=g¢, be any function from W(wa) onto itself, and for each

@
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‘pa,iI‘ (571) (& < aq, T <wg)y pub
(2.3D) Qe=1{0: ¢(0)=¢, p(8) e P:};

it is an elementary matter to define ¢ in such a way that for all such
(é,7), we have

(2.3(3) |Q§,r] = Nay

and we shall suppose throughout the sequel that ¢ has been so con-
strueted. '

8. Some decompositions of arbitrary sets. In this section
we shall prove three theorems cn decompositions of arbitrary sets (not
necessarily ordered). These theorems will be applied later on, how-
ever, to ordered sets.

3.1. Definition. A function f on a set I (into any set N) is non-
-trivial (8.), if there is a subset M’ of M, of power x,, free of fixed points
of f, and on which f is one-one; 4. e., for all z ¢ M', y ¢ M?, £y, we have
o7 f(x)# y)- .

8.2. TEEOREM. Let o be any ordinal, R any set of power 4. {felica,
a fawmily of nov-'rivial (s,) functions from subsets of R into R. Put Dy
=domain of fz (§ <wa)y D=Ugsca,Ds. Then there exists a subset F of R,
having an Np-decomposition {F }cq,, and with the following properties.
Writing V=R—F:

(3.2a) FCD;
(3.2b)  for all E<w, and t<ee, | DeaFd=rg
(3.2¢) 1D~ V] =

(3.2Q) for all E<w, and T<wn  |VAfiDinFo)| =t

. Proof. We define sequences F=1{xs}, G={y:}, H={2:} ({§<wy), a8
follows. Let 6 < wq, and suppose that clements z¢, y and z; of E have
been defined for all &<6. Since fyp (see 2.3) is non-trivial (x), there
exists an a, such that )

x5 € Dyey— {@etsco— {Ysta<o— {2e}e<s
and
Tae (@s) € {Te}e<s v {Yeteca-

Choose any such s, pub Ys=foe(@s), and then define 2, as any element of
D — {zhecs— {2s}e<e-

This completes the definitions of F, ¢ and H.

R e B N e R A e

i
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Clearly, we have (3.2a). Since HCDAV and [H|=#,, we get (3.2¢).
Putting

F,:{-’Yfg: 29(5) € -P'z} (T< wﬂ)i

we see from (2.3a) ff. that the family {F.} is an s,-decomposition of 7.
Using (2.8b,¢), we see at once that 6e@Qg, implies ;e DinF,,
whence |Dg~F =8, i. e, (3.2). Putting

Geo={Ys1 0 €Qps},
we find that [@g.|=Ss,; since
G Cfe(DenFo) ~ G,
and GCV, this gives us (3.2d). Our proof is now complete.

3.3. Definition. A family @ of s, functions {p,} are compleiely
distinct (%,) from M into N if every ¢,e® is one-one from M into N,
and if no two coincide at any point; 7. e., for all x e M and z"¢ M, with
x+#2, and for all o,7 with ¢s%7, we have

o) F o {2 ) F ().

3.4. THEOREM. Let o be any ordinal, B any set of power S, {fe}e<a,
a family of non-trivial (s.) functions from subsets of R into R. Put D,
=domain of fi (£<wd); D=Ui<cn,Ds. Further, let {p:}ico, be a family
of completely distinet (8,) functions on D into D, with ¢, the identity. Then
there exists a subset F of R, having an s,-decomposition {Fi}.ca,, and with
the following properties. Writing V=R—F:

(3.41) FCD;

{3.4b) |R—F|=nxy;

(3.4¢) 1o every t<w,, there corresponds a y,<w, such that g, (Fo)=Fz;
(344) 1D AT] = s

{3:4e) for every & <amg, . [V A fe(Din Fo)| =5,

Proof. We define sequences F={r,.}, G={v,}, H={z}, ['={y:}
(0 <we;, T<wq), as follows. Let aoy be any clement of Dy (see 2.3)
for which
fam (@) o0

(such an element exists, sinee f,, is non-trivial (x,), and define ¥,

=aw(Too). Take for 2z, any element of R distinct from Zop. Put y,=0.
Let 0 <0 <w,, and suppose that elements Tory Yo and 2, of R, and

ordinals y:<w,, have been defined for all 6<§ and 7 <4, such that

@7,(‘2”6,0):@4,: (U<5, T<0).

icm

First we shall define x;, and v, then Tsx (T<<6),
(¢<6), and, finally, =,.

Binee fus is non-trivial (s,)
choose 75, such that
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then y,, then ,,

; and since each ¢, is one-one, we can
Ts0 € Dygsy = {TorYacs,ecs — Hotoss —{Fole<ar

Tae(@s,0) € {Ts0}ecs {Yodossy
and

for all 7 <4,

Ty (Lo0) € {‘r:;,g}a<6,g<6 U {2o}o<s-

- We then put ys=7F,n(2s0), and define

Ta,r=¢y1($a,u) (r<é)

(the case =10 agrees with =0, ®o=1identity). We have now defined
25, for all <4 and v <é.

Likewise, since the family {@cle<a, are completely distinet (%), we
can find a ys <w, such that for all #<3,

Tys (‘Tn,ﬂ) ¢ {‘Ta,r}a<6,r<d N {za}s<6;

we then define
: L=y (F0) (o< 6).

We have now defined ux,, for all o< 6, 7<, and, in fact; we have

(3.41) Zor =Py, (Tap) (e< 8, v<6).

Finally, we take for z; any element of

B — {25 }ocswas —{Zotacs-

This completes the definitions of the sets P, ¢, H and I
Clearly, HCR—F, FCD, and |H|=x,. In particular, we have (3.4a).
Since |H|=xn, and HCR—F, we get (3.4b). Putting

F.= {ma‘,-t}a'<wa (T <@g ]

we see that {F,} iz an s,-decomposition of #. Conclusion (3.4¢) now fol-
lows from (3.4f). Since |Fy|=x, and F,CD AV, we get (3.44d).
Finally, (2.3b, ¢) show that for every &< w,,
[{6: 6 <way 4(8)= £} =ty

hence, putting

Ge={ys: q(0)=¢},
we gee that |G¢=s,. Since

GCfe(DsAFy) A G,
and GCV, we get (3.4e). This completes the proof.

Fundamenta Mathematicae. T. XLIIL 10
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3.5. Definition. A family @ of functions {p,} are pseudo-distinct
(%) from M into N if every g, is one-one from M into N, and if, for every
ze M and every y e N, there are 5, functions ¢’ € @ for which ¢'(@)=y
and such that the family of all these ¢'|(M —{x}) are completely dis-
tinet (8,) from M —{z} into N.

8.6. THEOREM. Let o be any ordinal, R any set of power w,, and
{fe)e<n, @ family of non-trivial (s,) functions from subsets of R into . Pus
Dg=domain of fe (§ <wa); D=Ug<o,Dg. Finally, let {g:}c<n, be a family
of pseudo-distinet (%) functions from D .into R, with @, the identity. Then
there exists an N,-decomposition {F*}i<,, of R such that

(3.6a) FCD;
(3.6b) for every T<w,s, there is a y,<w, for which Py, (F’):F’;
(3.6¢) for every &<wg, |(B—F°) A fe(DsI0)|=x,.

Proof. We define sequences F={z,.}, G={y.}, and I'={y,} (0 <ay,,
T<wg), as follows. Let 1)

(3.64) {re}eca, ‘
be an enumeration (without repetitions) of the elements of R. Let my,
be any element of R for which

(3.6¢) Zoa € Doy, fa@o0) # 00

(such an element exists, since fuq (see 2.3) is non-trivial (s,)). Put

Yo=Ta0(%o,0), Yo=10.
Let 0<d6<w,, and suppose that elements x,. and gy, of R, and
ordinals y, <w,, have been defined for all ¢ <6 and all 7< 4, such that
Cy(Top) =T0z  (0<8, T<6).

We shall define x40 and ¥, then 25, (v<§), then x,5 and v,, and, finally,
255 (0o <6). )

Since the function fu is non-trivial (x,), and since every ¢, is one-
one, we can choose ;5 so that

L30€ -Dll(ﬂ) - {wa,r}a<6,z<d - {yu}a<d )
(3.61) Fa(T5,0) € {Toploscs @ Yotocss
for all v<4, Ty (X5,0) € {Topacsos-

'} The authors are indebted to P. Erdés for the suggestion of well-ordering R,

and then defining 7, ; as is done below, in order to obtain the mutual similarity of the
sets F* in Theorem 6.7.

®
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We then put ys=fue(2s0), and define
Ta,e= 0y, (s0) (r<6)

(the case 7=0 agrees with the earlier definitions Yo
We have so far defined ., for all 0 <8 and 7 <§.

Now select as @y, the first element re in the sequence (3.64)
which

=0, go=identity).

for

Te € {Tortesszas-
Since the family {p.} are pseudo-distinet (x,) from D into R, there is
a function ¢,, such that
Ps (Fop)=10o
and

for all =<6, ¢,,6(w,,,o) € {Zo Yoo xes}
we then define

Toa=Gy(Xe0)  (0<4)
(this agrees with the case o=0 already defined). We now have
(3.68) Tor =y, (Xep)  (0<8, v<C8).
This completes the inductive definitions of the sets ¥, G and I Clearly
F=R.
Put .
F1={wa,r}u<wa (T<wu);
then {F7} is an s,-decomposition of B, and GCR—F°. Now (3.6a) fol-

lows from (3.6e,£), and (3.6b) follows from (3.6g). Finally, (2.3b,c)
show that, for every &< w,, we have

[ 0 <an, a(d)=8)|=s;
hence, putting
Ge=1{ys: q(0)=£},
we see that |G| =x,. Since
G Cle(Dgn F0) ~ (R—F°),

we get (3.6¢). This completes the proof.
We now turn to ordered sets.

4. Pseudo-similarity transformations. In the present section,
we introduce the notion of a psendo-similarity transformation of an
ordered set, and establish some lemmas pertaining thereto.

4.1. Let M be an ordered set. An element of M having two neigh-
bours (i. e., having both an immediate predecessor and an immediate
successor) is called an isolated element of M; a border element of M is

10%
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also called isolated, provided that it either has a meighbour or is the
only element of M. A subset I of 3] is called an interval of M if both

(4.1a) I is empty, or I consists of one isolated element of M, or I con-
tains at least two elements; :
and

(4.1b) with every @, y in I, every element of M between z and y is
also in I.

For any a e M, M“ resp. M, denotes the interval of M consisting
of all x e M resp. y e M for which z<a resp. y>a.

4.2, Let M, K be ordered sets, with KCM. Then K is dense in M
if for every m,<m, (m;e M), there exist %,k, (kje¢K) such that
my; <k <ky<m,. Whenever we say “K is dense in M”, it will be un-
derstood that KCM.

This is essentially the definition given in [4], p. 89, and appears to
be the natural one for us to use?). It does not coincide with *“dense”
in the topological sense (ef. [4], p. 249), with respect to the interval
‘topology %) on M. E.g., if M is the set of reals in (0,1]4-[2,3), and
K=(0,1)+(2,3), then K is dense in M in the latter sense, but not in our
present sense. On the other hand, the two definitions coincide if, e. g.,
M is a dense set (i. ., with at least two elements but without neigh-
bouring elements) or an isolated set (4. e., every element is isolated) of
more than one element. '

Our occasional use of topological terms, such as “open’ and “closed”,
will always refer to the interval topology.

4.3. We shall also extend the symbols M and My, to include the
case in which 4 is an arbitrary element of an ordered set H that con-
tains M. We define: M9=M ~H®, My,=M A H,.

In case a ¢ H—M, these sets need not be intervals of M. For exam-
Dle, if H is the subset {0}4-[1,2) of the reals, and M the set {0} (1,2),
then Mmz{O}, which is not an interval of M. On the other hand, if 3

is unbordered, or if M is dense in H, then the sets in question will always
be intervals of M.

*) According to this definition, the null set is dense in any one-element set. This
does not disturb us. . .

?) The interval topology on an orfered set M of more than one element is formed
by taking as a bhase of open neighbourhoods all intervals of the form M @> M®, and
M(_) ~M® (ae M, be M); cf. [4], p. 214. Note that the relative topology on a subseb
need not coincide with the intrinsic interval topology thereon. E. ¢., if K is the subset
of O (the reals) consisting of all <0 and all z> 1, then the interval K(l) (cf. 4.3) is

a closed set under the topology induced from O, but it is not a closed sot under the
interval topology on K.

®
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4.4. Definition. Let H, ¥ be ordered sets, with NCH. Then ¥ is
essentially nowhere dense in H if for every interval I of H that is & dense
set, there is & non-empty interval J of I that is free of elements of N.
(It H is a dense set, we may drop the word ‘“essentially”).

For example, every finite subset of H is essentially nowhere dense
in H.

4.5. For any ordered set H, i(H) denotes the set obtained from H
by deleting its border elements (if there are any).

Thus if J is any interval of H, then i(J) is an open interval of H
(contained in, but not necessarily coinciding with, the interior of J).
Note also that if J contains at most two elements, then (J) is empty.

We now proceed to generalize the notion of a similarity transfor-
mation of an ordered set.

4.6. Definition. Let H be an ordered set. A set {H,r of non-
overlapping intervals of H whose union is dense in H will be ealled an
essential partition — or, for brevity, simply a partition — of H.

Note that the corresponding intervals i#(H,) are mutually exclusive.

The proof of the following lemma is obvious.

4.7. LEMMA. Let {E}.er be o partition of an ordered set B, and let
B =U,eri(By). Then

(4.72) E—F 1is essentially nowhere dense in E;

(4.7Db) if E is a dense set, then E' is dense in E.

4.8. Definition. Let H, M be ordered sets. We shall say that H
is pseudo-similar to M if there exists a function f defined on H, with
f(H)=M, and a partition $={H;}rr of H, such that, for every te T,
the restriction f|i(H,) is either a similarity or an anti-similarity. The
values of f elsewhere on H are arbitrary elements of 1.

Such a function 7 will be called a pseudo-similarity (transformation)
of H onto M. The partition $ will be called a partition belonging to f,
and 7 will be said to be based upon this partition.

Note that f is not assumed to be one-one. Note also that a given f
may be based upon several different partitions.

Furthermore, it may be seen without difficulty that if f is & pseudo-
-similarity of H onto I, and if J is densein some interval of H, then the
restriction f|J is a pseudo-similarity of J into M (4. e., onto some subs‘et.
of J). The example H=Ilexicographically ordered plane, J = g-axis,
shows that this need not be the case for an arbitrary subset J of H.

4,9, Definition. A pseudo-similarity transtormation fof H A onto M ‘
is essentially the identity if there is & partition {H},er belonging to ]
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such that fli(H,) is the identity for every {e1; more particularly, f is
essentially the identity with respect to this partition 4.

We also speak of f as an essentially identical mapping of H onto I ,
and write H='M; if no such mapping exists, we write H #='M.

Observe, in this connection, that the relation =’ is not symmetric,
For example, if H denotes the irrationals, then obviously € (=reals)'H
(since every interval of C' contains a rational). On the other hand, we
do have H='(: express H as the union of infinitely many non-over-
lapping intervals H, (of H) each with irrational endpoints, map each i(H,)
onto itself identically, and map the set of all the endpoints onto the se
of all rationals in an arbitrary fashion (one-one or many-one).

4.10. LEMMA. Let H, N be ordered sets, with N CH, and suppose
that N is closed and essentially nowhere dense (cf. 4.4) in H. Express H—N
as the union of mutually exclusive open intervals of H. Then the collection
of all these intervals, along with all the two-element intervals of H that are
not contained in H—N, constitutes a partition of H. In particular, if N=H
(i. c., if H is essentially nowhere dense in itself), and if D is an arbitrary
ordered set, then every pseudo-similarity transformation of H into D s
essentially the identity.

Proof. Let K denote the union of H—N with all the two-element
intervals of H that are not contained in H — N. It suffices to show that
K is dense in H. Let a, b be any two elements of H, with a<b, and denote
the interval a<w<b of H by I. If I contains two neighbouring elements,
fhen these elements are both in K (as follows from the definition of I).
In the contrary case, I is a dense set. Then, since N is essentially nowhere
dense, there is an interval J of I contained in K —XN, and hence in K;
and, of course, J contains at least two elements. This completes the
Jroof that K is dense in H, and hence the proof of the lemma.

4.11. Definition. For any ordered sets K and I, we write

14.118) G(K »L)=1family of all non-identical similarity transformations
and all anti-similarity transformations of X into L;
(£11b) F(K L) =UiG(J,L), J ranging over all (non-empty) unbordered
_intervals of K.
It follows thag
intervals of K.

I K is finite, then, trivially, the family &(K,T) is empty. Our goal

in ‘this paper ig, essentially, to find non-trivial examples for which §
and & are empty {cf. section 3)

FE,Ly=Us;F(J,L), J ranging over all unbordered

*) Note that f need not be

essentially the identity with res ee’; to eve arti-
tion belonging to i, ' ' v

For the linear continuum ¢, as is well-known, |G(C, 0){=|#(C, C)l=c.
On the other hand, the number of pseudo-similarity transtormations
from C into € — even the number of essentially identical transforma-
tions — is 2% For let ¢’ be any nowhere dense, perfect subset of ' (e. g,
the Cantor ternary set), and consider the corresponding partition of C
(Lemma 4.10). Any pseudo-similarity transformation based upon this
partition may assume arbitrary values on ('; since |(”|=¢, there are 2¢
such transformations.

@
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412, LemMA. Let D, A; and A, be ordered sets, with A,CA, and
such that A, is dense in A, and contains the border elemenis of A, (if there
are any). Let b be any similarity or anti-similarity mapping of A, 'into D,
and suppose that h(A;) is dense in some inteﬂwﬁ-l H of D. Then h is deter-
mined by its values on A4,. :

Proof. Every element # of A,— A, determines a gap of 4,. The
element W(x) of h(4,) determines the corresponding gap o.f h{A4,). But
h(4,) is dense in the interval H of D, so this gap can be filled by only
one element of D.

4.18. CororrARY. Let D, H, A, and A, be ordered 3'ets, with
A, CACHCD, H an interval of D, and such that A; is dense in H fm_d
contains the border elements of Ay (if there are any). Let h‘ be any  simi-
larity mapping of A, into D such that the restriction k|4, is the identity.
Then h dtself is the identity.

Proof. It is easily seen that h(4,)CH. The result now follows from
Lemma 4.12.

In this corollary, the condition that A, contain the border elements
of A, is critical. For let D be the reals in‘ (0,1]+{2}, A0=H=(0,1]1;
A;=(0,1), and h(4¢)=(0,1)+{2}. Then 4, is del}se 11% H, 1.3nt does n({),
contain the last element of A,; and h is not the identity, since h(l):t‘.

Again, it is critical that 4, be dense in H. For let D= H=reals ;n
(0,1]+[2,3), A0=(0:1]+ (2,3), A1=(0’1)+.(273)5 and h(‘AoP(Oal)';‘ [21;’1: )
Then 4, is nunbordered, but is not dense in H; and b is not the identity,
since h(1)=2.

4,14, CorOLIARY. Let D, K and J be ordered sets, with J CK‘CD,
K a dense set-and an interval of D, and J densF in K. l::e.t h'be any sz;:si%—
arity mapping of B=1i(J) into D that is essentially the identity. Then b is
the identity. . o -

Proof. Let {E}.r be a partition of F thth respech to wlnch‘i;ﬂ 1)s
essentially the identity. Then k|4, is the ident'l‘cy, where A1=]EJ,,_§3( 1; .
Sinee E is dense in the dense set H=1i(K), E is & de{:se set,'w enl ) 1y
Lemma 4.7(b), 4, is dense in E. Therefore A, is dense in H. Since, clearly,
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E is unbordered, the result is now immediate from Corollary 4.13 (
Ay=E).

The condition that K be a dense set is critical here. For let D=FK
=J=FE=T=set of all integers, and let h(t)=1+1 (teB). The
partition of E defined by B,={t} (¢t ¢ T) belongs to &, and for this par-
tition, the set 4, is empty. Hence & (as well as every other pseudo-simil-
arity on E) is essentially the identity (ef. Lemma 4.10).

4.15. LevmA. Let L be a continuous set, and let B and H be ordered
sets, with BCH, and such that B is dense in H and contains the border
elements of H (if there are any). Then any simslarity resp. anti-similarity
mapping h of & into L can be extended to a like mapping { of H into L.
(And, obviously, if h is not the identity, then f is not the identity.)

Proof. Every z ¢ H—FE determines a gap (A|B) of E. Since I iy
continuous, there is a y e L such that MA) <y < hB) resp. M4)>y>hB);
define f(z) to be any such y.

Of course the continuity of L is critical here.

As a corollary to the lemma, any pseudo-similarity b on E has an
extension to H (and for this, we do not require that B contain the border
elements of H). For let the partition {¥,},.r of B belong to &; then
{H:}er 1s o partition of H » Where H, denotes the smallest interval of H
that containg E, (¢ e T). By the lemma, each transformation b= h|i(B)
has an extension to a like transformation fe of i(H,) into I, and the de-
sired conclusion now follows at once. ‘

With

4.16. Definition. A non-empty ordered set M is called s,-homo-
geneous if every non-empty interval of I ig of power s,.

4.17. LEMMA. Let L be an ordered set, H an unbordered interval of L,
and J an s-homogeneous subset of H dense in H. Then every function
he G ,L) is mon-trivial (x,) (ef. 4.11 and 3.1).

Proof. Since every such & is one-one,
of J of power x, that is free of fixed points
verses order. Let h preserve order, and denote by A, its set of fixed
points. Sinee J is unbordered and % is not the identity, 4, cannot be
dense in H (Corollary 4.13, with Aoy=dJ, D=IL). Consequently, there is
an entire interval of H, hence an entire interval of J, free of fixed points
of k. The result now follows from the fact that J is s,-homogeneous.

4.18. CoBOLLARY. Let L be an unbordered ordered set, and let D be
an s;homogeneous subset of L dense in L. Then every function fe F(D,L)
is non-trivial (g,).

No proof is required. As a further corollary, it can easily be seen
that every pseudo-similarity f of J into L, or of D into L, is also non-
-trivial (x,), provided that § is not essentially the identity.

we need only find a subset
of k. This is trivial if h re-

o
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5. The fundamental lemma. In this section, we establish the
lemma that serves as the link between the decomposition theorems of
section 3 (for arbitrary sets) and those of section 6 (for ordered sets).
TFirst we introduce an abbreviation that will be eom:enient in simplifying
the statements of our results.

5.1. Definition. Let « be an ordinal, let 4, B, D and I be ordered
gets, with ICD and |1|>2, and denote by K the smallest interval of I
that eontains I. Then, by the proposition

P(Nﬂ; A3B"DSI)7
we shall mean the following composite statement:

If
(P.2) [ —A] <,
then
(P.1) the sets A4,B* are dissimilar 5);

if

(Pb) |[I—A[<S,, AUBCD, and iK)~A#iK)n~B,

then ’

(P.2) the sets 4,B are dissimilar;

i .
(P.c) |[I—A]<n, AvwBCD, A—I is essentially nowhere dense in 4,

and A=£'B,
then

(P.3) there is mno pseudo-similarity transformation whatsoever of A
onto B.

We may now state our lemma as follows.

5.2. LEMMA. Let o be an ordinal, and let A, B, D, I, K, L, U and V
be ordered sets, such that i
(5.2a) L is continuous;

(5.2b) ICKCDCL, with K the smallest interval of D that contains I,
and I w,-homogeneous and dense in K;

(5.2¢) DAVCU;

(5.24) | B —DJ < %3

(5.2¢) [B AU| < $q;

(5:21)  for all f e F(I(K),L) (ct. £.11), [V ~ f(Dp~ I)| >, where Dy denotes

the domain of f.
Then the proposition P(s.; 4,B,D,I) (5.1) holds.

i ¥ gienifies i order.
®) As iy customary, the symbol *** signifies inverse
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Remark. For the proofs of (P.1,2), the hypothesis (5.2f) can be
weakened by replacing & therein by G. This detail is of little concern,
however, as in the application to the theorems of the next section, the
present hypotheses, and, in fact, the even stronger hypotheses of the
corollary that follows, are just as easily derivable in full.

Proof of Lemma 5.2. Let g be an assumed pseudo-similarity map-
ping of 4 onto B. Put

I'=iI), EK'=iK),
{5.2g) Ay=I'~¢=Y(D ~ B), A=K~ A

{g~{X) denotes the complete inverse image of X). Note that 4,CI'~AC A,.

‘We show first that [I' — 4,] < x,. From (P.a,b, c), we have [T — 4] <8,
If g is one-one, the result then follows easily from (5.2d,g). If g is not
one-one, then we assume BCD (P.c), which, with (5.2g), yields 4,
=I'nA. Then I'~A4,=1'— 4, and again we have our result.

Sinee I’ is s,-homogeneous and dense in K’ (5.2b), it follows that
I', K', 4, and 4, are all unbordered dense sets, with A; dense in each
of the others, and A4, dense in K'. .

If g is a similarity or an anti-similarity, then 50, of course, is the
restriction g|4,. If g is an arbitrary pseudo-similarity, then we assume
ACD (P.c), whence 4, is an interval of 4 (sinee K’ is an interval of D)
and again g|4, is a pseudo-similarity (of. 4.8).

Suppose, first, that g|4, is not essentially the identity, Then (see 4.9)
there is a {non-empty) interval J of A, such that gli(J) is either a non-
-identical similarity or an anti-similarity. Since A, is a dense set, the
interval E=i(J) of 4, is unbordered. Now A,CK’; let H be the smallest
interval of K’ that contains E. Then H is unbordered; and, since 4, is
dense in K, E is dense in H. Furthermore, using (5.2g,b) we have

9(E)Cg(A4,)CDCL.

'C‘onsequently, by Lemma 4.15 (with kb= g|E), g|E can be extended to
2 like mapping fe G(H,L) (cf. 4.11). But H is an unbordered interval
of K’; therefore fe (K’,L). Tt follows from (5.2f) that

VA HHAL)=[VA fH AT >s,.

Now {(H~I')— A4y <x,, since [I'— 4| <s,. Therefore, since f is single-
-valued, we have ]an(HnI'mA,)l >8,. Next, we observe that H~ I'n4,
=Hn A;=E, the first equality being a consequence of the relation
A,CI’, and the second resulting from the fact that B is an inderval of A;.
Accordingly, |V~ {EB)|>x,. Now HE)=g(E)Cy(4,)CD~ B (5.2g). Con-
sequently, [F~ D~ Bj>x,. But VADCT (5.2¢), so we have [T~ B> s,.
This, however, contradicts (5.2e)

k)

icm
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Henceforth suppose, then, that 9|4, is essentially the identity. Then g
cannot be an anti-similarity (since 4, is a dense set). We assume, ae-
cordingly, that ACD and BCD (P.b,e). As already noted, the former
implies that 4, is an interval of A4, and the latter thaf A,=I'~A.

If g is a similarity, then g|4, is also a similarity. Since g9(4,)CD,
it follows from Corollary 4.14 (with J=4,, h=g|4,) that g|4, is the
identity. Next, g(4,)CBCD, and it is obvious that 9l4,=(g]4,)]4,.
It therefore follows from Corollary 4.13 (with H=K', h=g|4,) that
g4, is the identity. Consequently, g(4,)=A4,CK’, and Ay=g(4,)CB,
so that A,=K'~ ACK’'~ B. )

Now let & be an arbitrary element of B, and put a= g7Hb). If a<<K',
then, obviously, a<4,, whence, for every a'e 4,, b=g(a) <g(a)=4a’
(since g is order-preserving and g|4, is the identity). Thus a <K’ implies
b<d4,. But A, is coinifial with K’; therefore a< K’ implies b<K'.
Likewise, a> K’ implies b>K'. Now a ¢ D, and K’ is an interval of D.
Hence either ¢ <.K' or a>K’' or a < K'. It therefore follows from the
preceding that b ¢ K’ implies a ¢ K', whence ¢ e K'~ A=A4,. But then
b=g(a)=a. Thus K'~ BCK'~ A. With the reverse inclusion established
vpreviously, this yields K'~n B=K'~ A, contradicting (P.b).

Finally, if g is an arbitrary pseudo-similarity, we assume (P.c) that
A—1I is essentially nowhere dense in A (cf. 4.4). Therefore A —1I' is
essentially nowhere dense in A. Then, since A, is an interval of A4, the
set Ay~ (A—1I'), =A,—A,, is (essentially) nowhere dense in 4,. Now
let {J}ier be a partition of A4, with respect to which g|4; is essentially
the identity (cf. 4.9). We “refine” this partition, as follows. Put A’
=Useri(J;). By Lemma 4.7(a), 4,— A’ is nowhere dense in A4;. There-
fore, since A4,CA,, A;— A’ is nowhere dense in 4,. It follows that the
set (Ad;—A) o (4dy—4;), =A,—A4’, is nowhere dense in 4,. So, then,
is N, the closure (in 4,) of 4,—A'. It therefore follows from Lemma 4.1?
that there is a partition C,={E}s of 4, such that U,ssEszD—l\".
But 4,—~NCA'CA4,, and g4’ is the identity. Therefore €, is a parti-
tion of 4,, and g|4, is essentially the identity with respect to this part
ition. On the other hand, &, is also a partition of A,; therefore g4, itself
is essentially the identity with respect to . )

Next, let H, resp. H, denote the set of all xe 4 resp. ye4 for jWthh
£< Ay Tesp. ¥ >A,. Then H, (i=1,2) is an interval of 4, except in the
case where it consists of only one element. In any event, the set
H;~(A—1I'), = H,, is essentially nowhere dense in itself. By Lema i.l(;,
g|H; is essentially the identity with respect to some partition Gj.(m a.el,
the partition consisting of (the null set and) all the two-elgmegt intervals

; i red, it is evident that the family & v & v €,
of H;). Since 4, is unbordered, it is evi
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is a partition of A ¢), and that g is essentially the identity with respect
to this partition. Since g(4)=B, we have, therefore, 4='B, contra-
dicting (P.c). This completes the proof of the lemma.

In our applications of this lemma, it will be more convenient to
refer instead to the following corollary.

5.3. COROLLARY. Let o be an ordinal, and let A, B, D, ¥, I, L M,TU
and V be ordered sets, with

VAF=0 and BCM,
and such that

(5.3a) L s continuous;

(5.3b) I CﬁCDCL, with N,-homogeneous and dense in D, and I a non-
~empty interval of B

(5.3¢) DAVCU;

(5.34) UCVo(M—D) and  |B—F|<sq,
or .

(5.3e) B-DCU and 1B~ U< 8

(3.3%) for all fe F(D,L) (ct. 4.11), [V~ F(Dyn F)| >, where Dy denotes
the domain of f.

Then the proposition P(s,;4,B,D,I) (see 5.1) holds.

Proof. It suffices to verify the hypotheses of Lemma 5.2. First,
(5.3a,c) are merely restatements of (5.2a,¢), respectively. Secondly,
(5.3Db) is easily seen to imply (5.2b). Next, we show that (5.3f) implies
(5.2f) (where K dengtes the smallest interval of D that contains I).
Clearly, i(I)=i(K)~F. Let fe F(i(K),L). Then D,Ci(K), whence

D~ FCE) ~ F=4(1).

Therefore Dy~ FCDy~ 1. But f e F(D,L) (since i(K) is an unbordered
interval of D), and our conclusion now follows at once.

Finally, since both (5.2d,e) are immediate consequences of (5.3e),
it reg}ayins to be shown only that these two also follow from (5.3d). Since
VAF=0 and FCD, the second half of (5.34) implies |[BAV|<x, and
|B—D| <=, the latter being (5.2d). Since BCM, the first half of (5.3d)
yields BAUC(BAV)w (B—D). Combining this with the inequalities just:
established, we find that |B~U|<x,, which is (5.2e). -

‘We shall also make use, in the next section, of the following well-
-known result.

¢} In order o be able to draw this conclusion in case 4, were not unbordered,

we would simply have included the first resp. last element of 4, in the set H. 1 resp. Hy-

®
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5.4. LEMMA. Every subset of C (= reals) of power ¢ contains an
unbordered c-homogeneous subset.

Proof. An unbordered c-homogeneous subset of 0,CC, where |C,|=c,
is furnished by the seb of all points # e C; such that every neighbourhood
of # contains ¢ points of €, to the right of # as well as ¢ points of C, to
the left of x.

We conclude this section with the following definition.

5.5. Definition. An x,-homogeneous decomposition of an ordered
get M is an 8,-decomposition of M consisting of sets that are K,-homo-
geneous (cf. 2.2 and 4.16).

6. The main theorems.

6.1. TEEOREM. Let M be any ordered set of power ¢. Suppose that M
contains o subset of power ¢ that can be imbedded in the continuum C —
whence, by Lemma 5.4, M has an unbordered ¢-homogeneous subset D that
can be imbedded in C. Then M has a ¢-homogeneous decomposition {E}o<a,
(cf. B.B) with the following properties:

There is associated with every E° a certain “distingwished element”
o® ¢ B°, such that the set F'=E°—{u’} is a c-homogeneous subset of D
dense in D.

‘Denote by U the set of all distinguished elements. Let A,B be any sub-
sets of M such that

(6.12) [BATU|<¢;

let ¢ be any ordinal <w., and let I° be any non-empty interval of F°. Then
the proposition P(¢; A,B,D,I° (see 5.1) holds.

Proof. Since D is an unbordered dense set imbeddable in €, we
may (if neeessa,ry)(add suitable elements to the set M so as to obtain
a set M’DM that has a subset I similar to €, and such that D is dense in L.

It is easily seen that the family of transformations F(D,L) (cf. 4.11)
is at least, and hence exactly, of power ¢; denote this family by {fele<o,-
By Corollary 4.18, each of these transformations is mon-trivial (¢). Ac-
cordingly, the hypotheses of Theorem 3.2, with X=¢, R=LIL, and the
sets D, the non-empty unbordered intervals (with repetitions) of D, are
satistied. Let V, F and {Fy}<o, be as in the conclusion of Theox:em 3.2
From (3.22,b), every ¥, is a c-homogeneous subset of D dense in D.

Put
(6.1b) U=M-F.

Since F~AV=0 and D~ VCDCM, we have DA VCM —Fy 1. 6.y
(6.1c) DA~VCT.
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‘We shall Iater rearrange the sequence {F.} into a new sequence {F°};
for the moment, let us suppose that this has already been done. Iet
A, B and I° be as in (6.1a) if. We now verify the hypotheses of Corol-
lary 5.3, with s, 4, B, D, L, M, U and V as above, ¥'=F°, and I=1°.
In fact, (5.3f) is a consequence of (3.2d), with F,=F° (5.3e) follows
from (6.1a,b), since BCM and FCD, and all the other verifications are
trivial (we ignore (5.3d), since we have (5.3e)). From the conclusions
of this corollary, we obtain the corresponding conclusions of the present
theorem. .

Now from (3.2¢) and (6.1c), we find that [Uf=c¢; let the elements
of U be enumerated a8 {#:}r<u, We shall reorder this sequence into
a new sequence {u%,<q,,, and we shall reorder the sequence {F.},<,, into
a new sequence {F’},<, . Our purpose ig to arrange them so that each
of the sets F°u {u°} will be c-homogeneous, hence, since F° already is,
to see to it that the addition of «o does not introduce & jump. Now for
each ¥, there are ¢ elements u; available in this way: there are ¢ such
elements in DAV (3.2¢, 6.1¢), for every one of these occupies a gap of F,,
since F, is dense in D, and FAV=0.

On the other hand, for each u., there are ¢ sets F, available in this
way: since every F; iz dense in D, therc is at most one & such that u.
has an immediate predecessor in Fg, and at most one & such that u, has
an immediate suceessor in Fy; for every other value of &, either u, occu-
pies a gap of Fg, or u,<Fg, or u,>F; (note that F, is unbordered).

Let 6 <o, and suppose that 4° and F° have been chosen for every .

o<, Put UP={u"Yes, §° ={FJacs, and define =m;=least v<o. such
that u, ¢ U’, o= least 7 <w, such that F, ¢§’. In case ¢;<<ms, We pub
F*=F,, and choose for u® the v; of least index & such that F°o {ug} is
dense and ;¢ U® (this is possible, since § <w.); while in case ms<gs,
we put w?=wu, and choose for F the F; of least index & such that
Fyw (s} in dense and Fy¢§ (again, this is possible since 8 < w,).

‘This ¢ompletes the constructions of the sequences {u°},c,, and
{F’}Km‘. It is clear that these sequences account for every u, and F..
Now define

E=Fu{} (o<

then \Uscu B°=M (6.1b). This completes our proof. )

, A few of the particular consequences of this theorem that can be

obtained for the case M=D=( are listed in the following corollary.

(For the sake of simplicity, they are not stated as strongly as possible.)
6.2. CoroLLARY. The linear continuum C has a decomposition inlo ¢

mutually exclusive sets E°, each of which is c-homogeneous and dense in O,
having the following properties:

icm
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(a) No two of these sets are anti-similar, and, in fact, no non-empty
. o S ; ¢ .
interval J° of any E° (in particular, E® itself) is anii-similar to any subset
whatsoever of any E* (=0 as well as 1#¢) — indeed, for any m<c, J° is
not anti-similar to any subset B of the union of any m of the E™s.

(b) If J° is unbordered, then neither is it similar to any such set B=£J°.

(c) Bxcluding essentially identical mappings, J° is not even pseudo-
-stmilar to any such set B.

(4) Finally, let A be any arbitrary subset of C that ewcludes less than ¢
points of J°; then J° may be replaced in (a) by 4, in (b) by A provided that A
and B meet this J° in distinct sets, and in (c) by A provided that J° excludes
only a finite number of points of A.

Remark. The foregoing theorem and proof can be extended from ¢
to_any cardinal 2% for which there exists an (unbordered) continnous
2%-homogeneous set €' having a subset B’ of power x, that is dense
in . Such sets exist with arbitrarily large a. In fact, let C,,; denote
the lexicographically ordered set of all sequences w={rs};., such that:
(i) for each & <w,, either x;=10 or zy;=1; (ii) for each §<m,,,uther'e exists
a T<w, with 7>§ and @,=1; and (iii) there exists at least one o<<w,
with ,=0. Denote by R, the set of all 2 e C;1; for which there exists
a v <w, such that x;=1 for every ¢ satisfying v <& <w,. Then (ef. Sier-
pinski [5], [6], p. 57) Cqy is an unbordered, continuous, 2%-homogeneous
set, and R, is dense in Cyy;. Now let A be any limit ordinal, and take «
to be the number =(1) defined by Tarski in [8], p. 9. There exist arbitrary
large « of this form, and for any such «, we have |R,|=x,, as required.
(Under the generalized continuum hypothesis, |R,|==, for every ordinal a.)

6.3. LEMMA. Let D be a dense set, and let X be a subset of D that
s dense in D and such that no two intervals of X are similar. Then, if s,t
are any two elements of D—X, the sets Z=X o {s}, W=X{t} are dis-
similar. !

Proof. Say s<t. Let g be an assumed similarity mapping of W
onto Z. Put u= g(t). Then (cf. 4.1, 4.3) Z¥~WO=X® and Zy~Wy=Xy.
If s <u, then Zgy= X,. Hence X=X (since no two intervals of X
are similar). Since X is dense in the dense set D, we must then have
u=1t. But this is impossible, since ¢¢ X, while % e¢Z—{s}=2X. On the
other hand, if w<s, then Z®= X% whence ¥®¥=2X®, whi¢h is impos-
sible since u <t and -X is dense in the dense set D.

6.4. LeMma. Let D be o dense set, and let X be o subset of D that
is dense in D and such that no two intervals of X are similar. Let Y be a sub-
set of D similar t0 X, @ the (obviously unique) similarity mapping of ¥
onto X, and d ¢ D— X be such that o( ¥ uy) 7 Xay. Then the sets Z=X w {d},
W=Yo{d} are dissimilar.
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Proof. Let h be an assumed similarity mapping of Z onto W, and
put r=n(d). Then (cf. 4.1, 4.3) WP ~ZD =X and W, ~Zu=X,,.
Sa,y r> d. Then W(,-)=Y(,), g0 that Y(,.)m X{d). Since (p( :Y(,.)) gy(m
we have ¢(Yy) =~ Xy, whence @(¥Y)=ZXy (since similar intervals
of X coincide). Thus, by hypothesis, we cannot have r=d. Hence » ¢ Y.
Therefore g(r) is defined, and ¢( ¥ )= Xy Thus X=X . Since X
is dense in the dense set D, this implies that g(r)=d. This, however,
contradiets the relations ¢(r) e X, d ¢ X.

6.5. THEOREM. Let M be any ordered set of power ¢ that has a sub-
set DY similar to C. Let D be any non-empty unbordered interior interval
of DO Then M has a c-homogeneous decomposition {Es}o<a, (cf. 5.5) having
the following ‘properties: Each E, has both a first element and a last element,
Denote by E° the set remaining when these elements are deleted.

There is associated with every E° a ceriain “‘distinguished element”
$° ¢ B° such that the set F°=E"—{s°} is a c-homogeneous subset of D dense
in D. The sets B, are mutually dissimilar. (Hence the sets E® are mutually
dissimilar.) The sets F°, however, are mutually similar. In fact, there is
a similarity mapping v of D onto C, under which the seis w(F°) are trans-
lates of one another. On the other hand, there is, for each o,7, only one simil-
arity mapping ¢ of F° onto F".

Let A,B be any subsets of M such that
(6.5a) |B—F% <c¢,
and let I° be any mon-empty interval of FO. Then the proposition
P(c; A,B,D,I% (see 5.1) holds. .

Remark 1. In case D° is coinitial resp. cofinal with M, the set D
may be taken as an inifial resp. final interval of D°, and the sets E, con-
structed so as to have no first resp. last element. If D° is both coinitial
and cofinal with M, then D may be taken as D? itself, and every E, un-
bordered (<. e., F,=E").

" Remark 2. The conclusions concerning the sets 4 and B may be
extended by making use of the mutual similarity of the sets F°, in an
obvious way.

Proof of Theorem 6.5. Designate the family &F(D,D) (which is of
power ¢) a8 {f}:<,, . By Corollary 4.18, these transformations are non-trivial
(c). Let y be a fixed similarity transformation of D onto €. Let {§i}eco,
be an enumeration of all the translations of ¢, with @} the identity, and put

, F=y7lry  (v<o).
Then {p.}:<a, i8 2 family of similarity transformations of D onto D,

vﬁth @, the i'dentity. Moreover, this family are completely distinet (c),
sinece the family of all translations of € are completely distinet (¢) (cf. 3.3).

@
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The hypotheses of Theorem 3.4, with x,=
the non-empty unbordered intervalg (with repetitions) of D, are now
satisfied. Let V, F and {F.}<o, be as in the conclusion of thai’: theorem
From (3.4e), we have |fe(Ds ~ Fy)|=t (£ <), whence [De~Fo|=c (E<a ).
since cvery f is single-valued; thus F,is a chomogeneous subset of };
dense in D. Obviously, y(F,) has the corresponding property as a subset
of €, and clearly every translate PHw(Fy)) has it likewige, Consequently
each of the mutually similar sets F1=¢,,,(F0) (see (3.4¢)) is a c-hnmbj
geneous subset of D dense in D.

Now put

¢, R=2D, and the sets D,

U=V (M~ D).

Let 4, B and I° be as in (6.5a) ff., with Fo=F,. We verify the hypo-
theses of Corollary 5.3, with &,, 4, B, D, M, U and V as above, F=p0
I=1° and L=D. In fact, (5.3f) is a consequence of (3.4e), and the othex”
verifications are all trivial (here we obtain (5.3d), and therefore ignore
(8.3e)). From the conclusions of this corollary, we obtain the correspond-
ing conclusions of our present theorem.

In particular, no two intervals of F, are similar. Now F.o Py (v <wp);
therefore no two intervals of F, are similar. Clearly, any similarity trans-
formation of such a set onto any other fixed set is unique (cf. the state-
ment of Lemma 6.4).

Now put N=-smallest interval of M that contains D, and define

(6.5h) S8=N-F;
from (3.4b), we have
(6.5¢) |D—F|=c.

Hence |8]=c; let the elements of § be {8c}1<a,- We shall rearrange this
sequence into a new one, {57}6<0,y and ‘we shall reorder the sequence
{Fli<o, into a mew sequence {F}o<w,- We do this in such o way that
the sets F°u {s”} will be c-homogeneous and mutually dissimilar. For
the first property, since F is already c-homogeneous, we need only avoid
introdueing a jump upon adding se.

Let d< o, and suppose that s° and F° have been chosen for all o< 4.
Put 8°={s"}oas, ' ={F },<s; and define m;=1least v < w, such that s, ¢ 8%,
o=Ileast T<w. such that F.¢F’. In case g<m, put F'=F,, and
consider the sets F°o {s,} for various 7. Sinece F’ is dense in D, and
D—FCN—-F=8, we see from (6.5¢) that there are ¢ elements s, ¢ S~ D
that occupy gaps of F°, and hence do not create jumps if added to F’
Since no two intervals of F° are similar, we see further from Lemma 6.3
that the corresponding ¢ sets F'u {s»} are mutually dissimilar. Therefore,
since § <w,, we can choose s* as the s, of least index 7 such that s, é 8°
Fundamenta Mathematicae, T. XLJI. 11
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and such that F°U{s;} is dense and is dissimilar to every F°, {1
with ¢ <. ‘

If, on the other hand, 7, <p;, we put sé=s,,, and consider the gets
F,u {s*} for various z. Since every F. is dense in D, there is at mogt
one 7 such that ¢ has an immediate predecessor in #,, and at most one 7
such that s* has an immediate successor in F,. Hence there are ¢ sets 7,
in each of which s¢ occupies a gap. Liet F” denote the union of thege sets Fy
then s° occupies a gap of F'. Let d® be that element of D that occupies
this same gap (if s¢ ¢ D, then d?=s?%). Then y(d?) occupies a gap of w(F)
y being the given similarity mapping of D onto C.

Since the sets y(Fy) are translates of one another, the element »(ds)
cannot occupy corresponding gaps of any two such sets; therefore ds
cannot occupy corresponding gaps. of any two of our sets F, (“corres-
ponding” referring, in each case, to the unique similarity transformation
between the sets in question). It now follows from Lemma 6.4 that no
two of the ¢ dense sets Fr w {d?} are similar. Hence, since 6 <w., we can
choose F° as the F, of least index © such that F. ¢ and such that
F.o{s% is dense and is dissimilar to every F°u {s°} with o< 3.

This completes the construction of the sequences {87Ya<0, 1A {Focn,.
Clearly, these sequences account for every s, and every F,. Now define

)

EF=F"u {s%} (0 <aw,).

These sets are mutually dissimilar. By (6.5b), their union is N.
Finally, write

D'=D'4 D+ D2, M=N14 N+ N2

‘We have N1DD1, N2DD?, and N1 <D < N2 Since D is an interior interval
of the set D% and D’ 0, we have |D!=|D*=c, whence |N?|=|N|=c
(with the appropriate modification in case D is not an interior interval
of D% see Remark 1). Write

Ni={n1o}cp,, N={n*% e, .
Now N'<E’<N” since E°CN (0 <w,). We may thus define
Bo={n"} + E°+{0™)  (0<w.),
and now our pmof‘is complete.

A few of the particular consequences of this theorem that can be
obtained for the case M=D=( (see Remark 1) are listed in the fol-
lowing corollary. {For the sake of simplicity, they are not stated as
strongly as possible.)

icm
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6.6. COROLLARY. The linear continuum C has
mutually exclusive sets E°, each of which is ¢
having the following properties:

(a) No two of the sets E° are similar. However,
perly chosen element from each E°, the resulting
tually similar, but congruent, i. e., any F° is th
o suitable translation of C onto itself (and this
similarity mapping of F* onto F°).

(b) No non-empty interval J° of any B° (in pariicular, E° itself) is
anti-similar to any subset whatsoever of E°, or, in fact, to any subset B of ¢
that has less than ¢ elemenis mot in E°.

a. decomposition into ¢
homogeneous and dense in o,

upon deleting a pro-
sels F° are not only mu-
¢ image of any F° under
translaiion is the unigue

(¢) If J? is unbordered, then neither is i similar to any such set B.J°.

(d) Excluding essentially identical mappings, J° is not even pseudo-
similar to any such set B.

(e) Finally, let A be any arbitrary subset of C that excludes less than ¢
points of J°%; then J° may be replaced in (b) by 4, in (c) by A provided that
A and B meet this J° in distinct sets, and in (d) by A provided that J° ex-
cludes only a finite number of points of A. o

The only property listed here that is not implicit in the statement
of the theorem is the mutual congruence of the sets F°; to achieve this,
we simply choose the mapping v in the proof of the theorem to be the
identity. . ‘

6.7. THROREM. Let M be any ordered set of power ¢ that contains
a subset D similar to ¢ and both coinitial and cofinal with M. Then M has
a c-homogeneous decomposition {F'}K,,,c (cf. 5.5) with the following properties:

The sets F™ are mutually similar 7). On the other hand, for all o,7,
there is just one similarity mapping g= of F° onto F*.

Let A,B be any subsets of M such thai
(6.74) |B—F°| <,
and let I° be any non-empty interval of F°. Then the proposition
P(c;4,B,D,I% (see 5.1) holds.

Remark. The conclusions concerning the sets 4 ahd B may be
extended by making use of the mutual similarity of the sets F*, in an
obvious way (cf. Theorem 6.5, Remark 2). .

Proot of Theorem 6.7. Designate the family F(D,D) 28 {felecae
(this family being of power c¢). By Corollary 4.18, these transformations
are non-trivial (c). : . :

) See footnote ). . N
1%
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Next, let # be any element of D and let y be any .element of M.
Say z<y (the opposite case being treated analogously). Since x e D, and
since D is similar to ¢ and both coinitial and cofinal with 2, the inter-
vals D®, Dgy, and (D) (see 4.1, 4.3, and 4.5) are all similar to ¢
(if y D, then Dgy=~C, but if y ¢ D, then D,y may h.a,ve a ﬁrsgc)element).
Let p%yy,pxy be any fixed similarity ‘r_a*ansformatlons of D _onto G,
i(D¢y) onto C, Dy onto #Dey), respecmvely.. Der.lote the family of .a]l
translations of € by {@ode<we with ¢y the identity. For each o, with
0 <o<we, define a similarity transformation @y, from D into Du{y},
as follows:

x ~1 7 x )
Ty =W o I

-1
(6.7b) Coxy =Yy CoyPxy OD Dy
Tosxy' )=

Clearly, for each such z and y, the family
{‘Tﬂ;x,.vl (L— {‘T}\/}KK%

are completely distinct (c) (cf. 3.3) from D—{z} into M. For at least
one z e D, let us choose ys, to be the identity (on D¢y). Then, for this 2,
the transformation gg=go,x,~ Will be the identity on D (by (6.7Db), since
¢4 is the identity on C). Accordingly, for this #, the enlarged family

Fanel (D= @D, U lpo(D— ()]
f e\ f

will certainly still be completely distinet (¢) from D—{x} into M. Con-
sequently, the family

D={r5xy D<o<ogreD,yeM {po}

are a family of pseundo-distinct () similarity transformations (cf. 3.5)
from D into M. Clearly @ is of power ¢; we write $={p:l<o, (P
= identity). :

The hypotheses of Theorem 3.6, with s,=¢, R=2M, and the sets D;
the non-empty unbordered intervals (with repetitions) of D, are now
satisfied. Tet {F'}.<, Dbe as in the conclusion of that theorem. From
(3.6¢c), we have

fdDenP)=c (§<w), whence |DynFo=c (&<wd,

since every f; is single-valued. Since F*CD (3.6a), this shows that FO is
c-homogeneous and dense in D. Therefore, since the sets F™ (7<) are
mutually similar (3.6b), every F* is c-homogeneous.
Put
V=M—-F", U=Vou (M~—D).
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Let 4, B and [° be as in (6.7 a) ff. We verify the hypotheses of Corollary 5.3
with %, 4, B, D, M, U and V as above, =P I—10 and L—D. In
fact, (5.31) is a consequence of (3.6¢), and all the other verifications are
trivial (herc we obtain (5.3d), so we ignore (5.3e)). The conclusions of
this corollary imply the corresponding conclusions of the present theorem.
In particular, no two intervals of F? are similar. Hence no two intervals
of " cre similar, since F*~TF° (1 <w,). Therefore any similarity trans-
formation of any F° onto any F* is necessarily unique. This completes
the proof of the theorem.

A few of the particular consequences of this theorem that can be
obtained for the case M=D=0C arc listed in the following corollary.
(For the sake of simplicity, they are not stated as strongly as possiblg.)

6.8. COROLLARY. T'he linear continuum C has a decomposition into ¢
mutually exclusive, mutually similar, c-homogeneous sets F~, having the
following properties:

(a) No non-empty interval I of any F* (in particular, F* iiself) is
anti-similar to any subset whatsoever of F%, or, in fact, to any subset B of C
that has less than ¢ elements not in F". ‘

(b) If I7 is unbordered, then neither is it similar to any such set B#1I.

(¢) Brcluding essentially identical mappings, I" is not even pseudo-
-stmilar to any such set B.

(d) Finally, let A be any arbitrary subset of C that excludes less than ¢
points of 17 then 17 may be replaced in (a) by A, in (b) by A provided that
A and B meet this 1% in distinet sets, and in (c) by A provided that I° ex-
cludes only a finite number of points of A.
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