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This follows immediately ‘from the definition of construetivity of
a theory and from the deduction theorem for the functional calenlus
of Heyting.

Moreover

4,12, If a is a constructive closed formula, then for every formula B

of the form ﬁ=(£ ..,(;’3;'- where y contains no quantifiers and .%‘) is either
xpl x,,” B
the sign X or II, there ewisis a finite sequence yi,...,ym of the formulas
without quantifiers such that a—8 is provable if and only if at least one of
the formulas a—yy,.,a—>yy 8 provable.
This follows immediately from the deduction theorem for the fune-
tional calculus of Heyting and from 4.10.
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Elementarily definable analysis

by
A. Grzegorczyk (Warszawa)

The purpose of this paper is to give a strict mathematical shape
to some ideas expressed by H. Weyl in #“Das Kontinwum” [4].
Weyl proposes a restriction of the logical methods of analysis to the
elementarily definable ones. A notion is elementarily definable if it is de-
finable by means of the quantifiers bounding the integral variables only.
A strict definition will be given later. It is very interesting to note how
many theorems of the classical analysis can be obtained by means of
elementary methods. It is shown in this paper that the classical analysis
of continuous funetions ean be reproduced in an elementary manner.
The problem of how many theorems from the theory of non continuous
real functions can be obtained in an elementary way remains open. Some
counter examples are given in the sequel.

To begin with the problem arrises how to define elementary de-
finability. There are at least two answers:

1. A mathematical notion 4 is elementarily definable if it is definable
by means of an elementary definition

Af sy =B f oy

2. A notion A is elementarily definable if there exists a finite set
of elementary conditions such that 4 is the unigue object which satisfies
those conditions.

We shall call the first the narrower, the second the broader concept
of elementary definability. In this paper we shall consider the narrower
notion.

1. Elementary definability in the arithmetic of integers

We shall introduce the notion of elementary definability in the
arithmetic of integers. Let I be the set of all integers (positive, negative
and zero). Let IV be the set of non negative integers (natural numbers).
The variables z,y,2,p,q will stand for the integers, the variables n,k,l,m
will represent natural numbers. The letters f,g,h, will be used to denote
the functions defined over the set I and assuming the integral values.
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The letters a,b,¢ will represent the real numbers, and the small Greek
letters will represent the real functions. The capital Greek letters will
stand for functionals!), and the capital Latin letters for sets and rela-
tions. We shall consider the relations:

Ry fas®iyeeyitn)

among & integral functions and » integers. A relation is said to be ele-
mentarily definable if it is definable by a formula containing the guan-
tifiers bounding the integral variables only. A strict definition is the
following:

The class P of elementarily definable relations is the least elass of re-
lations containing the initial relations: # =y +1, =0, >0, x =92 and
220, y=fi(2x;,...,2,) (the lagt is the relation between one function f
and n-+1 integers: @,,...,2,,y) and closed under the logical operations
of propositional caleulus and under the operations of general quantifier
bounding the integral variable 4. e.

If B,RyeD and Sl(wia---amk:fn---afn):_—'N(~‘1(‘7'“---7“7"k7f17--~1.fn)):

So(yyeer s s Fry oo s fu) = (Bl(ﬁ'l:“-;v'l'l;fum’fm) V By ey Cpy oo 7fn))7

Sa(@yy ..y Ths frs ...,fn)s[;IIRl(wo,;rl,... ks frs s f)y then 8y, 85,8, ¢ D.
%

If ReD is a relation only among the numbers R(ty,...,a,), then
we shall say that R is an elementary number-theoretical relation. If R is
a relation between n-functions and k-integers, we shall say that R is
a functional relation.

Let

th integer
(mc)[R(...w...)]:‘ ‘e least 1nt('3ge1 2 such that li’:(.‘.a:...),
0 if the least integer # such that R(...%...) does not exist.

The second.ca,sg contains two possibilities: either there are infinitely
many negative integers x such that R(...¢...), or for cach integer z it
is true that ~(R(...w...)).

) A fmwtion» f défined over the set of all integers and assuming the
integral ‘va-hxes is said to be elementarily definable if there exists a number-
-theoretical elementarily definable relation R e 9 such that

f#y, ... n) = (ﬂwo)[R(wo;wh vy Tn)].

%) The notion of functional will be explained later.

icm

Elementurily definable analysis 313

A functional @<y, ... ,fay(@;,...,o,) defined over the integral funetions
fiyeeesfr and over the integers ay,...,», and assuming integral values is
said to be elementarily definable if there exists a functional relation
R{fyy e sfrsiyydyy-.e, @) such that R e D and

Dty ey (@ en ity = (U [R(Frseee s Jrs Tyl oon s 2a) 1

The class of elementarily definable functions, as well as the class of
elementarily definable functionals, and the class of elementarily definable
relations will be denoted by the same symbol D.

It is evident that the classes of elementfarily definable functions
and funetionals are closed under the operations: of substitution of a con-
stant elementary function or a constant number, and of identification
of the variables. The computable functions and functionals?) are ele-
mentarily definable.

TreorEM 1.1. If @,f e D and

R{fryeessfrs®ryees ) @1y ey (o e sit) =y,

BoByyeee yTn) = [{Zayoen s i) =5,

then R, and Ry are elementarily definable relations.
Proof. If f ¢ D then from the definition it follows that there exists
a relation I e D sueh that

F(ysoee s @n) = (1) [R(y 3By -on 5 ¥n)
The relation R, can be defined as follows
Ryfdyyeeeyay=[R(@1; e, Ta) A Q{B(.Z,l'g, ceeyTn) >2 2> 11}]
z
V[wy = O0A ] {B(w,@ay ey Xn) =3 2 <U AR(2, 22, ..., ) }]-
uel zel
In the case of @ the proof is similar.
THEOREM 1.2, If R, € D is a relation of the forimn Ry(g, Ty s ey @yy oy &m)y

where g represents any funection of one argument, By fu(2y =y is
a functional of the class D, and

R(frseosfashayee ,hky"ll’la'--ﬂ-"m)ERl(@‘<f1:"'7.fnt"yhla---77'k5'1'1:--':'rm)y

then ReD.
Proof by induction. If R, is an initial relation, from the Theorem 1.1
it follows that R e P. Now let us suppose that

%) For the definition of computable functionals see {1].
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(o) Rl(.‘/yhu---:hkywum,*”m)E"‘( 0(.(/)hl:-~7hk:"”u---awm)) or
1) ®) R1(.‘/:77/17--'7hk7m13"'7mm) == Ro(gs fysore s By By oee s )
VRY(Gyhyseee s

(Y) By(gshyyeees =[] Ry(gshy, ...

Fm+1

By ey .ee,ity) or

gy @y g0 a'Tm ey @y ooy Tongy)

and for By, Ry it is true that the following relations R,,Rje D:
(2)  Rylfryersfurbageeny =R(Dfryvesfarshyy ooy s T) 5
(8)  Rilfrseeesfushayenes Ry(@<fry e sfurybyy ooy 3 Lm)

From (2) and (3) it follows that the relation K can he elementarily de-
fined by means of the relations R,,Rg: () using the operation of nega-
tion, or (B) using the operation of logical sum, or (y) using the operation
of quantification.

The operation of identification of the variables presents no dificultes.

THEOREM 1.3. The class D of functions, and the class D of functionals
are closed under the operations of superposition (the substitution of function
or functional for a number-variable and for a function-variable).

Proof. Let &,,0, ¢ D this means that there are such R, R, ¢ D that

,w,,,) hk,‘%‘“..‘

3 Om) =

hk,ﬂil,...

hk,ml,... }lk,{b'“...

(1) @yl Fry-es Jo> (B ey @) = () [BA(G s Frs oo s s @ay ooy T, )]y
Byl eve s lin) (@) = () [ Fn(boyy ooy oy 2, 9)].
From the Theorem 1.2 it follows that the relation
Ry(hyy ooy nyfryees frs @y ee y 0, Y) = By(PoChyy oo s hundy fry e s Fy @a s ooy 01, 1)

is elementarily definable. Hence the superposition
D UPoChyy ooy Bady FryoeesTap (B1y ey 1)
= (Y [ Bl Pellys s hudsfry ooy Frey By y oo s 81, Y)]

is a functional elementarily definable.
Let us consider other superposition:

B,y s 1o (Bolny ooy T (), 240, 1)
= (uy) [Rl ((gyfl7---:fk7(l“z)[R2(h1; weey Pony8,2)], 225 . ,-’E:,‘Z/):] .

From the definition of minimum it follows that the following equivalence
is true:

{2)

3)

Rl(gyflr-vfk:(Hz)EEz(hn--'7hn;w7z)]7wzy---xwl;f‘/)

={ 2 Bug,f1, s f11%180y oo B, W) ARs( By ooy By ,2)
) ok
A IU Collyy ooy s @,0) 2 <V} V {ByGsfrsee s Sy Oy ern gy, y)

A I;]Rz(hu sBiny8,0) >3 Bol(Biy ey By 2, ) A w<v}.
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From (1) it follows that the relation (4) belongs to 9 and the super-
position (3) is elementarily definable.

Now some remarks on the notation. If the functional @ has the form

@\'fl,--.,f,,>(-‘l'1,...,:C,,,)Z‘I/,
then it can be considered as a funection
@<f17-~-7fn>(‘vl7"'a‘rm-—1)('rm)=?/

of one argument x, with m—1 parameters. For example a function of
two arguments g(z,y) can be considered as a sequence of functions:
9=(y) =g{(x,y).

A relation or a funetional can De defined over the functions of two
arguments. The symbols representing functions of two arguments will
often be written in parentheses of the form: | |.

Theorem 1.3 can also be extended in such a manner that if Re 9D
and ¢.(z)=g(z,z) and

Suglkfzy ofay (s e
then Se9.
There are three recursive functions Pa’,Fi’,Se’ which will often
be used in the following:

Pd(e,y)=(a+yP+e, PR ==z, 8¢@)=[Vz]-Fie).
Po’,Fi’, B¢’ are the pairing functions. They have the following important
properties:

i (Pa ,y))
for any x,y,2z¢lV.

By means of Pa’,Fi’,8¢ we can define a triplet of pairing func-
tions for all integers:

1 Zmy8) ZRLGzs fasoee s ) (Bayees s Tm)

Se’(Pa’(w,y)) =¥, Pa’(Fi’(z) y Se’(z)) =2z,

2-P '1 sl 'if £,y =0,
P 2-Pa'(lz],|y{)+ it »>0 and y<0,
alx,y) = —2-Pa'(|z],|%]) if #<<0 and ¥>0,
‘ —2-Pa'(|z],ly)+1 i =<0 and y<0.
F@[%] it #>0,
Fi(z)=
_W[M] it 5<0.
2
S’e’[@] if 2z is even,
Se(z) = “
_Se,[le] itz is odd.

N
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The pairing functions Pa,Fi,S¢ have the pairing properties

FilPalw,y))=m,  Se[Pa(x, N)=y,  Pa(Piz),Se(@) ==

for any @,y,z¢el.
Other functions which will often be used in the sequel are
[a]=(ux)[wel - v41>a],
l -1  when <0,
sgn(a)=! 0 when a=0,
' 1 when a>0.
|al =a-sgn(a).
The division /b i3 regarded as (leﬁnod for each a,bel. 1t b=0
then a/b=0.
THEoREM 1.4, If ¢4 9% W e D and D is defined by means of the in-
duction-scheme
DGy oens g (@,0) = PGy, ey g (#),
DLGyyeeer ) (LU;”"‘I'I)=Zl<yly---1gl>(w1/’l'y¢<gl.7-“791)(“9’“)):
by 7912‘(1’: —(n +1)) = 1%y e sy g, _77’)) ’
then PeD.
Proof. The relation

791)(5”: n, DYy,

R(Gyyerer 1,250, Y) = PGy oony g0 (T, 1) =Y

can be elementarily defined. To simplify the proof suppose that is @
defined only for #>0 and assumes the values y>0.

R(gla"'7gl:m:71’y)E§VEXP(0az) =¥ 1 g0(@) ABEXP(n,2) =Y
z
AT ExD (6 41,2) = 24G1, -, 01> (2,8, Bxp (3,2)),

i<n

~where Exp(n,z)=(uk) [L >0A~ ((p,‘)"+1 | w)] , Pn=the nth prime number.
Hence
OGyyoe s (@, u)

A similar scheme of induction for the functions does not exceed class D
of funections.

On the other hand, it is easy to prove that the general scheme of
induction leads out of class D 3).

=(uy) [B(g1) -, g1y 2, %, 9],

3) The function universal for the class 9 is definable by means of the general
scheme of induetion. Cf. gection 8, Theorem 3.6.
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-
2. The elementarily definable concepts of analysis
It is well known that a real number ¢ can he represented in the
arithmetic of integers:
i A. by an integral function f such that
: ORI - eac
Ia PES e for each nelN;
¥ B. by an integral function f sueh that
‘ o0
n )
a:Z% and  0<f(n)<2 ~ for n>0;
| ¢. by an integral function f such that
< a<—— q+1 %f(.Pa(p,q)):.:O for any p,qel;

D. by an integral function f such that
e Fi{f(n)}
Se (}‘(n)) +1
E. by an integral function f such that
’a_ Fif(n)
FiSe(f(n))+1

Let us denote the relations expressed in A- E by A(a,f), Bla,f),

0( ’i’ 3 9 7f)'
THL‘OREM 2.1. If P and Q are some of the relations A,B,C,D,E,
then there exists a functional Ob ¢ D such that if Pla,f) then Q(a,Blf>)

Proof. Let
U0<f<7~ _Z 1],
ln 2”

——  for each nelN;
n-+1

for n>Q8eSef(m) and n,meNN.

m-+1

@1 (n) = ()

Ie'\ k>1
L G =00,
08 <fr(n+1) =B (n+1) =2 Pfr(n),

k
g -' ; i) v f(n 1
OB 4 _‘ when ,Hﬂ( )l_l 2 Rl *;1:

TeN k>I
1 in the other case,
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Fi(. Fi;
65 i = (ua[fta) 0. 1((0) [ =iy + 5] ) = 9]
68 ¢>(m) :Pu(m j(n), Pa(Sef(n), n)),

@E<f\ﬂ)—#~b [Z[[ yii

1eN m>1 k> SeSef(m)

Fijf( k &
Filef(k)+1 "~ nH1

2
<3 +1)]‘
The left-hand functionals can he defined by substitutions e. g.

O (f>() = O2<OB 2> ().

THEOREM 2.2. If ¢ is one of the following veal functions: a+b, a—D,
a-b, afb, |a}, [a], then there exists a functional PeD such that for any a, b
and f, 9 if Ala,f) and A(b,g) then A(p(a), <) (or Alp(a,b), <, g)) .

Proof. ,

™ (f g (m) =( WG)[Z ]]'f 7c+1 ni1’<3(n?i§-1)]’

leN k>1
fR) g

[2]] R arT|<s

B (1, g> () = () [2 I 5

leN k>1

P9y (n) = [f(n)],
@‘“’<f>(n)=(n+1)-(uw>[2 J o<1t -m<1].

[

(8) 2 |
ordpn T

L
(%)

.
n+1|<3(n+1)J’

F+1
leN k>1
Let f*(n)=(pw)[|#/(n+1)—a]<1/(n+1)]. It is evident that for every
real number a A(a,f"). This means that
fiin)
P —a <m for each meNN.

THEOREM 2.3. There ewists o functional D,e D such that if Ala,f}
then f*(n) =0, {f>(n).

Proof.
Byfy(m)=( /‘”)[Zﬂ‘n+l Hf)l}<’n—1kl]

leN k>

Now we infroduce the concepts of elementarily.definable analysis.
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A real number & is elementarily definable if there exists a function
feD such thab
| f(n) 1 .
!a—”+1 <m for each nelV.
A real sequence {ay} is elementarily definable if there exists a function
feD such that

fin, k) 1
|ak ey <m for each n,kelN.

A real function @ of one argument i3 elementarily definable over the
set 4 of real numbers if there exists a functional @ ¢ 9 such that for
any aed and f

if ja— n P ‘ for each #neN,
. _ D<) 1 ' R
then |<p(a) T AT for each neNN.

Similarly we can determine when a function ¢ of two or many arguments
is elementarily definable: it is when there exists a functional @e¢%9 such
that for all ag,...,ax, fio.. fk
if A(“l:fl% ~A(azaf2),'"'7A(ak:fk)7 then A'(()v(a‘li"'Jak)]¢<f1)"‘!fk>)'

The class of elementarily definable real numbers as well as the class
of elementarily definable real sequences and the class of elementarily
definable real functions will be denoted by the same symbol D. The
elementarily definable numbers, sequences and functions will be the
object of our investigations.

From theorem 2.3 it follows

THEOREM 2.4. a e D=f"eD.

THEOREM 2.5. If the function ¢ is determined over the set X, then
peD=23 [] Alpla)®>),
PeD acX
ped=) [ =0¢".
PeD aeX

From theorem 2.1 it follows at once
THEOREM 2.06. A real number a ¢ ® if and only if there ewists an in-
tcgral funetion fe@ such that A(a,f), or B(a,f), or O(a,f), or D(a,f), or
E(a,f). :
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A real sequence {ax} € ® if and only if there ewists an integral function
feD of two arguments such that with f(n)=[(k,n) it is true that for all
EeN Alag,fr), or for all k Blaw,fr), or for all k Clag, fe), or for all k
(l)\,fk or f()? al kB (tk,fk)

A real function g €D if and only if there exists an integral functional
@ e D such that if P(a,f), then Q(qz(a),«:b{f)), for all a e X and each inte-
gral function f, provided that P and Q are some of the relations A, B, G, D, E
and X is the set of arguments of ¢.

From theorem 2.2 it follows that the funetions mentioned in theo-
rem 2.2 are elementarily definable, and

THEOREM 2.7
of numbers.

. The set of elementarily definable real nwmbers is a field

The set of possible elementary definitions is enmmerable. Hence the
set of elementarily definable numbers as well as the set of elementarily
definable sequences and the set of elementarily definable real functions
are enumerable. Computable numbers and sequences are clementarily
definable.

Polynomials with elementarily definable coeficients ave elementarily
definable functions aeccordingly to Theorem 2.2. Continunouns elementarily
definable function assumes elementarily definable value e. g. 0 at an cle-
mentarily definable point (as shall be shown in the following). Hence the
roots of an elementarily definable polynomial ave elementarily definable.
This means that the field of elementarily definable numbers is algebraically
closed in the field of real numbers. Similarly each analytical funetion
with an elementarily definable sequence of coeficients is an elementarily
definable real function. Trigonometrical functions and all so called cle-
mentary functions of analysis arve elementarily definable because they
can be presented as elementarily definable sequences.

THEOREM 2.8. For any two real functions g,y, if @,pe® then tlw
superposition gy e D; if {a,} ¢ D then {p(a.)} e D.

Proof. If ¢ is defined over the set X, v over the set ¥, and for
aeX, pla) Y, and for each a,b

it Afa,f), then A(p(a),®@<f),

it Ab,g), then A(p(d), %)),

1)

then for each aeX if A{a,f), then A( (( ) 9/('@\7")“) Hence the
function pg is elementarily defined by means of the funectional ()’f
= WD y(x) which be]ongs to D according to 1.3.
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If {ax} ¢ D and A(an,fs), then by (1) A(p(a.),®<fsy). The sequence
{p(ay)} is elementarily defined by means of the elementarily defined
integral function @{f,>(x).
For example, {an=+bu}, {an- bu}y {ta— s}, {@nfba}, {{an]}, {[aa]} are ele-
mentarily definable sequences, if {a,}, {b,} ¢ T (Theorem 2.2).

THEOREM 2.9. If ael for cach k€N, then {m}e® if and only if
there exists an integral fun(’tion g€ D such that ax=g(k) for ke N. If ¢ is
defined over the set I, and @(x) el for wel, then ¢ei) if and only if there

exists an integral function r/eﬂ) such that () x) for xel
Proof. If a,el and
Jikyn) ny! 1 .
(1) !ak P <m for each nelN

then a; = f(k,0)=g(k). Conversely, if ax=g(k) then the function j{k,n)
=g(k)-(n41) satisties the condition (1).
If ¢ €D, then there exists a functional @ ¢ P such that

(2) it Aa,f), then A(p,®f).

Let fu(n)=f(x,n) =2 (n+1). It is true that A(r,f,) for zel. If ¢ is de-
fined over the set I, and @(a)el for xel, then from (2) it follows that
o Pl 1
L T T

Hence g(a) =0{fx»{0) =gy(x) where g ¢ D according to Theorem 1.2. Con-
versely, if g(z)=g(r), then the functional (D(f}(n):y(f(O)%(';H-l) satis-

fiex the condition (2) for ael.

THEOREM 2.10. There ave the relations Ry,R,,R;,Rye D such that if
Ala,f), A(b,g) and A(an,hy) for each n e N then
Ry(f,g)=a<h, Ry(hyg,n) = ax<<b,

Ryl n,2,) =< Rifh,g) = {a:} 1.

@
y+17

E_‘?\,\ Hk 7@+1)( n)— f(7 ))>n+1,

(2) a,<b ﬁ gﬂ m[)]k(l\ +1) (g(m)—h,,(-m)) >m+1,
; _ Tta (M / @
(3) @y < —— /_L] 2 ﬂm—{»l 1 Ty

keN m>k

.
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In the following we shall consider the functionals defined over the
functions of two arguments. To avoid the confusion of the types of
function variables we shall write the variables standing for functions
of two arguments in parentheses || |. Hence for example if f(n,y)=f.(y),
then we can write (f,) but |f| (cf. the remarks on notations on p. 315).

From Theorem 2.2 it follows that there exists a functional @8« P
such that @f,g> (n)=P<PXf,g>> (n) and
) A(lar—],B<hn,g7).

Hence from Theorem 1.3 it follows that there exists a functional Wee 9
such that

{5) Dy g0 () = PR R[Kg> (0, ).

From (3), (4), and (5) we find that the relation

o
y+1
is elementarily definable. Hence R, ¢ 9 because

{an}—>b51121]‘|a,—b|<-7;1?_—1.
keN JeN n>1

THEOREM 2.11. There exists a functional @ ¢ D such that if A (a,fr)
jor each ke N and {or}— o, then A(a,d|f]).

Proof.
a1l = )| 3 JT

TeN k>1
from Theorems 2.10 and 2.2 it follows that the relation

lan—b| < = Ry(P8| h <>, n,,Y)

e
L |

<5t

9
P —

R{f,kyn,5)= 3(7;-[—1)

o %
n-+1

is elementarily definable. Hence @ ¢ 9.
TEEOREM 2.12. If {;} ¢ D ond {ax}—a, then aeD.
Proof. From Theorem 2.11 by meang of the definitions.

TeEOREM 2.13. There emists a functional Q ¢ D such that if A(a,fs)
for each ne N and the sequence {a,} is limited, then the sub-sequence
dgficy B8 convergent.

Proof. The funectional Q is defined as follows:

B 7] (k) = (uz) [2’ ] o= ﬁ—ll,

leN n>t

QY7 () = (un) [-n eN. ?—l%‘—g<an<gﬁ%ﬂ].

»
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The limit of the sub-sequence agypy ey is the upper limit of the set of
points of accumulation of the numbers of the sequence {a,}. From theo-
rem 2.10 it follows that the functional @ e 9 because the relations
<2 2=l
(1,.\k+1, an>]{—f-{
are elementarily definable. Hence likewise from Theorem 2,10 we find
that the relation

I <¢l’|clf—J£(i@ERs(j,;z s @1 k), k)

is elementarily definable, also Qe 9.

THEOREM 2.14. If {a,} ¢ D and the sequence {a,} is limited, there
exists o sub-sequence {an} ¢ D such that im {a,} e D.

Proof. From Theorems 2.12 and 2.13 by means of the definitions.

THEOREM 2.15. There exists « functivnal @ge D such that if {a,} is
limited and a =sup{ar} and A(a,,fs), then f*=@,|f|.

Proof. )
D f]| () = (uex) [1]“"<ﬁ‘—‘[ﬁ]’

keN
o) L)

ailn = | 3 [T |5 - HHY <25

keXN >k

THEOREM 2.16. There exists a functional ¥ e D such that if A(tn,fa),
then the sequence {aw| s m} s monotonie.
Proof. We can distinguish the following cases:

(1) The sequence {a,} is unlimited when

(a) I Sa.< or (b) [l Ya>a,
xel nelN xel neXN

(2) the sequence {a,} is limited when

(¢) > [Hz<a<y.
x,y€l ne¥

In this case we shall consider the subsequence b, = agys . The sequence
{b,} contains an increasing subsequence if

(¢) 3 I 32 b <be< lim by;

leN p>1 k>n

the sequence {b,} contains a decreasing subsequence if

(e”) 2 ” Zb1>bk>limh,,;

leNn>l k>n
Fundamenta Mathematicae. T. XLIL 21
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the sequence {b,} contains a constant subsequence if

(") I1 3 b.=1limb,.

nelN k>n
Now we define the functional ¥ in the following manner:
0 if (a) or (b),
Q| ] ((h) [ < Lim b) it (¢),
Q|7 {(whk)[bx > lim b,]) it (¢”),
21f] ((;ﬂc)[bk = Him b,,]) St (e).
(k) [ox <—nAwe<awmsim] i (a),
(ule) [ >0 Aty > agpym] it (D),
Pf (1) = | LU (k) [awryen <be<Uim b)) if (¢),
' QU1 {(pk) Lavmy e > bi> Limby]) if (e”)s
(k)& >¥| fll(n) Aax =lim b,] if (¢'"').
From Theorem 1.4 it follows that ¥ e 9. It is evident that the sequence

awyrym 18 decreasing in cases (a) and (¢’’), increasing in cases (b) and (¢’),
and constant in case (e'’').

|1l (0)=

3. Elemenh:rily definable sets of real numbers

‘We introduce the concept of elementarily definable sets as well as
the concept of elementarily definable sequences of sets.

The class of the elementarily definable sets of real numbers will
be denoted by the same symbol D as the class of definable real funections.

(1) ZeD({Z,) D) if and only if there exvists a relation R ¢ D such that
for all @ and fif A(a,f) then aeZ(acZ,) if and only if R(f) (R(f,w)).

(In this section the indices # in the symbols {Z,} of sequences of sets
are regarded as running throughout the set I of all integers.)

TerOREM 3.1. The condition Z eD({Z,}eD) is equivalent to the
following:

(2) There exists SeD such that, for all a, aecZ(aeZy,) if and only |
8% (8(%m)) - ‘

. PI‘OO.f.' Ze®D>(2). If ZeD, then there exists a relation B¢ 9D
which satisfies the condition (1). We set S=R. It is evident that A(a,f").
Hence the condition (2) is fulfilled.

(2)>Ze®D. Let R(f)=8(®,|f]). Hence by Theorem 2.3 the condi-
tion (1) is fulfilled.

|m|
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THEOREM 3.2. The sets and sequences D constitute an enumerable
additive Boolean algebra.
Proof. If Z,,Z, and R,,R, satisfy the condition (1), then the sets
— 7, and Z,VZ, are determined by the relation ~(Rl(f)), {Rl(f)sz(f)).
oo

It {Z,} D, then the relation S(f)== 21 R(f,x) determines the set Y, Z,.
X€

=—00
TEROREM 3.3. The sets D are Borelian sets of finite degree.
Proof. From 3.1 and from the definition of elementarily definable
relations it follows that the class D of sets and sequences of sets is the
smallest clags that contains the following initial sequences:

() le,,,.,xk =§' [fa(‘”i)":"l'j})

(ﬁ) le ...... X k:'é':'[,mi:wj—{_l]’
tr) Ly =F [ =gz and x> 0],
(8) Z"‘lv-w-"}; =-EE' [mi = 0] ,

(where 1<i,7,l<<k), and is closed under. the following operations on
sequences:
A. The operation of addition of two sequences, which leads from

7 ’ "
A.\']‘...,xk == le,“..xk V) le,...,x‘. .

B. The operation of complementation, which leads from a sequence
{Z,..} to the sequence Z, . = — Zpyry

C. The operation of enumerable summation, which leads from a se-
quence {Z ..} to the set (if k=1) or to the sequence

oo
Z.\'g,.;.,xx::: 2 Z;q,u.,xr
X1=—00

The sequences of type («), contain the sets which.are segments
[:17,-/(43»}-1) s (5 —|—1)/(w,+1)>. The sequences of type (B)-(3) contain sets
which are: The whole set of real numbers if the indices satisfy the arith-
metical eondition, or the empty set if they do not. Also the initial sets
are Borelian of finite degree. Hence each set ZeD is Borelian of finite
degree 4).

) It is easy to show that for each p().s:itive integer n there exists a Borelian ele-
mentarily definable set of nth degree, which is not of the degree n—1. See for example [3],
p. 278. .

21*
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THEOREM 3.3". The functions © are mesurable (B) of finite degree.
Proof. Let & be such a functional that @ eD and @ =d.

Let F' be a closed set. There exists an decreasing sequence F,CF,CT,,
o0

of closed sets such that F=[]F;, and cach set F; is a summe of recur-
i

sive sequence of disjoint closed’ segments with rational endpoints. Bach
set F is also computable. Let R; be such a computable relation that
b e Fy=Ri(f*>. Hence

ae m‘l(lf’i) B (]7((1) € F,- ES ]l)g <_fq(ll)"v == ]1’, <d)//a > .

It iy evident that  @='(F) =gt ]7]"1) = [j @=1(IF;).  Putting a,EA‘
=R (D" we obtain that there exists sueh o number # e N that
each set A; belongs to the Borelian class of » degree. But [;7 A= ﬁ p~1(F,).
Hel;ce the product ﬁ e~ Y(F)) =@~1(F) belongs to the Borelian multi-

plicative class of n+4-1 degree. This means that ¢ is mesurable (B) of
n+1 degree. The number « can be evaluated by the number % of guan-
tifiers contained in the definition of the functional ®. Namely n<k.
It is evident because the relations R; are computable.

Let j;,j. be two recursive functions such that r, =j,(n)/js(n) where
{rs} is the sequence of rational numbers. We set

W,.(k):W(ﬂ,k)zf’"(k)=(y.r)[ik%—;’,ig:; k%J
;V,,,(Ll‘,y) = (un) [.l/ FOAnZ= 0N §= ;:E:zi] .

The function W is also recursive. It is evident that
THEOREM 3.4. A(rn,Wa), AWy, W), I =Wae-

TeeoREM 3.5. If X is a segment and a,b are the endpoints of X,
a<b, then X ¢® if and only if a,be®.

Proof. From Theorem 2.10 it follows that there exists a relation
R; e D such that ce X = Ry(f% 1, 7).

Conversely, if X ¢ D, then there exists a relation R e® such thab
ce X=R(f°). Let

F(n) = (ue) [B{W y,cnin)],
G(n)= (M)[R(WN.,(::—1,M+1)) A NR(WN,,,(x,n—n)]-

Hence a=1lim F(n)/(n+1), b=MNm @(n)/(n+1) and a,beD by means
of Theorem 2.12.

=T
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THEOREM 3.6. There exists a number aé®D such that the set {a} be-
longs to ©. . ‘

Proof. The universal function G,(x) =g(P(n,m)) for the elementaatﬂy
definable functions is the unique function g, which satisfies the following
condition U{g>:

Uy = ”Ig (P(O,m)) =gl
A [1g(P(1L,)) == || A I‘Ilg(])(gpl,)\)  File) el
xel e

A Tg(P(3,0) = [Fi@ @) & [ (Prt,0) =Fia)

(P(3,2))
A [1g(P(, ) =Sela) A ] g(P(6,2)) = Pla,x)
xel

xel

A L9 (P(7,0)) =PO,2) A 19 (P(8,2)) = P(,0)
xel x€

A H{ [T g (P(n,2)) = Q(P(Fi'(“)lg(P(F‘i'SP'(Jz),fﬂ)))) when Seffen=0

n>glxel

Al g(P(n,z)) =P (F’i(m),g(P (Fi’(')l,),Se(w))» when  SeSen =1
xel

Al _(/(P(n,m))=P(g(P(Fi(n),mm))),s@(m)) when  SeSen =2
xel

A [1g(P(n,2) =(,uy)[g (P (Ei(oz),P(m,y))):O} when SeSen >2}.
xel

From the definition of the class D of relations.it follows.t].mt tﬁe
class @ of functions is the smallest class of functions contamlgg t] (;
initial funetions #+1, |z|, #—¥, [#’], and .ellosed under the opc}alramois?,ol
substitution and under the operation of minimum. Hence by T eoref 01;9
of Grzegorezyk [2] it follows that the class D, of the funenol}s.o iy
argument belonging to the class @ is the smallest class containing the
initial functions ' v
241, |}, Fi)—8e(x), [Fi(2)5e6],

© Filw), Selw), P(0,0), Plw,2), P,0),

and closed under the following operations:
1. of superposition,
9. if f belongs to D,, then P(Fi(w),i(b‘e(m))) belongs to Di,
3. if fed,, then P(i(Fi(m)),Se(m))eﬂ)n
4 i feD,, then (ym)[f(P(m,y))=0]eﬁ)1.
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The function ¢ satisfying Uy is well-defined for all numbers
2=P(n,z). For n<<9 G,,(m).—_—g(P(n,w)) is equal to one of the initial fune-
tions (0). For n>8 the function @, is obtained from the preceding
functions by means of one of the four operations. Hence the function
G,,(m):g(P(n,w)) is universal for all functions of the class 9,.

Now we shall define two functionals o, m ¢ D which establish a one-
-to-one correspondence between the set of integral functions of one argu-
ment and the set of natural functions of one argument assuming only
two values, 0 and 1. For this purpose we shall define 6 funectionals: &

lf(;—l) it n is even,

n
,f(—-——j{—) it nis odd.
f(2z) if x>0,
f(2jz]=1) it x<o.

oy 2 (n) =

ot (@) ={

o -
w1<f>(n)=‘2lf@l it f(n) >0,
3 it f(n)<<0.

o {f>(n)=Exp (O,f('n)) —Exp (1 7f(n)) .
olf>(0)=0,

wolfr(n+1) = sgn(/((igl;wodﬂi)) -~ 1) ;ié:'(w‘)(f)(‘z',) g w0<f>(j))),

isj<

N — S {44 i
oufy )= 3 f0): J1H0))  tor ko=(uk)[ S 1) =n+2]. )
) The funf}tional o, transforms a function defined over all integers
into a function defined over non negative integers. The functional w
Wform a function defined over all non-negative integers and assumf
ing integral values into a function defined over the set IN and assum-
gxg ﬁjtlhg values of the set N, And the functional w, transforms a function
tie 3 eﬁ(;:rer the ‘set N and assuming the values of the set IV into a func-

on ed over the set N and assuming only two values 0 and 1. The
funcmona,lgx @y, My, @y are the inverse with respect to the fllnct{onals:
@y, 01,0, in such a manner that the following equations are mt.isfied':

0y {yfy =, 0 {anlf>> =7, ooy =1.

Valu;l;hzfﬁéxﬁetifonal L is defined in such a manner that e. g. if the initial
Talugs o (e\ unction f are 3,5,0,2,4, then the initial values of the
we<f> are 0,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,1,] ,1,0.

%) Tt 3 8 i
) The symbols /7. X denote in these formulae limited sums and produets.

@
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Setting
wololwylfHyy(@) = wlf>(@),
ICRCORCBENIC) =0{f>(®),

we find that ol@{f(@)=f(2).

Now we define the set Z: a0 ¢ Z=UlalO5{f* ).

The set Z hag the following properties:

1. There exists exactly one real number a, such that a e Z. From
the definition of the set U it follows that there exists exactly one
function ¢ such that Udg). Hence there exists exactly one funetion
D (Oalwiy~y) such that

RS C R CRCIINE

Dbecause Theorems 2.1 and 2.3 involve

@ OF(DH{ ORI =1 -

9. Number @, such that Z = {a} is not elementarily definable. Num-
ber @ is the unique number for which j":@(@i«(w(g)». When ¢ D,
then f°¢ D, and g € D, but this is impossible because the universal fune-
tion for a class of functions cannot belong to that class.

3. 0 <a<1. From the definition of the functional w, it follows that
fa]=0 and a>0. 0,1¢?D, whence 0£a#1. ‘

4. From Theorem 3.2 it follows that the open set. V==(0,1)—{a}
is elementarily definable. It contains two components (0,a) and (a,1),
but these components are not elementarily definable, according to Theo-
rem 3.5.

Hence this proof implies the following

TrEoREM 3.7. There exisls an open set V e® such that the compo-
nents of V are not dlementarily definable sets. .

TaroREM 3.8. There -exists a non-enwmerable set Z' D such that
if aeZ, then a¢®. *

Proof. Tt is possible to define in an elementary manner the class 2
of all universal functions for the class @ of functions. The class D is
enumerable. Bach universal function for the class 9 rvepresents a per-
mutation (perhaps with repetitions) of the elements of the class _E_D The
number of the permutations of a enumerable set is 2%, hence U’ =2".
Also the class Z' of numbers such that

a e Z' =T <oO5")>

contains only the numbers which do not belong to D, and 7 =2%,
and Z'C(0,1).
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According to the definition of the class U of the preceding Theorem
the class U’ can be defined as follows:

U'gr= Iila( @) =041

A T g(P(0)) =2l A [1g(P(2,0)) = Fi() — Se)
A1 9(P(3,0) =[Fi(@f] A []g(P,a)) = Titr)
M g[P(5,0) = Se(@) 4 []g[P(6,0)) =Pl )
rTq(P )| =

P(0,) A JTg(P(8,a)) = P(w,0)

A1 S (e, = o P{to{0,0)

kKl n x

AT b 1 g(P(n,0)) = P(E’fi(w) , g(P (k,Se(w))))
A1 S g (pon,0) )= P(g(P(k,Fi(m))),Se(m))
AT g (P, 0) = () [o(P (k, P, 9]) =0

A {11 alpon,a) =o+1) v (T g(Ptn, ) =)
(”g(anm):Fi() Se(w)) v (1g(Pin,0)) = [Pia)s)
v ([ (P, 2) = Fita) v ([T o(Pin, ) = Se(a))
v ({C] g(P(n, ) = P(w,m)) v (U 9(P(n,2)) = P(0 ,w))
V(I;Ig(l’( a)) = P(a, o)v 2’{1‘19( n,)) = g(P(Ic,g(P(l,m))))
v [T o(Ptn, ) =P(Fi(w) : g(P(k,Se(w))))
v To(P,2) = P(g(P(k Fi(a)), Se(m))
v 4,0 = (u) o Pk, Plo,9))) = o\
There remain several difficult problems concerning elementaxily de-

finable sets:

1. Ts the closure an elementarily definable set, elementarily de-
finable?

icm
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2. Is the class of all clementarily definable real numbers, elemen-
tarily definable?

3. Is the measure of an clementarily definable set, an elementarily
definable number?

4, The analysis of continuous functions

A continuous function ¢ defined over a segment [a,b] is elementarily
defined by the sequence of its values ¢(r,) at the rational points #,. This
remark was the basis for the not guite strict proofs of H. Weyl stating
that the theory of continuous functions can be obtained in an elemen-
tary manner. In this section we shall give a strict shape to these ideas.

TrEoREM 4.1. Lhere ewists o functional Dyye D such that if ¢ is a con-
tinuous function de/wed over the segment [a,b] and A( 7‘,,) for vnela,b]
then A( (¢), Byol| F 111" j>) or any cela,b]. _

Proof. From Theorem 2.10 it follows that the functionals &,y,®;;
are elementarily definable

D,0¢f°%, f 7 ILL’N;)[R}O/\G*\M J'/\\in—ti&kJrl]
1o<f j (), '”') 2
S 1< 1 f° k+1 N1 <3(7c+1)]‘
‘meN n>m

From these definitions it follows that setting G(k) =@, ', 7°>(k) we have
- 1
(1) ]ll?“w(k)—-6|<-—--k+1.
keXN

From the continuity it follows that

@ g(0) =1m p(rago)

from the assumption of the theorem it follows that
flow, k)| 1

®) ]]‘ Plrow) = =7 ! RSy

whence, from (1), (2), (3), (¢) =lim f(®(k), k)/(k+1). Also the functional
D, satisties the required condition.

Hence, when we consider the classical operations of analysis it is
not necessary to introdunce the hiperfunctionals which transform the
functionals representing the real functions into other functionals repre-
senting the real functions. It suffices to congider the sequences (ra)
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and the functionals which transforms the funetions f such that A(cp(r,,),f,,)
into other functions. This simplifies the notations of the following

theorems.
THEORENM 4.2. Jf ¢ is a continuous function defined over the segment
Ta,b]eD, then
peD= {q)(‘f,(f’b))} €D

chere 7P is a sequence of rationals contained in the segment [a,b].

Proof. The first implication results from the definition of definable
function, the inverse one from Theorem 4.1. :

THEOREM 4.3. There exists a functional Dy e D such that if a con-
tinuous function ¢ is defined over a segment [a,b] and the values of the
Function ple) for ¢e[a,b] constitute the segment [a',b'} and A(q:('r,l)‘, f,,) for
rpela,b], then A(qu’l(d),Qiulmlq“,jb,j‘i;v) for dela',b'] where p=3(d)=the
least ¢ for which g(c)=d.

Proof.

@12“ﬂl<f“77b,fd> (n)

= (um) [ 2> ]] D a<rn<bA

1eN keN melN

d—

flm, k) 2
1 | SEF
z ! 1 1
ﬁﬁmﬁﬁmﬁ+ﬁﬂ

A
TIndeed, let us suppose that ¢=¢=(d) and z= f°(n), whence
[ 1 1
{1) ‘m—c‘ <m+m for some le V.

From the continuity it follows that for each keIV there exists such 7,
that

2 T ey 1
{2) n+1<:m<c and W(Tm)—d]<m-
©On the other hand, we have

_fm,®)| 1 i
{3) @(m) F+1 <m for all %eNN.

Hence, from (1), (2), (3),

z _,
n+1 "

1 and \ﬂm’k)—dy

<Xy 2
a1 I S e

icm
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It suftices to show that f°(n) is the least x that satisfies these conditions.

Indeed, suppose that x <f°(w, ), whence the function ¢ assumes the value d
in the closed segment

z—1 1 41 1 e
[}ﬁ-ﬁ‘l+1+m’ﬁ“—ﬁ_l—ﬁ] for no leN.

Hence, there exists such k that, for all +, of this segment,

whence, by (3)

Also x does not satisfy the regnired condition.

THROREM 4.4 There erists a functional Pye D such’ that of ¢ is
a continuous function defined over the segment [a,b] and A((p(r,,),f,,) for
roe[a,b], and

¢ =least ¢ such that ee[a,b], and ¢(e)=maxe,
[a,0]
then
f° = ®u f[[<1 17>

Proof. From Theorem 2.10 it follows that there exists a funectional
Dy, € D such that e e 15 2 sequence of all rationals contained in the
segment [a,b]. Namely

D17 (0) = (wm)[a-< rm < B,
By f 1 (1) = () [m > Py 1 (1) Aa < 1w < BT
Let
G, <g e, ) =1 (g(),y)-

To the sequence {p(Ioyefsm)} we apply Theorem 2.15 and obtain

fdz qjsuq)14uﬂ|<(px3‘ija;."b > {p

where d is the wpper limit of this sequence. Now let us notice that c=@id.
Hence, from Theorem +£3 and 2.3, we obtain £ =@ B <% 7
Also )

d‘ls!}f“'*ffa:ﬂ)

=¢7<¢12”]€u <;/a7 jbﬂ @9ilq§14§!f“<(D13<jaafb,‘>u>> .
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THEOREM +.5. There cxists a functional Dy e D such that if

max > d>ming
e8] 8]

then there emists « number ¢ e[a,b] such that g(c)==d and
fc= q)m"”[qa:fby/d)

where | satisfies the condition A(p(rn),fs) ]‘m all 1, e [a,b].
Proof. Let us consider the functnon y(e) =—|p(e) —d|. The function y

agsumes the maximum .value 0 in a polnt ¢ for which @(¢)=d. From

Theorem 2.2 it follows that the funclion ¢ is clementarily definable by
means of the funection ¢. Hence, using Theorem .4, we obtain our
theorem.

THEOREM 4.6. There exists a functional Py e D such that if ¢ is a con-
tinuous function defined over the segment [a,b], then for any ¢,de[a,b}

(1) if Je—di< then  |p(e) —@(d)| < 1

1 )
Dl F <17 () 1 k1
where f satisfies the condition
(2) A(q)(a',,),f,,) for each ryela,b).

Proof. The function ¢ being continuous, is uniformly continuous
in the segment [a,b]. Hence

113 [T {fe=r <bA[,~m-r,,,<_1_)

(3) keN 1eN mneN l }_1
‘*I‘P('r‘m) "'n)i< :1‘ =
From (2) and (3) it follows that
Oty TS DA |7 — 1 )
(4) kg“%' m]Z{ el <7
N (n,4)  f(m,i) P }
j% ,{,[ FTiFT | SRR
‘Now leb
DI 1 () = (D) { I {o<rmm< o fremn| <2
(5) mneN l+1
\ fln,g)  fm,d) 1 Y
—:%g R e ’*3(k+1)}]'

H

icm
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Hence it follows that, for any 7,7 € [a,b],

if ‘J'm - r,,|<—-‘.“alb__-,
) Dy f\l(f (k) +1
(n,1)—f(m, 1) 1
then 2 < .
= 1{}[ i |—1 3(k+1)
Let us consider two real numbers ¢,d ¢ [a,b] such that
(") e—d| < 1
i [ e
By 11<1° 1> () +1
From the continuity of ¢ it follows that there are two rationals such that
(m\’) ¢y < d1
() 19(0)— 9lrm) | < g7y
’ ‘ ™3k +1)’
. 1
{10), E‘P((Z)*(P(T',,)'; < 3(k+1)

Trom (7) and (&) we obtain

1
(11) [ T e
" By Fil¢f% 1> () +1
From (6) and (11) it follows that

; [ Flngd) 5. flm, i) 1
(a2 ety E s pa e i O RSV
From (2) we obtain

. N g JC )

(13) ‘P“m)"‘i]fg iF1’
i)
(I’J) ¢(7n) _i]irg 'i“|'1 ‘

From (9), (10), (12), (13), (14) it follows that |g(c) —@(d)] < 1/(k~+1). This
completes the proof of condition (1).

THEOREM 4.7. There exists a functional D € ‘9D such that if a function ¢
iy differentiable over the segment [a,b] and /\( Tn) fn) for rae[a,bl, then

Alp'(e), Pl fls 17 1%)  for celasb).
Proof. We start from the definition

e+ b)) —plo—1gl)
o/t = Jim, PG
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Hence
o'e)=tim (o (2] = (F2) - ().

On the other hand, it is true that

(f"(m)—;-l) —lim ]‘(z\"w<1"(m)+] ,m-{-l) ,z)
100

m—+1 1+1 ’

ﬂ-}n)—«l T
‘”( m+1 )”",13,’2‘
Hence

N 'fc('m,)—i—] m+1),1) — <N “(m)—1,9m - ]

7'(¢) = lim lim ( ( ( ’ )’){ olfm) =Ly -1), 1) ont-1)
m=c0 >0 2(l+1) )

Now from Theorem 3.4 it follows that the conditions of Theorem 2.11

are satistied, and by the double applicati N
. > application of Theorem 2.11 e find
that there exists the required functional @, ¢ 9. e fid

For the end-points of the segment [4,b] we ean define the derived -

function by means of the one-si i iati
i 3 e-pided differentiation. The corves i
functionals are also elementarily definable. oning
’ THEEOREM -4.84 T?wre exisls a functional Py e D such that if @ i
« function continuous in the segment [a,b] and A(q?(’r,,),f,,) for raefa,bl, then
n g b

b
A( [ ple)de, @111 1%).
Proof. )
b P
Jrerte=im 3 ol

a n—> (’/& 1
wi=f‘(n)+1 +1) ntl

: £ ‘
—lim 1 Na(in1),k)
"‘)m‘“f%' n—+1 ,}El;lo k41
i= 041 B .

Hen 4 .
He fcifl,d bgh;[‘thiil)lrem 34, and by th(‘a double application of Theorem 2.11
14 that ere e:lusts the required funetional DyeD. ’
e o conit ron;lgra twix(')lth the theqrems of this section we can say that
b o Operat ng on. continuous functions are elementarily de-
ot o operations do not exceed the class D. A continuous
® €D, defined in the segment [2,0] ¢ D, assumes the maximum

Blementarily definable analysis 337

value at - point ¢ e®, iy elementarily definable, uniformly  continuous
in this segment, and

d
p-leD, p'edD, f(p(m)dweib for a<d<b.

Tor the functions elementarily definable but net continuous the
theorems analogical to the familiar theorems of analysis are not true.
For example .

TraRoREM 4.9. There exists a real function @ <D which assumes only
two values O and 1, and assumes the value 1 at one point which is not ele-
mentarily definable. .

Proof. Let Z be the set defined in the proof of Theorem 3.6. We set:

(a _{0 for aé¢Z,
PO=\1  for aeZ,

et () = =1 it TCKORD,
0 if ~(ULed@5:50)-
It is evident that
O =@t
Hence gpe®D. :
TimorsM 4.10. There exists a one-to-one mapping function @e®
such that the set of its values s elementarily definable, and ¢~ ¢ D.

Proof. Let )
2 for aeZ,

lp(a):{a for aéZ.

2 it U<adOn<d,
q§<f>(lz)_{f(n) it~ (TCCORG))-

Hence @ =@{f*;. Then g eD. Thus the function ¢ establishes a one-to-one
correspondence between the segment [0,1] and the set [0,11—2Z)+ {2}.
The function ¢=!¢D hecause g~} 2)=a ¢ Z, and a¢D, and for any
function z e D it is true that if e €D, then y(e) ¢ D.

Finally, we shall give some remarks concerning systems of arith-
metic. Let us consider the system § of Peano’s arithmetic formalized
in the simple theory of types. We assume that integers are individuals
of the lowest type. The familiar arithmetical functions - and - can
be the primitive motions. We state a restriction in the formulation of

the axiom of definability
(o) > [l RX,Y,Z,.)=5(,X,Y,Z,..).

R XY,Z,...
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We admit in this scheme only those formulae & in which each quantifier
bounds a variable of the lowest type. Other axioms ave the familiar ones.

A relation g is said to be definable in a system if there exists in this
system a theorem of the form («) such that the expression 2(...X,Y,7 you)
is a possible definiens of the relation ¢ 7. e. of...#,y,2,...) if and only it
iy Yy 2, ... satisfy the formmla Z.

From this definition it follows that a relation is definable in § it
and only if it is elementarily definable. Hence from Theorem 3.3 it fol-
lows that the existence of a non Borelian set is unprovable in the sy-
stem S. But the general question, whether the class D constitutes the
model of the systenmr 8 remaing open, because we cannot decide whether
the axiom of extensionality is satisfied in the domain @. There remaing
algo another task: to verify whether the theory of continuous functions
can be deduced in 8. Perhapy this theory can be obtained in § without
the use of the axiom of extensionalitiy.
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On uniformization of functions (I)

by
R. Sikorski and K. Zarankiewicz (Warszawa)

Let I be the unit interval 0 <z <1, and let ¥ be the class of all con-
tinuous mappings f of I into itself such that f(0)=0 and f(1) =1. If f,p €&,
then fp e too. The symbol fp denotes always the superposition of f and ¢.

‘We shall prove the following

TaEOREM 11). If f1,fss. fn el are functions such that

(o) for each i=1,2,...,n, there is a sequence 0 =uy<w;<@p<l...<r
such that f; is either non-decreasing or mon-increasing in every interval
Bjmgy By =1,2,...,7,

then there exist functions gy,@s,...,¢ney Ssuch that

1) hor=Fee=... =fa@a-

Theorem I has the following simple interpretation. There are =
paths which are going to the top of a mountain. The paths need not
always go upwards, some segments of the paths may be directed down-
wards. On each of the paths a tourist is climbing. Theorem I asserts
that the tourists can climb to the top of the mountain in such a way
that, at every moment, all of them are on the same level (of course, it
may happen that, in some time intervals, some of the tourists must
return from the previously covered segments of the paths). To make
it clear, let us suppose that the paths are the curves

Du@)s o), ey Do),
where p;(z) (j=1,2,...,n) is a mapping of I into the three-dimensional
space. Let f;(@) be the height (the third coordinate) of the point p;(a).

Yy K. Zarankiewiez, Un théoréme sur Duniformisalion de fonctions continues et
son application & la démonstration du théoréme de F. J. Dyson sur les transformations
de la surface sphérique, Bull. Acad. Pol. Sc. (1. IIT 2 (1954), p.117-120.

During the print of this paper the authors found out that a theorem similar
to Theorems I and II was proved by T. Homma, A theorem on continuous
functions, Kodai Math. Sem. Reports 1 (1952), p. 13-18.

Homma’'s hypothesis about fi,fa,....Jn is other than that in this paper. The
example on p. 340 is also given in Homma’s paper.
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