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pour obtenir 1'existence d’une droite D, telle que P(D,)=0; il en résulte
que le plan mené par D, et L coupe V suivant une section dont le centre
de gravité se trouve sur I, . q. f d.

T1 est évident que le théordme reste vrai quand on entend par centre
de gravité d'une seetion le centre de gravité du contour suivant lequel
elle tranche S.

Envisageons maintenant un corps convexe dont la surface § est
assujettie & des conditions de régularité garantissant en tout point P
de 8 Pexistence de rajyons principaux de courbure, Ry(P) et Ry P) (By> 1),
ob leur continuité comme fonctions de P sur §. Bn éerivant w=Ry(P),
y=R,(P) on définit une représentation de 8 sur le plan cartésien (z,y).
D’aprés (I1), il y a sur § deux points antipodiques, P ct @, ayant une
image commune (&g,Y,). Il s’ensuit que les deux courbures principales
en P et en @ sont respectivement égales. On peut rendre ce fait plug
intuitif au dépens de la préeision dn langage en disant:

(13) Il y a swr S dews antipodes telles que leurs voisinages infiniment
proches sont congruents.

Remarquons maintenant que lon peut définir I'antipodisme sur 8
pax 1a condition que la corde PQ passe par un point fixe O donné d’avance
4 Yintérieur de V. Considérons une suite {0,} de tels points convergente
vers un point P, situé sur S. D’aprés (13), on trouve sur § une suife de
points {P,} et une autre {@,} tels que leurs voisinages regpectifs sont
congruents et que la corde P,Q, contient 0,. Comme 0, tend vers Py—
pour n-»co — on peut extraire de {P,} ou de {@,} une suite partielle {Rn}
tendant vers P, Appelons T, Vantipode de R, par rapport & On —
on peut extraire de {75} une suite partielle de points, {17}, tendant
vers un point 7' de §, leurs antipodes respectifs R; (par rappert aux 0j)
tendent toujours vers P,. 1L faut distinguer deux cas: 1° 1T"s£P,, 20 1" =P,.
Dans le premier cas il existe sur § un point différent de P, dont le voi-
sinage est congruent & celui de P,, dans le second cas il y a dans tout
voisinage de P, deux points dont les voisinages respectifs sont congruents.
Comme P, est arbitraire, on peut dire:

(14) Les points de S pewvent ére divisés en deux calégories: la premiére
consiste de paires de points aux voisinages respectivement congrients,
la deuxieme de limites de telles paires.

Exemple. Supposons que la Terre est un cllipsoile de rotation

et que le Pole Nord soit plus applati que le Pole Sud. Alors les Poles’

appartiennent & la deuxiéme catégorie, tous les autres points & Ia premiére.

Regu. par la Rédaction le 1.2, 1954
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Let &§ be a sentential caleculus which contains the signs of disjune-
tion, of conjunction and of implication, and perhaps some other sen-
tential operators. We suppose that all theorems of the positive logic
are theorems in &. The system & determines a first order?!) functional
calculug S*.

The subject of the papers [10], [12] was the general algebraic method
of the examination of a non-specified functional calenlus §*, with appli-
cations to the special functional caleuli: of the two-valued logic &%, of
Heyting &, of Lewis &7, of the positive logic &5 and of the minimal
logie &;.

In this paper I shall apply the method mentioned above to the
study of theories formalized on the basis of a logieal ealculus, which
may be either a functional calculus &%, or a functional caleulus §* with
equality. The theories with functions are included.

The first part of this paper contains the general definition of the
model of a formalized theory based on a functional caleulus &* (or &*
with equality) where §* is not exactly specified. This definition is
closely related to the general notion of satisfiability introduced in [10].
If §* is the classical functional caleulus, this definition is a generali-
zation of the definition of the model in the usual sense, called here the
semantic model ). Known theorems on models of elementary axiomatie
theories hased on the classical logic hold also in the general case?®).

*) Presented to the Polish Mathematieal Society in January 1954. The author
wishes to thank Professor R. Sikorski for suggestions and eriticisms in vonnection
with the writing of this paper.

1) For the exact description of the systems & and S* see [10], §§ 1, 2.

) See [8], p. 356.

2) The results of the first part establish an easy generalization of the results of [10]
(see also L. Henkin [1]). They can also be regarded as gemeralizations of some in-
vestigations of J. Lod [4]. The majority of them are necessary for the second part,
containing the essential results of this paper.
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The second part of the paper treats of axiomatic theories hased
on the Heyting functional caleulus &;. A theory G is said to be con-
structive provided that:
10 §f Yg is a theorem in T, then there exists a term & such that
*p .
the Tormula a(f) which, results from o by the substitution of & for a,1)
is a theorem inp‘G;
20 if g4 f is a theorem in G, then either a or f is a theorem in G.
Tf a theory T is constructive, one can associate with each formula
a=2Ep (where £ is a sequence of quantifiers and # contains no quanti-
fiers) @ sequence a,d,,... of formulas without quantifiers such that « ix a
theorem if and only if at least one of the formulas ay,uy, ... ix o theorem.
This remark may be regarded as an analogue of ITerbrand’s %) theovem.
T shall formulate a necessary and sufficient condition for a theory G
to be constructive. This condition has a puvely algebraic form. 1 shall
prove that the theory T ix comstructive whenever all axioms of G (ex-
cept the axioms of equality) belong to the least set Z° of formulas of G
suel that: 10 Z° contains all elementary formulas of G, 2¢ if p,yeZ°
then B-yeZ°, 3°if yeZ® then p-y, 1, []veZ’ In particnlar, every
X,

theory whose axioms are equalities is eonz.;tructiw. TFor instance, the
theories of groups, of rings, of Boolean algebras are constructive. More
generally, if we eliminate the sign + and Z from all axioms of a general
theory G, that do not belong to Z°, using de Morgan’s laws, we obtain
a weaker theory G’ which is constructive. In this way one can obtain
a constructive fragment of arithmetic.

The method used in the second part is similar to that wsed in [12],
and is due essentially to Tarski and MeKingey *).

As an application T obtain the theorem 4.11, which is stronger than
the fundamental theorem (%) of [12] about .

- § 1. Elementary axiomatic theories

Let &7) be a fixed consistent system of sentential caleulus con-
taining:

(a) the disjunction sign +, the conjunction sign -, the lwplication
sign —

(b) some other binary sentential operators oy,...,0.;

1) We assume that the necessary changes in the bound occurrences of variables
of a were performed before the operation of substitution.

5) See [3].

%) Cf. [5], [6].

7) See [10]. § 1.
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(¢) some wunary Senteutial operators o',...,6%.

The set of operators mentioned in (b) or (¢) may be empty. The
rules of inference in & are modus ponens, and the rule of replacement
of equivalent parts. We suppose that all theorems of the positive sen-
tential caleulus are theorems of J.

The system & determines in an obvious way a system §*8) of the
first order functional calculus with the following rules of inference: mo-
dus ponens, the rule of replacement of equivalent parts, the rule of substi-
tution for individual variables, and the four known rules for quantifiers.
The theorems in $* are all substitutions of theorems of & and all their
consequences. .

The system & determines also a kind of abstract algebras (called
S-algebras ®)) with algebraical operations corresponding to the logical
sentential operators -+, -, =, 01,...,0°% The S-algebras which are the
matrices of the system &, are relatively pseudocomplemented lattices
(with the sum (join) ¢+4-b, and the product (meet) a-b) having the unit
element e, which is the distinguished element corresponding to the log-
ical value of truth. If an S-algebra is a complete lattice, it is called
an $*-algebra. We shall suppose that the system § has the following
property (B)19): given a denumerable set of infinite sums and products
in an S-algebra A, t,=) 6y, bsn=]]by, there is an isomorphism
(with regpect to all the oplerations —Q—,i <, >, 07,..,0°) of A into an
S*-algebra which preserves all these sums and produets.

Assume the following notations. Let I, always denote the set of
all positive integers; .1 — the empty set; I — a fixed set of integers,
such that I,CI; Iy, I7 (for every k,lel,) — some fixed sets of positive
integers which can be empty. We always suppose that there exists ke,
such that Ips=A. We suppose also, that the condition I7#4, for
some lel,, implies that 1eI;.

An elementary theory T(U) based on the systemx of logic &§* and
on the set of axioms A can briefly be described as follows:

The primitive symbols of G(A) are parentheses and

individual variables a;, where ie g

individual constants x;, where iel—1;
functors with 1 arguments ! (i, e. symbols for functions from indi-
viduals to individuals) where le I, and n e I7;

predicates (i. e. symbols for velations) with L aryuments FY, where

kely and m e lp;

5) See [10], § 2.
%) See [10]. § 3.
1) See [10], p. 69.
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sentential operators of the system &, mentioned in (a), (b), (c);
quantifiers > and [] where deI,.

X

*i

The relation F2 will play an outstanding part in our consideration.
More exactly, F3 is the sign of equality of the system G(U) (see the
axioms (*) below).

Since for lel,, I/ may be the empty set, it is possible that the
theory G(2) containg no functors.

Among the expressions which can be constructed from these signs
we distinguish terms and formulas.

The set J, of all terms is the least set such that

(i) @ed, for tel;

(i) if &y...,& e, then P&y 1) ey for Ted, and wely. In the
case of If =A for each lelI,, the set J, is the set of all #; where /el

It &ed, and a;,,...,2;, are all individual variables which appear in &
and §;<iy<<...<Zi;, then we shall write also E(®iyy e s @)

The set T of all formuwlas in G () is the least set fulfilling the fol-
. lowing conditions:

() P(&y, o Ex) € T Where &..,Exedy, kely and me Iy

(i) if a,feT and iel, then (a+p)el, (a-p)el, (a—p) e,
(aoiB) e T (k=T1,...,7), (cka)eT (k=1,...,8), (Ja)eT, ([Ja)eT.

X Xg

‘We shall write, for brevity, (a=p) instead of ((m»-»ﬁ)-(ﬁ—:—a)).

In writing formulas we shall practice the omission of the parentheses,
the rules being that

1° each of the operators -, 4, = hinds less strongly than the pre-
vious one;

20 each of the operators of binds an expression more strongly than
any of the binary operators; '

39 the quantifiers bind more strongly than any of the operators
mentioned in 1° and 2°.

‘We assume that the notion of free and bound occurrence of an indi-
vidual variable is familiar. A formula e T is said to be closed if it con-
tains no free occurrence of an individual variable z; (7 e I,).

We assume that the set 2 of all axioms of G(U) consists of some
closed formulas belonging to T. If the sign of equality F appears among
the primitive signs of G(A) then the set A contains the following set €
of the axioms of equality:

HFE (0, 7)
x

E(Fi(wl,mgb(a-*“(ii)))

(*)
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for ael, where a(mz) results from « by the substitution *) of &, for =z,

1,

and where £ is written instead of the sequence of the quantifiers []
. ) E

Dinding all free occurrences of individual variables in the next formula.

The set of all axioms of G () except the axioms of equality will
e denoted by U,

The set L (%) of theorems of G(A) is the least set such that

10 K (%) contains all axioms of G{W);

20 K () contains all substitutions of all theorems of J&;

30 if ae K () and  is obtained from « by the admissible replace-
ment of all free occurrences of a; (iel,) by a term £, then g eK(A);
we shall always assume that the necessary changes in the bound
occurrences of variables of a were performed pefore the operation of
substitution;

40 if g e K(A), (a—p) e K (@) then § eI (A);

30 it (a—J] B)e E(A) then (a—p)e H(WU); it (Ya—p)e K () then

x; *i

(a—>B) e K(A);
60 if there is mo free occurrence of x; in a (in ),
(a—>p) € K (), then (a—[] f)e K () (then ( Sa—f) e E();

iel, and if

70 if aeK (W) and (y=0)eK(¥) and if y is a part of a, then the
formula § obtained from a by replacing the part y by ¢ is also in K ().

If ae K (W) we shall write A-a.

The theory (%) is consistent if there is a formula aeT such that
anon ¢ K ().

§ 2. The Lindenbanm algebra L(2)

Let G(20) be a consistent theory, based on a fixed system of logic S*.
For every aeT let |a| denote the class of all geT such that Ap-a=p.
Let L(Y) be the set of all cosets |a] where aeT. We define in L(Y) the
algebraical operations -+, -y =, 0gy-..,0° 38 follows: |a|o|p]=|a0p| if o is
one of the binary logical operations of & and ola =|oa| if o is one of the
unary operations of &. Since the relation Aa=p between e and B is
a congruence relation in the sense of modern algebra, the definition of
operations in L(¥) is correct. The element |a| where oeX (%) will be
denoted by e.

2.1. The algebra {L(A); €5 5 -5 > 0150050 is an S-algebra; more
precisely, it is @ relatively pse-udocomplemented latiice with the wnit ele]
ment e.


GUEST


206 . H. Rasiowa

The algebra L() is analogous to the algebra L(R)™) of [10].
2.2, |¢|C|B) if and only if La—p. la|=¢ if and only if A
2.8, For every ael
- 34,
i

® Selz)
) /(AR

The proof, similar to that of 4.3 in [10], is omitted. Obviously, 3

- y " EeJg
and egn on the left side of the equalities (%) and (#x) are the signs o;
sum and product in IL(A), respectively, and the signs 3, J] on the

*t X1

right side of these egualities are quantifiers.
By an analogical reasoning to that nsed in the proof of 2.3 we obtain

(W) 1,2; a(i‘i’) 3
-

If. no functors occur among the primitive symbols of P
equalities (*-) and (#x) are reducible to the equalities fi) and (iio)fre;iéi[gi:ve?;
A_ccordmg to [1011) an S-homemorphism (S-isomorphism) % of
L(A) 1}1130 ?11 S-algebra A is said to be an S*-homomorphism (S*-iso-
'mgrphzsm) if b preserves all the sums () and all the products (**). An
i{:ﬂgﬁbm A is sa{d to be an $*-eatension of L(A) if there is an eﬁ":—iso—
ho ‘Eh:];lr:; elr;é?)( ;;)t.o A. Obviously such an S*-extension exists since &

also

| 34,

§ 3. Algebraic models of elementary axiomatic theories

- ;}VS shall consider a t-heo;*y G () based on a fixed logical calculus S$*.
‘ e a non-empty set. Let A be an $*-algebra. The class of all map-
p;ngs 0’_5 the Cartesian produet J* into A will be denoted'bv F4J 1]

q.h »¢% will always denote functions belonging to F¥(J,.4). Let iy ’)‘b)(.x
tl elcla_ss of all mappings of the Cartesian product J* into J. The letters
w6 will always denote elements of f7(J). -

1y Cf. [10], p. 69.
) Ses [10], p. 70-71.
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Every formula cel may be interpreted as a (J , A)-functional *3)
denoted by (J.4)Pa. by regarding

(a) all individual variables x;(i e o) _(indjvidual constants a;, where
jeI—I,) as variables running over J (as fized elements of J);

(b) all functors iodely, n eI7) as fixed elements of FlIy;

(¢) all k-argument predicates F* as fixed elements of F*(J,4);

(d) each of the logical operations of S mentioned in §1 ((a), (b), (e))

as @ corresponding algebraical operation in 4;
{e) the logical quantifiers ¥ and [] as the signs of infinite sums

X3 X3
(4) ¥ and products (4) [l in the algebra (4); respectively (7 ely).
x.€ x;€]
Let
(81) zl’,’Z‘jiEJ (IEI)..
(%) fomdefid)  (ely nell),
() P gk e F¥J.4)  (kely meld)

be arbitrary but fixed system of valuations of individual signs, fanctors

and predicates of G(A). This system of valuations will also be denoted
by [ () @l

Let {j}~ and {ji+ always denote substitution (s,) for individual
signs of G () reduced to ieI—I, and to ieI, respectively.

The symbol (J,4)®Pa({ii} AN {gk}) will denote the value of the
functional (J,4)®, for the values of its arguments fixed above by
(84), (82), (8g). T I8 & closed formula of T, then the value of (J,4)P,
does not depend on the values of x;, where ie I, Therefore we write
T ) Bl 51 70 1053 imstead of (7, 4)@a({fs}sra} fymd)-

It is easy to verify that

! E
3.1.14) If ﬁ:a@), then,
P/

(T A) By (G}, (e ) = (7, ) B4}, )l
awhere §; =1y if i p, and j, = the value of & by the substitutions (s1), (84)-
3.2.1) If an S-homomoerphisn ¢ of A into another S*-algebra A’

preserves all infinite sums and products, then

g{(T ) Pul i} Lrhhs lgd)) = (54 Pl Ui {Tht fggmh) -

©) Cf. [10], p. 71. See also [T}
1y Ree [10], 3.4, p. 72.
#) gee [10], 5.5, p. 72-
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The system SM={[{i;}", {25}, {gh}] is said to be a generalized model

of the theory G (%) in the algebra 4 and in the domain J if, for overy
aed,

(/3 4)Pa( {71}, (7a} fm}) =e.
If among the primitive symbols of G(N) the sign of equality 7

does not occur, then a generalized model of G (W) will be called a model”

of G(N).

Suppose that Fi is the primitive symbol of ‘G(N). Then the func-
tion ¢f establishes an interpretation of the equality sign F2 in the gener-
alized model S}, by the relation a, defined -as follows:

Jegr if and only if  gf(ji,j) =e.

8.3. The relation ~ is a congruence relation.

Obviously, it is possible that ¢f(je,) =e for jisti;.

A (J,A) generalized model M of a theory G(UA) with equality is
said to be the (J,4) model %) of G(A) if, for every jr,j e, ¢ (jr,i1) =e
if and only if jr=j;.

3.4, Let 5%=[{j,—}‘,{'c{,},{tpﬁ,}] be a generalized wmodel of a theory
G (W) with equality. For every jed, let |j| be the dlass of all 1ed such that
@i(j,)=e. Let J be the set of all cosets 191, where jed. Obviously J<.J.

Further let

fn("h“:y"]lﬁ) = HTL(ju---;jﬁ ” i1y wefred,
Frllishs s 136l =hlnsemnsie)  for any  juyen i ed.
Then the generalized model M =T[{|f;]}~,{%5},{5)] s the (J,4) model
of the theory ().
The easy proof is omitted.
Consider a system [{ji},{rf,},{zpf,,}] of valuations for primitive sym-
bols of G(A). Suppose that TM=[{,}, {7}, {pk}] is a generalized model

of G(M) in J and A. Then, instead of (J,4)®,({j;}, (<}, {#5}), we shall
write (J,4,5M)Pq({ji}*). '

We shall say that o theory G(N) has & model in a domain J , if there

for any

is an &*-algebra 4 such that ¢ (%) has a modelin J and A. More gen-

erally, we shall say that a theory G () has model, if there is a domain J
and an S*-algebra A such that G(AU) has a model in J and 4.

¥) It $* is the classical functional calenlus and 4 is the two-element Boolean
then{the (7, 4) pseudomodel determines uniquely in the domain J the semantic
model [{71},{1n},{gf,}], where gﬁ are k-argument relations such that gfjl (43,5 ++++4;:) holds
] G ) ) 1 13
if and only if ¢, Ul’;""’7ik)="‘ Hence an algebraic model can be regarded as a gener-
alization of a semantic model.

algebra,
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8.5. Let ‘G(A) be an arbitrary theory and let M be a generalized model
of G in a domain J and an S*-algebra A. Then, given arbitrary o e K(U)
and arbitrary system of valuations {§;}+ for individual variables in G(A),
we have (J , A ,M)D.({1;}) =e. In other words, if « is a theorem of a theory
G (W), then (J , 4, M) D, = e identically in every generalized model H; of G ().

This follows from the definition of a generalized model and from
the fact, that the class of formulas § ¢ T, having the property (J, 4 , M) Pz=e
identically in a fixed generalized model M of G(A), is closed under
the rules of inference.

8.6. %) Let G(U) be a consistent theory. Let h be an S*-homomorphisne
of L{A) into an S*:algebra L*. Then, for every ae T,

(o, T¥) Bl (i} (Th} ot = 1] ],
where

j = for iel, (Ees B =falbs o &)y GalErse, &) =1 (| FalEy,e, &) -

Consequently, the system [{j;} , {ri,},{qvf,}] is the generalized model
of GN) in the domain J, and the algebra L*. This generalized model will
be called the natural generalized model and will always be denoted by
NU,k,L*) or briefly by N.

‘The easy proof by induction with respect to the length of a, based
on the definitions of (J,4)-functional &,, of L(Y) and of S*-homomor-
phism, and on the lemma 2.3, is omitted.

8.7. If G(N) is a consistent theory with equality (without equality),
then G(A) has « model in a domain whose cardinal number is not greater
than 8y (18 &,).

Indeed, if G(W) is a theory without equality, then the natural gen-
eralized model N (U,h,L*) is a model in the domain J,=x,. In this case
N will be called the natural model of G (). If G(A) is a theory with
equality, then 3.7 follows from 3.6 and 3.4. The model .‘fV, obtained
from 2 by the method mentioned in the formulation of 3.4, will also
be called the natural model of G ().

8.8. Let &* be a logical system with the negation sign—, such that the
formulas —(B—>pB)—~a are theorems of S*. Ij a theory G(A), based on the
system &*, has a model, then TG(A) is consistent.

Suppose that T(A) is not consistent. Let o be an axiom of G(YU),
and let M be a model of G(¥) in an algebra A and a domain J. Thus.

1) Theorem 3.6 is similar to 5.2 of [10], p. 72.


GUEST


2300 H. Rasiowa

we have (7,4 ,M)P.=e. Since G®) is not consistent, Ap-—a. Ee1mee,
by 3.5, (J,4,M)Pc=¢. On the other hand, (J,A,SVL)(D_,,f—«e. (_‘01‘150.-
q{wnﬂy, ¢=-—e, which is impossible, since in &-algebras of the logiecal
systems such that —(p—p)—+a are theorems, we have ez=—e ).

3.9. Let 8* be the system with the negation sign —, s.at'isfy@'ng the fol-
lowing eondition: —(f—f)—~a is a thgomm, of S Than.,* zrf‘ a theory ’G(QI.)
with equality (without equality), baset{ o the syste"m., 5% has.a/ model, ?f,
has o model in a domain whose cardinal nwmber 45 not greater than (is
cqual 10) K.

This follows immediately from 3.8 and 3.7. ]

Notice that theorems 3.6, 3.7, 3.8, 3.9 are analogical to 5.2, 6.2, 7.2

; 7.3 of [10] respectively.

w 'le?((?]LLIEIS ]3.7 ;nd 3.9 tor the special case where &5 is the cla-ssicavl
funetional caleulus, are well known Godel and Skolexln.-Lt')Wenh eim 1)
results. Indeed, Tarski’s original definition of satisfiability may be trans-
Jated into the algebraical language ). Comsequently, a theory gey
based on & has a semantic model in a domain J if qnd only if it has
2 model in J and the two-element Booléan algebra B, Thus the stat-
ement mentioned above results from the following theorem:

3.10. If o theory G () with equality (without ({qual-ity) based on ﬂ.m
classical functional calculus S* has a model in a domain J=A and in
a complete Boolean algebra B, then

(i) GQ) has a model in a domain whose cardinal number is not greater
than T (in the domain J) and in the two-element Boolean algebra By.

(ii) G(A) has a modelin a domain whose cardinal number is not greater
than %, (is equal to %) and in B,

The proof is ahalogical to the proof of 9.4 in [10]. .

Notice moreover that there are theories, based on S, with no
semantic models in a domain J, having algebraic models in that domain.
TFor instance, the theory G(Up-+E) with equality and the single axiom

3 3 (- Fhtew,m) - [] (P, m) + Fila, )

1 ¥ *3

Tndeed, <G (%, E) has no infinite semantic models; on the other hand,
+the domain of the natural model is denumerable.

1) See [10], 7.1, D. 4.
1) (f. for instance, L. Henkin [1].
) Cf. [9], p. 196.
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§ 4. Construective theories

Now we shall consider the theories described in the previous para-
graph in the special cases where §* is the functional caleulus of Heyting.
Such theories will be denoted by G,(¥). The set of all formulas in. G, (%)
will be denoted by T,(2). Further, L, (%) will denote the Lindenbhaum
algebra deseribed in § 2, where $*=d; (i. e. the functional calenlus
of Heyting). The &Sj-algebras are complete Heyting algebras and con-
versely. The letter H will exclusively denote a Heyting algebra.

If & is a topological space, then the class of all open subsets of &
is a Heyting algebra with the following operations:

join a+?& and meet a-b arve the set-theoretical operations of sum
and product;

a->b=1(—a+b) where —a is the complement of ¢ and Ie is the
interior of a« in the space &;

Tla=a—0.

The Heyting algebra of all open subsets of & will always be de-
noted by H(&).

Since &5 has the property (E) and —(f—pf)—a is a theorem of &3,
all theorems of § 2 and § 3 hold in the case of G,(A). Moreover, in all
the definitions and theorems of § 3 we may restrict the domain of all
Heyting algebras to the domain of all Heyting algebras H(&), where
&+#0 is a topological space. This follows from the fact that for L,(%)
there is a topological space %, with the operation of interior I such
that H(%F,) is an S*-extension of L, (W) =).

Let x be a fixed element, such that xnon e Fp and let Fgy= Fpu+ (%)
‘We shall regard the set Fiy as a topological space with the following
definition of the operation of interior I, in &’,‘3,1;

(0 Too= For, :

(i) if XCHp,ZC(x) and X Z£Fgy then I(X+Z)=1(X).
Consequently, open subsets of & arc open subsets of &y and the whole
space ffg,(. Obviously, the operations of join and meet in H(EE},[) being
the set-theoretical operations of sum and product in ¥y arve the same
as in H(&,x). The operations a—b and Ta in H(Fy) ave not the same
ag the similar operations in H(&,y), and to distinguish them from those
of H(%,y) we shall denote them by a—,b and Tlya, respectively. Then
we have

(ii)

(iv)

X X =0 if and only if XCT;
KoY =Fgu>T =1 if YCHp;

21y See [10], 112, p. S6.
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(V) X ¥ =X if XNt &, ¥ ¥ and X nonCY;
(vi) _loﬁfg.,,:();
(vii) T, X=X if Y#%nm and X#0;
(vill) 100 = Fpu-

1t follows from the definition of topology in % Bhat there is exactly
one open subset of ¥y which containg the element %, namely the whole
space Fyy. Consequently

(%) if Gr e H(F) and Fou 22,; Gy, then there is a g such that Gy = Fou;
(%) if Gre H(F ) then (H(Ef,‘}u))élj‘(}k = (H (r%xu));(;k 2),

Lot No=[{},{c}}, {wk}] always be the following system of val-
uations of individual signs, functors and predicates oceuring in G(A),
in the domain J, and in the algebra H(%gu):

y=x for
Oh(Eryerer E) =Th(Ery ey 1)
Ky it [FhE,.E)l=e,
BIF (&, )| | FE (&), &) | #e,

for kely, me I, where ¢ is the unit element of L, (%) and h is the
&;-isomorphism of L,(A) into H(¥,x).

Instead of (Jo,H (%)) diu({zi},{ai,},{ap’,‘,,}) we shall always write
briefly ¥,. !

iel;

"
where lel,, nely;

wﬁ(fl,-..,5k>={

0

4.1. Gwen arbitrary ae T, (), we have Ta={‘§"2‘].
W, = Koy, then hla| =Fpx.

The proof is by induetion with respect to the length of «. In the
case of a=F5(£,,...,E) this theorem is obvious. Suppose that a=f-7-.
Then ¥,=%+%,. Clearly, W,=%% if either W= or ¥, =%
Then either h|f|=%F or hly|=%m. Consequently, hla|=Lm- In the
cage of Wyt Eo% and ¥, Eo, we have ¥, =h||+hly|=hle|. I a=F"y,
then ¥,=W¥; ¥,. Clearly ¥,=%, if and only if Wy =P, =Fpy. Then
h|| =h|pl=Fa, thus hlaj=Fm. In the case of W% and V=X
we have :

Moreover, if

Vo =hlB|- Eau=hIB|- L =h|p| hly| =hla|.

=) The signs (H(%p) Y and (H(,) 3 denote the infinite sums in the al-
gebra H(Eyw) and H (3’;,1[ , respectively.
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Tn the case of Wpst Fou, ¥y#Fqn the proof is similar. Suppose now
that a=pB->y. Then ¥,=¥;—¥,. Consider the case of ¥,C¥,; then
Py W= Koy It W,=Fpy, then hly|=%,x; consequently hla|=h|f|—
> h|pl=Fp. I Py~ Fpu, then Wyt Fyy, hence ¥p=h|f| and ¥, =h|y|.
Thus hla| =h|f]—hly!=F,x- Consider now the case of ¥;nonC¥,. Then
st & Moreover, since Wozt %, we have W,=hly]. Suppose that
Yy . Then hifl =F,,. Hence

Ta———gguﬁowyzgzu_’glr:hm_"hb’fzhla‘w
I Wt &Y, then Wy=h|pj. Hence ¥,=h|f{—h|y|=hla|. Suppose that

a="13. If W,—%%, then 1,¥=%,,. Hence ¥3=0=hf]. That is
Blal =" hipl= K Liet Wt K. TE Wy= X, then h|f| = Fyp. Thus

W=, =TT Fou=0="1& =11 = hla|.

TE Wyzt Fow and ¥yz£0, we have Wy=1'f. Hence ¥, ="ThiBl =T1hig| =hlal.
Consider now the case of «=3 . Then
*p
W, = (H(%5) X B}k yin)
‘ypeda

where =y if i#p and =y, eJ,-

‘ It ‘;Vaziﬁ,,, then on account of (%), ﬂ%el‘(‘, exists such y,ed, that
By({u}, (ohy, () = Fgu. Hence by 3.1 h,ﬁ i”) | =%m- Consequently

]

P
making use of 2.3 and of the property of S*-isomorphism £ we infer that

NI AN
W = (H( %)) D h‘iﬁ(%/r")izgx,,.
‘ 2 "\,
Ypedy

W Wt Fh. then for every ypedy, @5({12},{05,},{1/)1;,}):h]aE. “Hence,

by (#%), Vo= (H(Fp)) D h:,s(?)’f)*}:h'_ag. In the case of a=[]f the
proof is similar.

4.2, Let A—F3i(&,5). Then for arbitrary ae T,(N), involving the
term & and such that every individual variable occuring in & is free in a,
we have

77 &
Fe y/"(ﬁ)
e
where a(iz) denote the formula obtained from o by the replacement of the
S1,

term & by &.
We recall that the necessary changes in the bound variables oft
were performed before the operation of substitution.
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Indeed, consider a formula « as a formula which is obtained from
some formula f by substituting the term &, for an individual variable .
Obviously f is a formula with one free occurrence of #,, and wn can
sappose that the quantifiers binding the individual variables which
appear in & and in & do not oecur in B. Tt follows from the axioms of
equality and WF2(&, &) that Ap ﬁ(ff)zﬂ(i) Thus swu.a——a(?)

Tp '

1/

Hence, by a simple inductive argament, ?I’azllfa(&x).
) &1

4.3. If C€CUA and a <€ (i e. if ais one of the avioms of equality
of the theory Ty(€+Ay)), then W, =K.
Suppose that a=]] Fi(x;,z,). For every &eJ,we have W+ € - F3E, £).
X ’

Hence yi(¢,£) =% Consequently, ¥, = (H (%)) [[vf(¢,8) =
feldy

Suppose now that a (14‘2( TR )—>(\a ——xal(lf))) Set f=T7(&, &)

—>(a1—> a1 (i:)) , where £, are arbitrary terms of G,(). To show that
VP, =& it suffices to prove that V7, =Fy.
Suppose that W -Fi(&,&,). Then, on account of 4.2, Y’%:Ta,(ﬁ).
Hence ¥, ., (%) =9’a;">5[’a,(§§)=32u- Consequently, ¥ = Fy.
Consider the case where non Up-Fj(&,&). Since Uk p, we obtain
WP, E)ICH al—éal(gi) - Further, Prz, en =91(&, &) =h| FE(&, &) # X -

Tt Wosa, (8)= Fru, then obviously Pp— % . Suppose that Wy &) FEE g
1

oy (gj) l . Thus

Then by 4.1 ‘I’a—m (Ez =h

()| - e

A theory G,(U) is said to be constructive it it fulfills the following
conditions:

(X) a+p e K(U) implies that ae K (3A) or B e K(N),
(1) if Swe K(X), then there exists &<, such that a( ’5) e KO).
™ ax

£

=h|FE (&, E)| o

—>oh

4.%. Let G(U) be a theory such that NO=[ {5}, {oh}, (wh )]
generalized wmodel of TGy(W). Then G, () is a constructive theory.
The proof of 4.4 is similar to that of the fundamental theorem in [12].

is the
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Since %,y is the open subset of Fpy, the formula
gd) =4 -Fp for AcH (X
defines an &,-homomorphism of the S3-algebra H(¥,) onto the §*-al-
gebra H(&,,). This homomorphismi preserves all infinite sums and

products.
Suppose that f=3 « ¢ K(A). Hence, by 3.5,

*p
K =¥y = 3 (Jo H(Fo)| Dul i}, {0nt, ()
&ely' - ‘
where {47} denotes the sequence {} the p-th term of which is replaced by &-
By (#) there is a component of the sum equal to Fo. 1. 6., there
exists such &yed,, that
(0 H (Fu) Ba ({17} {0} 1) = Fin
where f = for is£p and =
[E
Let ;r:a(;). By 3.1

P,

(70 HL(SEgpe)) By ({1} {53 ) = (o Fi)) Pl (7} {0 (o) =

Hence we obtain by 3.2 and 3.6,

=h(!FJ:1(§11"-:Ek)!)7
Fne =) = (70, H(Eiw)) B}, {01}, D)
= (T o, H (Fgu) @y ({5} 00} lgwm}) =Dy -

on account of gw',i,(gl,...,,fk)

e ().

In a similar way we can prove the property (I) of the constructive
theories. .
It follows immediately from 4.3 and 4.4 that

Consequently, by 2.2, y= a( 5)

4.5. The functional caleulus of Heyting with equality is. a constructive
theory.

4.6. Let G, () be an arbitrary theory and let Z be the set of all for-
milas a e T,(N) satisfying the following condition

A a implies that Po= Fgu-

Then the least set Z° of jormulas of Gy(N) such thai:

10 if p= = (£ ey Er) where keI, and w e Ii, then fe Z°,

20 if B,y eZ0 then f-yeZ’

30 4f ye 20 and Be T, then p—yeZb ‘Iﬁe?ﬂ, IEEEA

*p

is eontained in Z.
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Tndeed, if f=F%(&,,...,&) and A b B, then h|f|=h|Fh (&, ..
Thus Wp T,Um(fu 7£k) g‘

Suppose that f,yeZ a.nd a=pfy. I Qti—a, then UK B and Wiy,
Consequently, W=V, = Fon. Hence ¥, =%

Now suppose that yeZ and a=pf-»y. Let At-a. Then h|F|Chiyl.
jid h[y[ K, then W)= Hence ¥, =¥;-»¥,=%. In the case of
p|=Fu we have ! ly| = Fpr. Hence ¥o=Fpu. Let h|f|# Fy and
hly|# &pm. Then by 4.1 ‘F,g__h\m and W, =h|y|. Since k|B|Ch|y|, we have
Wy W, =h|f| —ohly| =
Suppose thab yeZ a="1y and WAha. Hence h|Ty[=§

0. Consequently ¥,="1,0=%n.

In the case of yeTpy, a= ”y and A+ «, we have Q[}—y( ) Thus
ﬂ

affk)[‘_‘gm

wn- Lhus
Rly|=

7( )= Xy for every Eed,. Hence W, =Fg:

Given a theory B, (%), let Z°(2A) always denote the least set of for-
mulas of G,(A) satisfying the following conditions:

10 if &,...,& ave terms of G,(2), then FE(E, ..
and m e Iy,

20 it B,y e Z°(A) then By e2°(A),

30 if y e Z°(A) and fe Ty then 718 2% (), By e Z°()

&) € Z0() for kel,

and [[y e Z°(N).

It follows immediately from 4.6 and from 4.3 that

4.7, If G N) is a theory such that W —EC ZA) (i. e. for every aeW—E,
aeZ%AN)), then G, (W) is a constructive theory. In particular, if the arioms
of a theory G,(UA) (emeept the axioms of equality) contain neither the sign
of the alternative nor the sign of the exvistential quantifier then G,(2) is
a constructive theory.

The condition which appears in the formulation of 4.7 is cssential.
Consider for instance the theory containing #_; as the single primitive
individual constant and F2 as the single predicate and based on the axioms
of equality and the axiom 3 1F(r,,x.,). .Obviously this theory is not

X .
constructive. '

In theorem 4.4 we have formulate in the algebraic language a suf-
ficient condition for a theory G,(A) to be constructive. Now we shall
prove that this condition is also necessary.

4.8. If a theory G,) is constructive, then N°®=[{i}=,{ok},¥5}]
is the generalized wmodel of TG,(%N). .

Let Z be the set of all formulas ae 7, () satisfying the following
condition: if Ata, then ¥, =%F%. To prove 4.8 we shall demonstrate
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that T,(A)CZ. On account of the proof of the theorem 4.6 it suffices
to show that
(i) if B,yeZ then f+yeZ,
(ii) if BeZ then Y feZ.
*p

Suppose that a=p-+y and At-a. Since G,(N) is constructive, then
either A - § or A -y. Hence Pp=Fy o ¥=F . Consequently, ¥o=Fpy.
Now let a=_§,’ B. It follows from the constructivity of G,(¥) that there

exists such éeJo that Ap ) Hence ¥y )= %2,. Thus ¥,=%2,.

It follows from 4.7 that every theory Whose axioms are equalities
is constructive. In particular, the theories of groups, of rings, of lattices
of Boolean algebras, of closure algebras are constructive. More generally,
every elementary theory G,(%) can be modified so as to be a construe-
tive one. It suffices to remove the existential quantifiers and the sign
of the alternative from the axioms ae—Z%%) of G,(A), by joining
the functors 2) or by the use of de Morgan’s laws. In the last case we
obviously obtain a theory weaker than G,().

We intend to apply the results mentioned above to arithmetic in
the following form. Consider the system G,(3-+ &) of arithmetic, in the
description of which we shall use, for convenience, the generally assumed
notation. As specific constants of G,(P- €) let us assume the individual
constant 1, the one-argument functors ’, * #), the two-argument functors
4 and x, and the sign of equality =. The set of axioms consists of the
axioms of equa]jty and of the following formulas:

”'\ r=1

1 =1,

H(T (ml=1;v(‘(x'1)’=m1)),

X

#) L. e.if Oz, "”k=“k-'-1) is aformula of Gy (), with the free variables z;,.. o Tpay

and among the axmms of Gy (2) appear the formulas
” Al X ¢ (g5 ers TpsTp g4
Xy Xk Xp+l
.00 1 (D (50 sBp s Tppg)» Pys e s T By y.0) ~F2 (a:k+1,wk+2)) s
*1 Xp Xpyl ¥pi2
then it is possible to eliminate these axioms by joining a new functor jf‘" and the axiom

” H @(ml,...,wk,ﬁ(ml,‘..,.rk)).
EA X

) The signs ‘ and * are the signs of suecessor and antecedent, respectively. To
determine the antecedent for the integer 1, we assume the second axiom.
Fundamenta Mathematicae. T, XLL 20
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1=,

ﬁn (@ =)= (=),

g

1A 1) =3),

J[:Y [ oy o2 = (e )y

!:1[ ((—,zy1 x1)= 11),

1117 ((2 3 3) = (e % ) o .

Xy Xz

5(@(1) 1] (a(p) = aa))) ’1%[ a(.pj)),
where £ is written instead of the quantifiers bounding all free ocenrrences

of individnal variables different from w; which appear in ¢, and where
@ is an arbitrary formula of arithmetic belonging to Z°(B-- ).
The fragment of arithmetic described above is a constructive theory.
In this system one can prove many laws of avithmetic in the usual
way, forinstance: o 4 Ty ==L By Ly H Ty == Lo R Ly, (g iy) e 2y 22y o (i, ),
(X a2) K 2y =y X (22 X 03), i (2(51’1=i1'2+%) %‘ (wy =ty '['4)) )

Xy 4
T ((xl_.r,) V(‘r]_rd-.zs)), ete. However, it is impossible to prove that
n [l {(m=20+ 3 (o k) + 3 @ Z k).
X, x,

3 cY
On the other ham’l, the following formula is provable in G,(P+-€)
1 ( Ty =) 1 Y (=) T Y (;‘n.2=.[!1+;1'1)) .
xa x4
Notice that the axioms of induction with arbitrary a belonging to
G, (B-+E) may be non-constructive. For example, this holds for u of
the form (x)=a) +((£i)'=1‘1).
4.9. Let G,(A) be a constructive theory and let f be an arbitrary for-
mula of this theory of the formn

(63} (n)
(%) B=5..Fu
o Y,

where a contains no quantifier and g is either the sign X or IT (1 =1,2,...
Then there exists a sequence oy,da,,...
that B is a theorem of G,(A)
18 a theorem ). The sequence ay,ds, ...

NN
of formulas without quantificrs such

Oy gy oo

%) The proof is similar to that of (3’) in [12].

if and only if at least one of the formulas
can be determined effectively.
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&ay,,-
Zp

o 3 8g)

The expression s has not been uniquely determined.

However, it will be uniquely determined as follows: let j; be the least
positive integer such that j s%i, k=1,...,l and y contains neither &5,
nor J] nor 3, let j, (¢=2,...,1) be the least positive integer satisfying

N x5

all conditions for j; and also j,#j, (r=1,...,¢g—1). We replace every oc-

currence of the bound variable %, (¢=1,...,1) by z;, and every quantifier

5’ []) by S’(]'[). Further, we replace every free variable z, by the
X,

42

If p=Yu,

*p

where either &=u,, or &=_§&u,..

Ty

term E(asy s e ,r,, then we shall denote by Z(8) the set of

(& -
all formulas « .yary) and o contains
Lp
at least one free occurrence of every y,,...,a;, or £ contains nojindividual
variables. If g= H a, then Z(p) is the set containing only one element:

the formula a. WIme generally, if RCT,() is a set of formulas # of the
form = Z’a or f= Ha, then Z(R) is the union of all sets Z(8) where

BeR. Suppose now tha,t p is a formula of the form (x). Let R,=Z(p)
and, by induction, Ry=Z(Fy 1), k=2,...,n. It follows from the assump-
tion of T,(A) being constructive that g is provable if and only if R,
contains at least one theorem of G,(%). By induction with respect to %
we find that £ is a theorem of T,(%) if and only if R, contains at least
one provable formula. Consequently g is provable if and only if R, con-
tains at least one provable formula. However, the set R, is denumerable,
which completes the proof.

In the case of a theory T7,(A) without functors, and with a finite
set of individual constants, the set R, is finite. Hence

- 410. Let G,(N) be a constructive theory without functors, let I—I <,
and let § be an arbitrary formula of G,(%) of the form (x). Then there exists
an effectively determined finite sequence a,,...,an of formulas without quan-
tifiers, such that g is a theorem of G,(N) if and only if af least one the
formulas ay,...,am is a theorem of G, ().

Interesting generalization of the theorem (y) of [12] arises by ap-
plying the above-mentioned results to the functional caleulus of Heyting.
Let a be an arbitrary elosed formula of this system. Such formmla can
be treated as the single axiom of some theory. Tf the theory based on a
is comstructive, we shall say that « is a constructive closed formula.

4.11. If a is a constructive closed formula. then for every formula f,
a— 3 f is provable if and only if there exists qe I, such that (L%ﬂ(ﬁq)

Xy p/
is ])’iI(ll‘(!bI(‘.

20%
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This follows immediately ‘from the definition of construetivity of
a theory and from the deduction theorem for the functional calenlus
of Heyting.

Moreover

4,12, If a is a constructive closed formula, then for every formula B

of the form ﬁ=(£ ..,(;’3;'- where y contains no quantifiers and .%‘) is either
xpl x,,” B
the sign X or II, there ewisis a finite sequence yi,...,ym of the formulas
without quantifiers such that a—8 is provable if and only if at least one of
the formulas a—yy,.,a—>yy 8 provable.
This follows immediately from the deduction theorem for the fune-
tional calculus of Heyting and from 4.10.
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Elementarily definable analysis

by
A. Grzegorczyk (Warszawa)

The purpose of this paper is to give a strict mathematical shape
to some ideas expressed by H. Weyl in #“Das Kontinwum” [4].
Weyl proposes a restriction of the logical methods of analysis to the
elementarily definable ones. A notion is elementarily definable if it is de-
finable by means of the quantifiers bounding the integral variables only.
A strict definition will be given later. It is very interesting to note how
many theorems of the classical analysis can be obtained by means of
elementary methods. It is shown in this paper that the classical analysis
of continuous funetions ean be reproduced in an elementary manner.
The problem of how many theorems from the theory of non continuous
real functions can be obtained in an elementary way remains open. Some
counter examples are given in the sequel.

To begin with the problem arrises how to define elementary de-
finability. There are at least two answers:

1. A mathematical notion 4 is elementarily definable if it is definable
by means of an elementary definition

Af sy =B f oy

2. A notion A is elementarily definable if there exists a finite set
of elementary conditions such that 4 is the unigue object which satisfies
those conditions.

We shall call the first the narrower, the second the broader concept
of elementary definability. In this paper we shall consider the narrower
notion.

1. Elementary definability in the arithmetic of integers

We shall introduce the notion of elementary definability in the
arithmetic of integers. Let I be the set of all integers (positive, negative
and zero). Let IV be the set of non negative integers (natural numbers).
The variables z,y,2,p,q will stand for the integers, the variables n,k,l,m
will represent natural numbers. The letters f,g,h, will be used to denote
the functions defined over the set I and assuming the integral values.
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