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additionaly, the principle of choice. But the method of Kelley permits
us to demonstrate that the theorem of Tychonoff in the form (4,2) (for
Hausdorff’s spaces) implies the principle of choice for compact (Haus-
dorff’s) spaces: (4,3).

Let SM={M}:er be a class of compact spaces, and let p, none ) M,,
teT

We set Mf=M+ (p,) and SM*={M}}er. If we consider the point p, as

isolated in A, then every M} is a compact space, and M, is closed in M¥,-

Each set F,0=,;'[X-vﬁff=1 for te T jand X-MICM)]is a closed

subset of the produet space of M* and ¥, ..F, 0 for every finite‘

number of # e 7. Therefore [[F, is non empty, but it is the product
teT )

of M. We have demonstrated that (4,2) is equivalent to each of the
propositions (I)-(V).
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Intersections of prescribed power, type, or measure
by
F. Bagemihl (Princeton, N. I.) and P. Exrdds (Notre Dame, Ind.)

In 1914, Mazurkiewicz [5] showed that there exists a set of points
in the plane, which intersects every straight line in the plane in precisely
two points. Recently, Bagemihl [1] proved a general intersection theo-
rem in the theory of sets, which, when applied to the plane, yields the
following generalization of Mazurkiewicz’s result: With every straight
line s, associate a cardinal number q,>>2 so that the sum of fewer than
9% of the numbers g, is always less than 2%. Then there exists a set
of points which intersects every straight line s in exactly qs points.

In the present paper, after extending the general intersection theo-
rem alluded to above, we obtain several theorems dealing with plane
point sets which intersect every straight line in a set of prescribed power,
order type, or measure. In particular, we show that the aforementioned
qs may be chosen arbitrarily in the range 2 < 0, < 2%. Free use is made
of the well-ordering theorem.

THEOREM 1. Let o be an arbitrary, fized ordinal nwmber, and S be
a set with
(1) S<8a.

To every se S let there correspond a set Ls such that, for every 8'CS8—{s}
with S'< N, »

(2) Ly— 2 Ly>sa,
s'es’
and put P= 3 L.
s€S

Suppose that for every seS there exists a cardinal number L, with
1L R,y Such that the following holds: If DCP, D< 8, and Sp is the
set of elements s'e S for which ly<s, and LD=1y, then

3 Sp<Ma.
With every:seS et there be associated in an arbitrary wmanner a ocar-
dinal number g satisfying '

(4) L< < 8. ' o


GUEST


58 F.Bagemihl and P. Erdés

Then there emists a set P*C P (with szx,,) such that L, P*— .
every selS. s qs for

We first prove
LevMA 1. Let DCP, D<x,, and

(8) Ls:—ﬁg qs  for every seS.
Suppose that for some element e e 8,

(6 LD <q..

Denote by Sb the set of elements s'e S for which Ly D
. or which LgD = o Z8e. Them "
exists an @ e L—(D+ ) Ly) such that O "hen there
MGSE

(M LDt ah<q

for every se8. (Such an i 881 1
elative o Dy ( a will be called an admissible clement of L,

. Px;)oof: It is easy to see from (4) and (3) that _§TE<E<NQ. There-
ore, by (2), L— X Ly>¥,, so that L—(D+ 3 Ly) contains at leagt

MSSB
one element — call it a.

Now let s e 8. Then s satisfie
= - Then 8 at least one of the followi sondi
tions: 1. s e 83, 2. L D<q,, 3. Ge=N8q. If 1, then e from e
fact that @ non-e 3 L.; if 2, then (7) ’

5 esf,
from (5). This completes the proof of the lemma
Proof of Theorem 1. The S i .
3 . cage §=0 is trivi
assume that 8 >0. Note (1) and (4), consider g
well-order the resulting complex of ) q \
|
s€S

quence

8
®) Ly Ly,..., Ly, ...

s’:S;‘)

' : (7) follows from the
is obvious; if 3, then (7 ) follows

2.1.1. We may therefore
§epheas of every L,(s ¢ §),
SRe=R, sets to form a se-

(£<0)7

where 1< ¢ < w,, and denote b
bers associated with the sets (853 gfm(jr;gg té:)e (T:fPeCtWe rondinal

We defi .
o o+ o D £50) . nttion o &, st Lot 4
of I, Suppose that 0<¢& ' !

ever Lo = <@, and that for
Y w<t aset 4,CP, with Z,<1, has been defined so that Ff:=<:

for every s e 8. Bvidentl ~ = - —_———— s 2, L= Qo

- A "
yﬂg; b <E<y,. I Lié‘A,,:—.qe, let A,=0. If,

however, I, Y 4, .
S eé; w<Gs let A consist of a single admissible element of I
¢
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relative to ) 4,; the existence of such an element is guaranteed by
n<é

Lemma 1. The sets A; (§<p) thus defined are obviously mutually ex-
clusive. L
Put P*=), A;. Then P*CP and P*< o<t
£<e -
Now let s ed. It is clear from the definition of the sets Ag (E<o)
that I_,;ZA,,Q q; for every &<co. If L52X,2<qs for every £<Cp, then
p<E u<E

L; >A,< qs. There are gs values of £<p for which L,=L, and for every
u<e P R
such &, L,d:=1, so that L > A,>q,. Hence L.P*=q, If, however,
u<e

for some &<g, L) A,=q,, then q,< &+ 1<N,, and, from the defini-
234

tion of an admissible element, it follows that Ls > A:=0, so that in
§<e<e

this case t00 L,P*=qg;. This completes the proof of Theorem 1.

The following theorem was presented by the authors (see [2]) to the American

Mathematical Society, May 28, 1952:

A complex € of cardinal numbers is said to be strongly less than X, if every sum
of fewer than N, terms belonging to € is less than 8. Let o be an arbiirary, fiwed ordinal
number, § and P be sets, and to every se S let there correspond a subset, Ls, of P. Sup-
pose that the following conditions are satisfied:

@O F<n,.

(IT) f;} R, for every sef. -

(IIX) If se 8, there is a cardinal number ns>>1 such that, if &€ S and & s, then
TsLy<ns, and the complex of cardinal mumbers Ts (s€8) is strongly less than X,.

(IV) There is a cardinal number m>>1 with the following properties: (a) bm<Na
for every d<<§; (b) if P'CP, P =m, and mp, is the mumber of elements s € 8 for whick
P’ is a subset of Ls, then the complex of - cardinal numbers mp, obtained by letling P’ run
through all the subsets of P having m elements, is strongly less than R, .

Suppose that with every s e 8 there is associated in an arbilrary manner G cardinal
number q; such that ‘

(V) m4n—1<q <R,

Then there exists a subset P* of P (with PF<R,) such that L P*=q, for every s eS.

We shall now show that this theorem, which is a generalization of one due to Ba-
gemihl [1], i8 contained in Theorem 1, by proving that (0)-(V) imply (1)~(4) (that the
converse is not true will be evident from the proof).

Condition (1) follows trivially from I.

To prove (2), suppose that §'CS—{s} and
Ly Ls <ng, and (III) also implies that

S:’<Nu. If s° ¢ 97, then, according to (III),

L, 3 L,< X LIS X g <N
ses’ s'es’ ses’
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According to (II), then,

L—Ls 2 Ls’=Ls'- 2 Ls’>Na-‘
s'es’ s’€S’

which is (2).

- Now to prove (3), take every [s in Theorem 1 to be the m in (IV). Let Dcp
D <N, and LS' » be the set of elements &' ¢ 8 for which Ty D > Iy (=m). There are 110“:,
more than D™ subsets of D of m elements. By (a) of (IV), D™<N , and by (b) of
(IV), §,<N,, which proves (3). ’

Finally, according to (V), (4) is certainly satisfied it [y=m.

The followiI}g examples show that if one of the hypotheses (1)-(4)
of Theorem 1 is not satisfied, then the conclugion of this theorem may
no longer be true: '

1), (2 : -

B (1), (2), (.3)7 (4): Let S= {F‘}M<wa+1+%) P= {(é’n)}f"f‘ua-k1:’l"5“’xz’ L;":

=&}, ,, for every i<w , , Lwa+1+n={(‘5777)}s<w,,+1 for every n-<a,.
Then I“_:i’ and we take g,=1, for every u e §.

If L;P*=1 for every é<w ., then T Py 4+ for some =

A > e,

o at+l Woy+y
contradicting q ptn =1L a+
o

(1) (2), (3), (4): Let S={u},, ., P={},,» Le={&} for every

f<wa, L, 4= {eco,w Then =1, and we take q,=1, for every u e g.
We have IL_ ;_?ﬁ:xagé q

r

we+1"

‘(1), (2), (3?, (4): Let.: P be the set of points of a projective plane in
w1.11ch every line contains x, points, and let, the sets I, be the lines in
this lplane. Take every L,=1; then (3) is not satisfied. Take also every
Qs=1. l

.If Wwe consider any two points of P*, these two points determine
a line I, and thus L,P*>2>q,. '

{1), (2), (3), (4): In the Preceding example, take every =2,

If we take ever = s .
exist. Y @=1 or >x,, then it is obvious that P* doey not

Theorem 1 can be applied, e. g.,

a Euclidean plane. In this cage we in
::;ﬁmffeszﬁﬁf;gf: ]Iln the %lar;a and L; as the set of points which con-

‘ v ne §e a8 the set of points i ] ‘

e ra, s ; pomnts in the plane, and
;a 0 .Oon(htmns (1) and (2) are evidently satisfied, and (3) ciea 1y
olds if we take every L=2."Thus we obtain ’ 1»}’
COROLLARY 1. With every stradght line s in o Buclidean plane associate

a cardinal numb As such that 2 << 2 The 7 a se ()f 0
‘ ! er : = q.r< 0. n there exists P ints
which wntersects every sty azght -l’l:ne 8 m pmcisely q. poi’nts t "
s .

to the points and straight lines of
terpret S as a set of indices for the
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This result was obtained by Mazurkiewicz [5] for the case gq,=2
for every s; by Bagemihl [1] for the case g.= 2 for every s, the com-
plex of cardinal numbers q, being strongly less than 2%; and in the
above form, independently and practically simultaneously (early in 1952),
by Sierpiriski [8] and by the present authors.

As is easily seen, condition (3) is also satisfied under the weaker
assumptions of

COROLLARY 2. With every point p of the set, P, of points of a BEucli-
dean plane associate a set, S,, of ¥, straight lines in this plane, each of which
contains the point p, and let the complex of cardinal numbers %, (p ¢ P) be
strongly less than 2. Let §'= PS,,. With every s e S’ associdte a cardinal

PE
number qs such that 1< q;< 2% and with every s non-¢ S’ associate a car-
dinal number q, such that 2< q,<2%. Then there exists a set of points

which intersects every straight line s in the plane in precisely qs points.

Let the word curve mean any set of points (x,y) satisfying an equa-
tion of the form y=f(x) where f is a single-valued function of a real
variable (¢f. p. 11 of [9]). Take & in Corollary 2 to be the set of all
straight lines parallel to the y-axis, and let g,=1 for every se&’,
2 q,<2™ for every s non-e8’. Then f,=1 for every p ¢ P, and Corol-
lary 2 yields .

COROLLARY 3. With every straight line s (in a Buclidean plane) which
is not parallel to the y-axis associate a cardinal number q. such that
2 ,<2%. Then there exists a curve which intersects every straight line s
which is not parallel to the y-axis in precisely q, points.

Corollary 2 suggests the following problems dealing with the Eucli-
dean plane: .

What is a necessary and sufficient condition on a set, §*, of straight
lines so that, if with every s « S* there is associated in an arbitrary man-
ner a cardinal number g, in the range 1< q,<2%, and if with every
s non-¢ §* there is associated in an arbitrary manner a cardinal nurm
ber g in the range 2<q,<2", there exists a set of points which inter-
sects every straight line s in precisely g, points?

What js the answer if g;=1 (s ¢ S*) instead of g, being chosen ar-
Dbitrarily in the range 1< q,<2%?

We have been able to solve the following problem:

What is a necessary and sufficient condition on a set, 8%, of straight
lines so that, if with every s ¢ §* there is associated in an arbitrary man-
ner a cardinal number g, in the range 2<C < 2%  there exists a set of
points, P*, which intersects every straight line s ¢ 8* in precisely gs
points and every straight line snon-e 8* in less than 2 points?
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The answer is: §* is the set of straight lines josning all pairs of points
of @ point set M having the property that if a straight line contains at least 2
points of M, it contains 2% points of M. . )

To see that the condition is necessary, take q,==2" (seS*); then
P* is such @ set M. To show that the condition is sufficient, in Theo-
rem 1 take § =2% §=g8* P=M, L,=the subset of M which is con-
tained in the astraight line s 8* ;=2 (s e §%); the set P* of Theorem 1
is then obviously one that has the properties required of the set P* in
the problem.

Tn what follows we still deal with the Ruelidean plane, but when
we speak of a straight line we shall tacitly assume that one of the two
possible orientations has been assigned to it, and when we speak of a sub-
set of a straight line we shall regard the subset as ordered by the orien-
tation of the line, so that the (order) type of such a subset is well-defined.

THEOREM 2. With every straight line s associate in an arbitrary man-
ner a finite or an enumerable order type 7,70, 1. Then there exisis a set
of points whose intersection with every straight line s is « set of type ;.

Proof: Well-order the set of straight lines to form a sequence

8038150098y eun (&-zawy),

where o, is the initial number of Z(2%), and let the sequence of asso-
ciated types be

Ty Tigeeey Thyoen (&<zeny).

Let T, be a set of points on s, such that 7 =x,. Let 0 <E<w,, and
suppose that, for every u <&, a set, T, of points on s, has been defined,
such that T,=r,, and so that at most 2 points of s; belong to > T,=T}.

&
We have “

Consequently, there are fewer than 2% straight lines such that each
contains at least 2 points of the set 7. Theretore the set, Vi, of points
on s; which are not on any of these lines different from s, is everywhere
dense on s, so that every interval of s, contains a subset of V, of any
given finite or enumerable type.

_ If s; contains no point of T, let T; be any subset of Ve such that
Ti=v,. I s; has precisely one point, p, in common with 1§, write
Ty=0;+14-¢¢, and let T consist of the points of a subset, of type c¢, of

Ve preceding p, p itself, and the points of a subset, of type gz, of ¥, suc- -

ceeding p. Finally, if s; has two points, p, 9, in common with T;, write
=0+ 1+ p0:+ 1+, and define T, in the obvious manner. Denote

®
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by T the union of the sets T: (§<<w,) thus defined. Evidently 7 inter-
sects every s in a set of type 7,, and the proof of the theorem is complete.

Call an order type v a subtype of the continuwm, if the linear conti-
nuum contains an ordered subset of type 7. We shall prove

THEOREM 3. With every .straight line s associate in an arbitrary man-
ner a subtype, 7,70, 1, of the continuum. Then, if 2% =y, there exists
a set of points whose intersection with every straight line s is a set of type s
and measure 0.

Let us term a linear perfect set sparse, if it is a dyadie discontinuum
(cf. [3], p. 134), D, whose dyadic schema at the n-th stage consists of 2"
mutually exclusive closed intervals, the length of the largest of which
is o(47").

Suppose that s,,$,,8; are three straight lines and F,,E, are sets of
points on s,,s8,, respectively. Consider the set of all straight lines each
of which is different from s, and is determined by a point of E; and
a point of E,. This set of lines intersects s; in a set of points which we
shall call the mutual projection of E, and E, on s, and denote by (E,,Es;s;).

LEywma 2. Let $,,8,,8; be three straight lines and Dy, D, be sparse per-
fect sets on sy, s,, respectively. Then

meas (D, Dy; 85)=0.

Proof: Denote by py, pss the points of intersection (if nonexistent,
to be disregarded in what follows) of s, and s3, s, and s;, respectively.
Let ¢>0, p be an arbitrary, but fixed, point, C be a circle with radius
¢! and center p, and Cy and Oy be circles of radius ¢ and with the re-
spective centers pyg, pss. Choose ¢ so small that Cy; and Oy lie in the in-
terior of €, and hold ¢ fixed for the time being. Denote by E. the region
inside C and outside Cj3 and Oy, and let Di=D, R,, D;=D,R,.. Suppose
that I7, I signify the parts in R, of any two intervals of the n-th stage
of the dyadic schemata representing D.,D,, respectively. Then it is not
difficult to see that

meas (RE- (I3, I 33)) <6, (meas I +meas I3)=¢, 0(4™"),

where ¢, is a constant depending only on e Since at most 4" pairs of
intervals of the n-th stage come into question,

meas (RE- (D1, D5 sa)) <4"¢, 047,
and letting n—co we see that

meas (R, (Df, D ; 5,))=0.
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Now let {z} be a sequence of sufficiently small positive numbers
tending monotonically to 0. Then

0= 2 meas (R,, - (D3 Dk 55)) = measz (Ry, - (i, D55 s3))
k=1
=meas (Dy, Dy; 83), q. e d.

Proof of Theorem 3. Well-order the set of straight lines to form
a sequence

84yS81yeeeySeyene (&),
and let the sequence of associated types be
Ty Tygeeny Teyoen (& <Zmy).

Let D, be a sparse perfect set on s, Since Dy is perfect, it containg
a subset T, of type 7q, and since D, is of measure 0, 5o is Ty Liet 0 <€ oy,
and suppose that, for every u<C£, a sparse perfeet set D, and aset 7.CD,,
with T,=17,, have been defined on s, in such a manner that at most
2 points of s¢ belong to 2 T,=T;. According to Lemma 2,

0=meas Z (Dy, D,; sg)=meas X (T, Ty; se),

a<r<E Wyt

because the sum contains at most 8, terms (this is where we make use
of the assumption 2%=y;). Hence, the point set

VE—SE‘_AZ 5(T;nTviﬁ‘e)

is of positive measure in every interval of s;. Consequently, every interval
of s, econtains a perfect subset of V¢, and therefore also contains a gparse
perfect subset of Ve, which in turn contains a subset having ay its type
any given subtype of the continuum. The rest of the proof is verbally
identical with the last paragraph of the proof of Theorem 2. It is merely
necessary to note that, if D,D’, D' are sparse perfect sets on some
straight line, and every point of D precedes every point of D', and every
point of D’ precedes every point of D", then the union DD’ D" is
also a sparse perfect set.

It would be interesting to know whether or not the mssumptlon
2%—y, is necessary in Theorem 3.

THEOREM 4. With every siraight line s associate in an arbitrary manner
a number mg such that 0<m,<oo. Then, if 2=y, there ewists o sel of
points whose intersection with every straight line s is a set of measure my.

Proof: Well-order the set of straight lines to form a sequence

80y81yeee s Sty enn (&< on),
and let the sequence of associated measures be

Mgy My eey Mgy oo (& <wq).
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Let M, be a point set, of measure m,, on s,. Let 0-<é<w,, and sup-
pose that, for every u <<, M, is a point set, of measure m,, on s,. Since

E< 8, the intersection of 3 M, with s; is an at most enumerable set
wE

of points, and is therefore of measure 0, so that it is possible to define
M as a subset, of measure g, of 55- 2 M,. Bvidently the set M =2 M,

<y

intersects each s in a set of measure ms, q. e. d.
Instead of assuming that 2=, it is sufficient to assume that every
linear set of power less than 2% has measure 0.

Added during printing. Following a kind suggestion of K. Godel’s, we
are able to show that the assumption 2%™=y, is unnecessary in Theo-
rem 3. Specifically, we shall prove

THEOREM 5. With every straight line s in the plane, associate in an
arbitrary manner a subtype, 1,50, 1, of the continuum. Then there exists
a set of poinis whose intersection with every straight line s (asswmed, for
simplicity, to be oriented in the positive sense relative to a set of Cartesian
coordinate axes) is a set of type zs.

Proof. Well-order the set of straight lines to form a sequence
Sgy81geeesSEy e (E<wy),

where «, is the initial number of Z (2"™), and let the sequence of asso-
ciated types be
TyyTygeneyTeyenn (& <wy).

Every s: has an equation either of the form
(i) y=awtbe or (i) w=c,

where ag, bg, ¢; are real numbers, the “constants belonging to s¢”.

Let 3 be the system of algebraically independent real numbers con-
structed by J. von Neumann [6]. The set M contains a perfect subset
(c¢f. 8. Ruziewicz and W. Sierpinski [7], p.13). Every perfect set
contains 2% mutually exclusive perfect subsets (see, e.g., C. Kuratow-
ski and W. Sierpinski [4], p. 195).

Let Ig,I;5 .y Lsy... (n<<w) be the set of all nonempty open intervals
with rational endpoints, and let By,By,...,Br,-.. (R<<®) be R, mutually
exclusive, bounded, perfect subsets of M. For every n<w, there exists
a one-to-one transformation t' = 7,t- 7., where 7, ¥, are rational numbers
and 7,70, under which the image of B, is a perfect subset, C,, of I,.

The sets O, (n<<w) are mutually exclugive, and > C, is an algebraically

n<w

Fundamenta Mathematicae. T. XLI. 5
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independent system of real numbers (cf. J. von Neumann [6], p. 140).
Bach €, contains 2% mutually exclusive perfect subsets r; (&<,
For every &-<w,, we define Ps= Z P;:; then every nonempty open in-

terval of real numbers contains a perfect subset of Pi.

Denote by R, -a subset, of type 7,, of P, and let T, be the set of
points on s, whose abscissas or ordinates form the set iy according as s,
is of the form (i) or (ii). Now suppose that 0<¢<w,, and that we have
defined, for every w<£, the set R,C P, amd the set 7, on s, in such
a manner that the orthogonal projection of T, onto the x- or the y-axis
is R, according as s, is of the form (i) or (ii), that T,=1,, and that at
most 2 points of s belong to ) T,=T}. Denote hy K; the set of all

wl [
constants belonging to at least one 8, (u<£); obviously Ag<2%. Con-
sequently, the cardinal number of the set, D¢, of elements of P; which
are algebraically dependent on the system of real numbers K.-- le’.,,

ne g

is less than 2%, Hence, every nonempty open interval of real numbers

contains a perfect subset of Q.=P:—D;. Let V; be the set of points

on s whose abscissas or ordinates form the set @, according s sg is of

the form (i) or (ii). No straight line different from s and determined

by two points of T can intersect s, in a point of Vi, for otherwise the

system of real numbers K.+ %; R,+0Q: would not be algebraically inde-
;m

pendent, contradicting the definition of Q. The proof of our theorem
can now be completed in accordance with the last paragraph of the
proof of Theorem 2 above (if we define R, as the orthogonal projection
of T¢ onto the appropriate coordinate axis).

Added in proof. We are indebted to A. Rosenthal for calling our
attention to his papers Uber Gebilde mit einzigem Ordnungsinder, Si-
tzungsberichte der mathematisch-physikalischen Klasse der Bayerischen
Akademie der Wissenschaften zu Miinchen, 1922, p. 221-240, and Uber
die Nichtexistenz wvon Kontinuen in gewissen Mengen mit einziger Or-
dnungszahl, Sitzungsberichte der Heidelberger Akademie der Wissen-
schaften, mathematisch-natur-wissenschaftliche Klasse, 1934, p. 49-56,
the first of which contains, in addition to other results, a special case
of our Theorem 1. A paper by J. Moneta, Application du théoréme du
continu, Cahiers Rhodaniens 4 (1952), p. 29-42 in which an unnecessary
appeal is made to the (unproved) relation 2%=y,, contains a particular
case of our Corollary 2.
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