Algebraic Treatment of the Notion of Satisfiability *)
By

H. Rasiowa (Warszawa) and R. Sikorski (Warszawa)

Tarski’s!) definition of satisfiability can be formulated in the
language of the theory of Boolean algebras as follows.

Let J#0 be any set, and let B, be the two-element Boolean algebra.
Each formula o from the classical functional caleulus may be treated
as an algebraic functional @, defined in J if we interpret the individual
variables as variables running over J, the functional variables — as
variables running over some sets of mappings of J into B,, and the logical
signs — as the signs of the corresponding Boolean operations.

A formula o from the classical functional calculus is satisfiable
in J in the sense defined by Tarski if the functional @, assumes as its
value the unit element of B,. A formula « is valid in J in the sense de-
fined by Tarski if @,= the unit element of B, identically.

The alors statements are not theorems, but another formulation of
the original definition of Tarski. The algebraization of the notion of
safisfiability and validity has already proved to be useful. E.g. it has
enabled us to give a simple proof of the theorems of Gédel and of
Skolem and Lowenheim for the classical functional caleulus 2).

The above algebraization of the notion of satisfiability and validity
permits us to extend these notions to the case of other functional cal-
culi, e. g. to the functional caleuli of Heyting and of Lewis 3).

The subject of this paper is the systematic study of the notion
of satistiability and validity in the general case, i. e. for a functional
caleulus §* which is not exactly specified. The main idea is as follows.

Let & be a sentential calenlus which contains the signs of disjunc-
tion, of conjunction and of implication, and possibly some other sentential
operators. We suppose that all theorems of the positive logic are theorems
in &. The system & determines uniquely a functional caleulus $*. On the
other hand, the system & determines a type of abstract algebras called
here S-algebras. Bach S-algebra 4 is a relatively pseudocomplemented

*) Presented at the Polish Mathematical Society in January 1952,
') See Tarski [1]. See also Rasiowa-Sikorski 21, § 2.

?) See Rasiowa-Sikorski [2] and [3].

%} Rasiowa [1].
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lattice with the unit element e. If 4 is a complete lattice, 4 is said to
be an §*-algebra. Let J50 be any set and let A be an §*-algebra. Bach
formula « from §* may be treated as an algebraical functional @, de-
fined in J if we interpret the individual variables as variables running
over .J, the functional variables — as variables running over some sets
of mapping of J into 4, and the logical sighs — as the signs of the cor-
responding algebraic operations in A4 4).

A formula a from §* is said to be satisfiable in J if, for an $*-al-
gebra 4, the functional @, assumes as its value the unit element e of A.
The formula « is said to be valid in J if ®,=¢ e 4 identically for every
S*-algebra A.

We shall demonstrate that the Godel and Skolem-Liwenheim .
theorems hold also for the functional caleulus &§* (Theorems 6.1, 6.2,
7.2, 7.3) under an additional hypothesis. This hypothesis has a purely
algebraie form: we must only require that the class of all S*-algebras
should be sufficiently rich; more exactly, that some JS-algebras could
be extended in a special way to J*-algebras. For the proof of some va-
riants of the Skolem-Lowenheim theorem it is necessary to suppose that
the system -under consideration contains the negation sign.

The proof of the Godel and Skolem-Lowenheim theorems for the
general system &* is very simple. The whole difficulty lies in showing
that the algebraical conditions are fulfilled if we specialize the logical
systems & and S*.

The first part of this paper contains an exact analysis of the
proof of the Godel and Skolem-Léwenheim theorems in the case of
a general functional caleulus &* In the second part we apply the re-
sults obtained in the preceding general part to the case of the special
functional caleculus: of the two-valued logic &%, of Heyting %, of Le-
wis &%, of the positive logic %, and of the minimal logic &*5).

Clearly the main theorems for these special systems can be ex-
pressed in a stronger form than that used in the general part. For in-
stance, the JSi-algebras are complete Boolean algebras. However, the
two-element Boolean algebra B, has a special importance for the clas-
sical functional caleulus &f. In the case of a general system §* there is
no analogue to B,. g

*) The idea of the algebraic interpretation of logical formulas is due to A. Mo-
stowski. See Mostowski [1].

¥) Some results from the second part were published earlier by Rasiowa [1]
and by Rasiowa-Sikorski [2] and {3].

The difference between the paper of Rasiowa [1] and the analogues questions
in §§ 10-11 of this paper is this: in the present paper we reduce the problem of satis-
fiability to the domain of topological spaces.

The subject of the first part is similar to that in Henkin [2]. Henkin’s results
are weaker than our results. However, his hypotheses about systems are also weaker.
He accepts systems containing only the implication signs — and quantifiers.
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The S;-algebras are complete closure algebras. It can be shown
that, in all the definitions of satisfiability and validity, we may restrict
ourself to closure algebras C(&) of all subsets of topological spaces F=-0.
Moreover, there is a topological space &, such that the closure algebra
C(&;) has the same importance for the Lewis functional caleulus %
ag By in 5.

The §3-algebras, Si-algebras, and &y-algebras are complete pseudo-
complemented lattices called here complete Heyting algebras. It can

be shown that we may restrict ourself to Heyting algebras H (&) of all”

open subsets of topological spaces &==0. The content of the notion of
satisfiability and of validity remains unchanged. Moreover there is a to-
pological space &, such that the Heyting algebra H(X,) plays the same
part in the Heytirg functional calculus &; as B, in &, Analogous spaces
can be constructed for 5% and ;.

The last section of this paper containg the following two applications.

Each formula « from the positive calculus &5 may be interpreted
as a formula from the Heyting functional calculus &;. We shall prove
that « is provable in &% if and only if it is provable in ;.

Every formula « from the Heyting functional calculus &5 can be
translated (in a very natural way) into a formula y(a) from the Lewis
functional calculus &%. We shall prove that a-is provable in S} if and
only if ¢(a) is provable in &%.

The proof of the above two theorems is based on the Gdédel com-
pleteness theorems from the systems &%, &5 and Si.

An application to the problem of decidability in non-classical fun-
ctional caleuli will be discussed in a separate paper.

Part I
§ 1. The system &. In the first part of this paper we shall con-
sider a fixed system & of a sentential calculus described as follows:
The primitive symbols of & are the sentential variables @y, aGy,asy...,
parentheses and the following constants:
(a) the disjunction sign +, the conjunction sign - , the implication
sign —;
(b) some other binary sentential operators 0y,...,0,;
(c) some unary sentential operators o%,..., 0"
The set of operators mentioned in (b) or (¢) may be empty.
The set S of all formulas in § is the smallest set such that
1) a;e8 (i=1,2,...);
) 2)if a,f8ef8, then (a+p)ef, (a-f)e8, (a>B)e8, (ao0;f)el
(t=1,...,7), (Fa)eS (i=1,...,8).

Instead of ((a—p)-(B—>a)) we shall write, for brevity, o = p.
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In writing formulas we shall practice the omission of the paren-
theses, the rule being that

1% each of the operators -, -+, -, = binds less strongly than the
previous one; -

20 each of the operators o' binds an expression more strongly than
any of the binary operators. .

In the set § of all formulas we distingnish a subset S°CS of all
theorems. We assume that the set 80 of all theorems fulfils the following
conditions:

(i) if « and a—3 are in 8% then £ is in &° (modus ponens);

(ii) if y is a part of a (a,y € §), if y=2¢ is in §° and if g is the for-
mula obtained from « by the replacement of the part y by é, then the
formula « =g is in S (the rule of replacement);

(iii) if a@,B,y €8, then-each of the formulas T,-T,, given below,
is in 8%

T, a—{(f->u)

T, (a—(B—9)—i(a—>p)—{u—y))

Ty a-p—a

T, a-p—=p

Ty (y—a)—~iy—=p)={y =a-f)

Ty a—a+f i

T, g—=a-+p

Ty (e—y)=>((F—+7)—~(a+ g7

The formulas T,-Ty are the axioms of the positive logic®). Con-
sequently all formulas, which are substitution of theorems of the po-
sitive logic, are also in S° In particular the following formulas are in 8%

T a—ra

Ty («—=p)={(F—3) (=)

Ty (o= (B—>y) =1~ (a—>7))

Ty a-f—oy=a—(p—+y).

We shall suppose that the system & is consistent, 4. e. that the
set S—A° is non-empty.

Note that the condition (ii) implies the extensionality of all sen-
tential operators mentioned in (a), (b) and (c).

§ 2. The system &*. The letter I, will always denote the set of
all positive integers.

‘Let I be a fixed set of integers, such that I,CI.

The system S and the set I determine uniquely .a system 3* of
a functional calculus described as follows:

5) See Hilbert-Bernays [1], p- 422-450.

Fundamenta Mathematicae. T. XL. ’ °
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The primitive symbols of &* are the parentheses and:

(a) the individual variables x; where i ¢ 1

(b) the individual constants z; where ieI—1,7);

(¢) the functional variables with & argiuments FY where k,m eIy

(d) the binary and wnary sentential operators mentioned in §1
(a), (b) and (c); :

(e) the quantifiers 3 and [] where ieI,.

x xi

The set S* of all forn'mlaslin S* is the smallest set such that

1) Fo(yy..,d;,) € 8% Where dy,...,0 € I and k,m e I,;

2) if a,Be8* and 1:5.10, then (a+p) e 8% (a-B) e 8% (a—p)e S*
(@ oxf) e S* (k=1,...,7), (0" a)e§* (k=1,..,8), Y ae8* and [] ae8*.

i

According to §1 we shall write, for brevity, u=p instead of
(e—p) - (p—=+a)].

In writing formulas we shall practice the omission of the paren-
theses. We assume the rules 1° and 2° from § 1 and the following rule
o 3° the quantifiers bind more strongly than any of the operators
in §1, (a), (b) and (c). '

o We ass]lme that the notion of free and bound occurence of an in-
dlv1d1.1a1 variable is familiar. A formula « e 8* is said to be closed if it
contains no free occurence of an individual variable x; (1 el,).

The axioms of §* are all substitutions of all theorems in S° (see § 1).

]}net R C8* be any set of formulas. The set K(R) of all consequences
of R is the least set of formulas such that

(i) E(R) contains all axioms and all formulas belonging to R;

(ii) if a e K(R), («—p) e K(R), then pe K(R);

(iii) if a e K(R) and if f is obtained from « by the admissible re-
placement #) of all free oceurrence of z; (7 e Iy) by @i (k € I), then f ¢ E(R);

o )

(i) if (a—[] f) € E(R), then (a—p) € E(R); if (¥ af) e K(R), then _

(a—p) e K(R); if there is no free occurrence of ; (tely) in o, and if
{a—p) e K(R), then (a—>£]/3) e K(R); it there is no free occurrence of

% (ielg) in g, and if (a-»B) ¢ K(R), then (3 a—p) e K(R);
(v) if « e K(R) and (y=6) e K(R) and if y is a part of «, then theb

formulﬁ: [3 obtained from « by he D. P \
i t replacement of tl e part o
) t b4 b 6, 18

) The case I=I, is admissible. Then the system o* has no individual constants.

&) The definition of issi -
functional caleulus. an admissible replacement is the same as for the ealssical

icm
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(learly the rules (ii)-(v) are respectively modus ponens, the rule
of substitution for free individual variables, the four quantifier rules
and the rule of replacement ?).

Clearly the rule (v) implies the extensionality of all logical ope-

Ogpeney Opy Oueeey 08, N [T
Xi Xi

I aeK(R), we write also Rp-a (read: « is a consequence of E).
If R=0 is the empty set, instead of (0)}a we write simply Fa. If o,
the formula o is said to be provable in 5*.

A set RCA8* is said to be consistent if the set §* —K(R) is not empty,
i.e. if there is a formula « e 8* which is not a consequence of I.

A set RCS* is said to have the property (D) if either R=0 or if,
for every a ¢ K(R), there is a sequence a;,...,a, € E such thatt-a;-...-z. >a.
In other words, B has the property (D) whenever the deduction theo-
rem holds in the formalized system which we obtain from &* by add-
mitting the set B as the set of additional axioms ™).

§ 8. S-algebras. With the system & described in §1 we shall
associate a type of abstract algebras. Bach algebra of this type is an
ordered set {d;e; +, -, =, 0py.eey 0ry 0%...,0°> Where

(a) e is a distinguished element of A;

(b) +, -, ~,04;...,0, are binary operations defined over 4 and
class-closing on A4;

(¢) 04...,0° are unary operations defined over 4 and class-clos-
ing on 4. ')

For convenience, we shall denote such an algebra by the same
letter as the set of its elements, i. e. we shall write “the algebra A" in-
stead of “the algebra {4;e; +,...,070".

Every formula «¢S may be interpreted as an algebraical poly-
nomial @, defined in 4 if we treat the logical constants (mentioned in
§1 (a), (b), (c)) as the corresponding algebraical operations in 4, and
the sentential variables a,,a,,... as the variables running through the set 4.

The algebra <A4; e; =, -, —, 01y.ces 0y 04..., 05> I8 s0id to he an S-al-
gebra if the following conditions are fulfilled (for every a,be 4):

rators —+—, -, —,

(i) if a~b=e and b->a=e, then a="5;

(ii) if e—+a=e, then a=e¢;

(iif) if «eS° (i. e. is a theorem), then P, =e identically;
(iv) 4 contains at least two elements.

3) The rule of replacement may clearly be omitted in the case of some special
systems since it is often a consequence of the remaining rules of inference. In the case
of the Lewis sentential or functional calculus (see § 10), the rule of replacement is inde-
pendent of other rules of inference.

10) F. g. each set of closed formulas of the classical functional calculus has the
property (D). In other systems, e. g. in the Lewis functional calculus, the assumption
that all formulas « ¢ B are closed, does not imply the property (D) (see 10.2).
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In the rest of § 3 the letter 4 will always denote an S-algebra

Let a,b e A. We shall write «Cb whenever a—>b=e. .

3.1. Bvery S-algebra A is a relatively pséudocon'z,pleavnente(l lattice 1)
with respect to the operations “+7 (join), “-7 (meet), and “->7 'The
relation aCb is the ordering relation in the lattice A (i.e. aCb if a.n('? 0)-111(
if a+b=">). The element e is the unit of the lattice A. Y

In fact, (i) implies that the relation C is antisymmetric (i.e. oCh
and bCa imply e=>0). Theorem Tj implies the reflexivity of C (4. e -aC @)
Theorem T; implies the transitivity (i.e. aCb and bCe imply. aC c).
Hence C is a partial ordering. It follows from T,, T,, T; that «-b 1% tl;(l
meet .(product) of a and b. Analogously, Theorems Ty, Ty, Ty imply thatT
a —b is the join (sum) of ¢ and b. Hence A is a lattice. ',E‘heorem T im‘-’
plies that aCe for every aed, 4.e. that e is the unit element of il It
follows from Ty that dCa—b if and only if ad=05. Hence 4 is a relat‘ix;elv
pseudocomplemented lattice, and the operation — in 4 coincides \tl
the lattiece operation 1) —. o

Let a,a, ¢ 4, where w runs over a non-em b U
N " : -empty set U. We say that
is the sum (product) in 4 of all elements a, if simultaneouslyy ‘
1 a,Ca (aCa,) for all u e U;
20 if ,Cb (bCa,) for all ue U, then aCb (hCa).
We then write

® a=(4) Yo, (a=(4)[] a).

ue

st If( z;.n e?—alg?bm 4 iz a complete lattice, 7. e. if the sums and pro-
ucts (+) exist for every fami k 7 i i i be
e r every family a, (v e U), then 4 is jSﬂ‘ld to be an

- ;eﬁf{A;_e; —;-,..I. ,-o*‘> fmd {A'ie'; +,...,0°> be two S-algebras. A map-
ping ko 4 m’Fo A’ is said to be an S-homomorphism if it preserves all
(finite) algebraic operations, 4. e. if '

I(aob) = h{a)oh{b) when o is one of the signs in § 1, (a) and (b)
I{oa) = ol(a) if o is ome of the signs in § 1 (c). ‘ ’
1) A lattice 4 (with join -}, meet -, and the latti i
- 1 i , meet -, he lattice order c) is said to b ivels
ge‘eiuc{:éo'r;:li)fleme;zie()ll if, for every a,bed, there is an element ced such tli;.t)efz?a;!:rg{
ed ,adc and only if dce. The element ¢, determined uni wi
; L , det: quely by a and b, will always
?ﬁ (}:gst&zd by a—»I.J. ];_T]ach relatively pseudocomplemented lattice has the unit elemé‘;:j}:
I b, e=a —a is the unit element. Moreover, e +a=a for every a ively
- . P : y @ Each rely
psendo;omplemented lattice is distributive. See Birkhoff [1], p. 147-1:8‘: m:'glalt;"sel“
the 2 plseudocomplemented latlice is a relatively pseudocomplemented lattice \;'i'th
e;tf) z t?menb 0. (the pseudocomplement of a is the element "la=q =+0) .
i lst a lattice under consideration, then 0 and e always denote the ze;o element
. twee 'nm jlemeut of A respectively, whenever they exist. By definition, Ocace
’ Ty aed. Each relatively psendocomplemented lattice .4 (with the un"t ‘I“
always be considered as an abstract algebra <4; e; 4, o, =D ite) will

icm
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An S-homomorphism i maps e onto ¢’ sinee, by Ty,

' = h{a)—> h{a) = h{a—a) = h{e).
An S-homomorphism is called an S-isomorphism if it is one-to-one.
An S-homomorphism h is said to preserve the sum (product) (=) if

(ha) = (4") [] ha)-

uel

Ray={4") > Ma)
uel

The system & is said to have the property (B) if, for every &-al-
gebra 4 and for arbitrary enumerable sequences of equations

(x+) ay=(4) > tm, bo=(4) [] bu (=1,2,..)
uely, uEVy

there is an S-isomorphism h of 4 into an S*-algebra 4’ which preserves
all the sums and products (++). )

§ 4. The Lindenbaum algebra L(R). Let RCS* be a con-
sistent set. For every a < 8%, let 'a| denote the class of all fe8* such
that R} a=p. Let L(R) be the set of all cosets la| where a e 8*. We de-
fine in L(R) the algebraical operations --,- =301y een 5 0ry 0% .. ,0° 5 follOWS:

o fl= aop
if o iz one of the binary operations from § 1 {a) and (b), and
olu'="oua!
if 0 is one of the unary operations from §1 (¢).

This definition is correct. In fact, it follows casily from the rule
of replacement (§2J(v)) that Ri-aof =yo6 whenever Ri-a=y and
R+ p=249; and analogously RFoa=0y whenever Rr-a=y. Therefore
the result of the operation o on cosets ¢ L(R) does not depend on the

choice of their representants a, f.

If R a, then ol is the class of all je 8% such that R+ f. The ele-
ment 'a,, where Rt-a, will be denoted by e. ‘

1.1. The algebra {L(R); e; S ye gy Og g ee 3 07, 0%y 1y 05D 08 AR S-algebra.

According to § 3, this algebra will be denoted, for brevity, by L(R).

We have, in particular,

42, L(R) is a laftice with respect to the operations + (join)
and - (meet). The inclusion (|Clgi ™) holds if and only if R-a—p.
lai=¢ if and only if Ri-a. ‘

The easy proof of 4.1 and 4.2 is omitted. Note that the condition
(iv) from § 3 is funifilled since R is consistent.

For every «eS* and for pel, kely, let a(ii) be the formmula

which we obtain from « in the folllowing way:

1) (learly c denotes here the laftice inclusion in L(R) (not the set-theoretical
inclusion between cosets j«| and |g]).
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We choose an I ¢ I, such that Is£p and a contains neither z; nor

N nor []. We repla 3 2CUrY f
B (,[ place. every bound occurrence of z, by «;, and every

L XY (T

quantifier ¥ ([]) by ¥ ([]). Further we replace every free occurrence
Xp ."Cp ~\'[ ,\'1

of xx by .

The formula « (Cl“i) defined in such a way is not wniquely deter-

. 3 | (x . . :
fmned. However the elemen‘n ‘ a(m‘;) e L(I?) is uniquely determined since
it does not depend on the choice of I. v

Using the above notation we obtain

1.3. For every a¢8* ’
* ww%w@Wﬂ%d
(o) (L)) H a(ip) ={ I«
pel o Xp
Since o (Zi’;) - 2/‘(1’ we have R - a (Z:)» 2‘0: and consequently,
L X
by 4.2, ‘

for each p eI,

” .
@l 2]
*k
Suppose a formula B ¢ §* sa.tisﬁes the relation
Lo,
a(z)

\

i, p
By 4.2, we have Ri-a (m:) —~@. Let ¢ be a positive integer such

that neither p nor'y contains a free occurrence of m, Then
R Y (%
- a ()
g

el =| el

which completes the proof of (*). The proof of () is analogous.

) An $-homomorphism (S-isomorphism) & of I
A is sald to be an &*-homomorphism (S*
all the sums (+) and all the products (%),

Cipl

for each p e[,

Hencé

. R) into an S-algebra
-isomorphism) if h preserves

icm
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An S*-algebra A is said to be an §*-extension of L(R) if ‘there is
an S*-isomorphism of L(R) into A. Clearly if & has the property (E)
(see § 3), such an S*-extension of L(R) exists.

Tf R is the empty set, we simply write L instead of IL(0).

§ 5. (J,4) functionals. Let J and 4 be non-empty sets. The
class of all mappings of the Cartesian product B J X ...xdJ into A will be
k-times
denoted by F*(J,4). Every mapping of a Cartesian product
T 6T % e T X FU FR2 3 L Fhm

T Ttimes

into 4 is called an (J,4) functional. The case =0 is admissible.

In the rest of § 5 the letter 4 will always denote an S*-algebra.
J is always a non-empty seb.

Every formula « ¢ 8* may be interpreted as an (J,4) funectional,
denoted by (J,4)P., by treating

(a) all the individual variables z; (i el,) and all individual con-
stants @; (¢ e I—I,) as variables running over J;

(b) all k-arguments functional variables FY as variables running
over F"'(J,A) (k,mely);

{c) each of the logical signs mentioned in §1 (a), (b), (e) as the
corresponding algebraical operation in 4;

(d) the logical quantifiers ¥ and [] as the signs of (infinite)
sums (4) _\:J and products (A4) [] ]; respeet{vely (7 € Iy).

X € x; €

The symbol (J,4)®q({ji}, {gk}) will denote the value of the fune-

tional (J,A4)®,. for the following values of its arguments = and Fy

(s) n=jied and Fi—gk ¢ F*(J,4).

Clearly it is sufficient to define the substitution (s) only for such
i,m,k that F% appears in a, ; appears in « and <0, or ¢>>0 and there
is a free occurrence of &; in a. For simplicity, we shall assume (except
in the proof of 9.2) that the substitution (s) is determined for all iel
and for all k,m e I,.

The following equations may be considered as the inductive de-
finition of (J,4)Pe.

5.1. If a,f e8* and o is binary operation (§ 1, (a), (b)), then
(5 4) Paos ({2}, 195} = (7, 4) Pel{ii); (k) o (I, 4) Pa{ih {g£)-

If o is a wnary operation (§1, (c)), then

(T, 4) Poa({ih {PEN1= 0 (7, 4) Pel{ii}s (973 -
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Analogously, for pel,,
(J,4) Dy, (Ui}, (o)) = (4) X (1, 4) ({31}, {g5))

(*) ;’: . ‘ xp el )
(7, 4)®, [, lakY) = (4) [T (7, 4) Du((3, {9k}
xp xped

where {ji}" denotes the sequence {j;} where the p-th term j, is replaced by w,.
5.2. Let RCS* be a consistent set, and let k be an S*-homomorphism
of L(R) into an S*-algebra L*. Then
: (1 ) P, (93] = hija)

where ji=1 for i el, and ¢t is defined as follows

(%) FllnyTag ey i) = | By (@, Biyy ooy @)l) for daydayo,ipell

Lemma 5.2 follows from 5.1, 4.8 and from the definition of the
algebraical operations in L(R). The easy proof by induction on the length
of a is omitted. )

If the functional (J,4)®, assumes only the unit element ec A as
its value, we write (J,4) D, =e.

5.3. Ift-a, then (J,A)P,==¢ for every set J==0 and for every S*-al-
gebra A.

Theorem 5.3 has been proved by Mostowski [1] in the case of
&%= the functional caleulus of Heyting, and by Rasiowa [1] in the

case of §*= the functional caleulus of Lewis. The proof in the general
cage is similar.

Notice moreover that

54 If f=a["), then
;)

(734) Bellii} igh}) = (7, 4) Bu{{Gi}, {9 })
“where fi=j; if i£p, and Tp==1q.
5.5. If an S-homomorphism g of 4 into another S*-algebra A’ pre-
serves oll infinite sums and products, then
9T A) PG}, kD) = (7, 4") a((5i}, {90 ).

§ 6. Satistiability and validity. A formula «cS* is said to

be satisfiable in a set J0 and in an S *-algebra A if there is a. substitution ’

@ we=fied and Fn=gncF*J,4) (el,k,mel,)
such that
(b) (5 4) Pul(i} (o)) =e e A.
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More generally, a set RCS* is said to be satisfiable in a set J==0
and in an S*-algebra A if there is a (common) substitution (a) such that
the equation (b) holds for all « ¢ R.

A formula « € 8§* (or: a set RCS*) is said to be satisfiable in a set J5=0
if there is an §*-algebra 4 such that « {or: R) is satisfiable in J and iu A.

A formula « e S8* (or: a set RCS*) is said to be satisfiable, if there
is a set J5=0 such that « (or: R) is satisfiable in J.

A formula « e 8* is said to be »alid in a set J==0 it (J,4)D.==e for
every & *-algebra 4.

A formula « e 8* is said to be valid if it is valid in each set J=%=0.

It is obvious that, in all the above definitions, only the eardinal
of J plays an essential part.

6.1. Let a € 8*. If the Lindenbawm algebra L has an &*-extension L*
(in particular, if the system & has the property (E)), then the following
conditions are equivalent:

1) ta;

(ii) «a is valid;

(iii) « is walid in the enumerable set I;

(iv) (I,L*) P,==e*==the unit of L*.

The implication (i)--(ii) is another formulation of 5.3. The impli-
cations (ii)—(iii) and (iii)—(iv) are trivial.

Suppose that (iv) holds. Let k be an &*-isomorphism of L into L*
By (iv), (I,L*)®.=¢*. Hence, by 5.2, h(|a|)=e¢*. Since % is an isomor-
phism, we infer that |a| is the unit element of L. Consequently i a by 4.2.

6.2. Let RCS* be a consistent set. If there is an &*-homomorphism
k of L(R) into an $*-algebra L* (in particular if & has the property (E)),
then the set B is satisfiable in the enumerable set I.

More exactly: R is satisfiable in I and in L*.

We have h(|a)) = ¢*= the unit of I* for every « < R since |a|==¢ ¢ L(R)
(see 4.2). Consequently, by 5.2, we have for each ac¢R

' (L, I @u(ji g)) = (] a)) ="
where the substitution z;=j; and F’,ﬁ,:cp,’ﬁ, is defined as in 5.2.

An S*algebra A is said to be functionally free if, for every « e 8%

the condition
(J,4)P,=¢ for every set Jz=0
implies that « is valid.

An S*-algebra A is said to be functionally o-free if, for every a e 8%
the condition

(J,A)D,=e for an enumerable set J

implies that « is valid.
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Olearly, if 4 is functionally o-free, then. A is functionally free.
The implication (iv)->(i) in 6.1 may be formulated as follows.
6.3. Every S*-emtension L* of L is functionally o-free.

The following lemmas will be useful later.

6.4. Let A’ be a complete subalgebra of an S*-algebra A, let J==0
be any set, let a e 8% and RCS*

(a) If (J,4)D.=¢e, then (J,A')D.=¢ also.

(b) If R is satisfiable in J and A’, then R is satisfiable in J and A.

This follows immediately from the definitions of satisfiability and
of validity since F*(J,A4")C F*(J,A).

6.5. Let A be an S*-algebra, and let J and J' be two non-emply sels.

A) If J'<d, ael*, and if (J,A)D.=e, then (J',A)P.=e.

B) If J <J and if a set R C8* is satisfiable in J' and in A, then

R is also satisfiable in J and in A.

Let ¢ be a mapping of J onto J'. If ¢« F5(J7, A), let ¢, be defined
as follows
¢1(ju"'7jk)=¢(z(j1);---7'Z(jk)) for jl:"'ijeJ-
Clearly lpzelﬂk(J ,4).
The statements (A) and (B) follow from the obvious equation,
whieh holds for every « e S8*

(7, ) Pul{2 ()} {05} = (T, 4) Be((Gi} 5 () 1)

§ 7. Systems with negations. In this section we suppose that
the sequence (c¢) from § 1 contains a sign called the negation sign and
denoted by —. We suppose moreover that the set T of theorems of &
contains every formula of the form

) —(B—>p)~a.

Our new assumption implies that we have an operation —% (called
sometimes the complementation) in each S-algebra 4. The axiom (N)
implies that, for every a,be A,

—(b—=>b)—>a=e.

Sinee b—+b=e¢ by T, we obtain

(*) —e—>a=e¢  for every acA.
Hence

7.1. The clement —e e A is the zero element of the S-algebra A, i. e.
if —eCa for every a e A. Consequently (see § 3 (iv))

ez=—e.

icm
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Note that only the inequality es=—e will play an essential part
in the proof of the theorems 7.2 and 7.3.

The following theorem is converse to 6.2.

7.2. If a set RCS* is satisfiable and has the property (D), then R is
consistent.

By the hypothesis, there are a set J3£0, an J*-algebra 4 and
a substitution

=jred  Fh=qhe F*J,4)

such that
(%) (J,A)Q’l,{{jf}-,{q7;}) =ced for every ackR.

(fel,k,mely)

Let -y (y e §*). Suppose that R is not consistent. Then R - —y.
The property (D) implies that there is a sequence f,...,f, ¢ E such that
8 ——y where f=p;...-f,. Consequently (J,4)®,, . =e.

Let a=(J,4)®,{{j:},{g%}. Since by (+)

(J, A)q)i’duﬂ’?h})”('—]r{)(p l{[,,.tq"}i (S AV, ‘2‘)::-»’]"""

we obtain by § 3 (ii) and 5.1 that
—a=(J A) Pl ekt = e

On the other hand, (J,d)@.=e by 5.3. Hence a=-e. This implies
that —e=—a=-¢ which is impossible by 7.1.

7.3. Let RCS8* be a satisfiable set having the property (D). If & has
the property (B), then R is satisfiable in the enumerable set I.

This is a direct consequence of 6.2 and 7.2.

§8. A lemma. The purpose of this section is to prove the lemma 8.2
which will be useful later.

Let & be the system described in § 1 (with or without negation). |
Let &§* be the functional calculus determined by & and the set I = the
set T, of all positive integers by the method described in § 2. Further,
let $* be the functional calculus determined by & and the set I = the
get 7, of all integers by the method of § 2. The system &* has no in-
dividual constants. The system $* has individyal constants o, £y, €-2,...

The sets of formulas of $* and S* are denoted by 8* and S* re-
spectively.

If o e 8% then @ will denote the formula which arises from « when
we replace each free occurrence of r; (i=1,2,..) by z_;. Clearly @ e 5*
and o is closed.

If RCS*, then B denotes the set of all @ where o € R. Clearly RCS*.

Let J be a non-empty set and let 4 be an S*-algebra. Clearly A
is also an S*-algebra.

Under the above assumptions
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8.1. For every aeS* the equation
(J,4) Dy ({?x} ;{‘?’ﬁ,}) =(J,4) D, ({51} 7{775:,})

nolds whenever ji=j-; for every iel,.

This follows immediately from the definition of the functionals
(J,4)®, and (J,4)P: (see 5.1). The exact proof by induction on the
length of a is omitted.

8.2, A set RCS* is satisfiable in J and A if and only if the set RCS*
is satisfiable in J and A.

Lemma 8.2 follows immediately from 8.1.

Part 11

§ 9. The classical caleulus. We shall now specialize the system S
deseribed in § 1.

First let us consider the case where & is the classical sentential
caleulus which will be denoted here by ..

Besides the signs +,-, and -+ the system &, contains also the
negation sign —. The axioms of &, are the formulas T,-Ty and the fol-
lowing (see Liukasiewicz [1], p. 86)

Ty (a=>—p)—>(— —a)
Ty —a—>(a—=f)
Ty ——a—>a.

Clearly the formulas (N) are theorems in ..

Set I=1I, in § 2. The functional caleculus determined by &=d.
and I=1I, by the method described in § 2 is the classical functional cal-
culus which will be denoted here by &

The set of all formulas in & will be denoted by 8F. L, will denote
- the Lindenbaum algebra constructed from formulas u € 8} by the method
described in § 4 where & = the empty set.

It is well known that J.-algebras are Boolean algebras?) and
conversely. Consequently SF-algebras are complete Boolean algebras
and conversely.

The letter B will exclusively denote a Boolean algebra. The letter B,
will denote the two-element Boolean algebra. The Boolean algebra of
all subsets of a set ¥=£0 will be denoted by B(X).

According te § 3, a Boolean algebra B will be considered as an
algebra with respeet to the four operations: join (sum) a-+b, comple-
mentation —a, meet (product) a-b | =——((—a) —i—(——b)) , and the operation
corresponding to the implication oi»e-b:(-— a)+b (a,beB).

12) We assume in this paper that each Boolean algebra contains, ex definitione,
‘ at least two elements: the unit ¢ and the zero 0 (i. e. Ocace for every aeB, and 0£e).
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The system &, has the property (E) /. e. for each Boolean algebra B
there is an &S,-isomorphism h of B into a complete Boolean algebra B*
which preserves a given enumerable set of infinite sums and products
(see § 3). For instance, if B* is the minimal extension ) of B, then the
imbedding mapping preserves all infinite sums and produets®3). How-
ever, for our purpose, it is convenient to construct another &.f-extension
of B. This construction is given by the following lemma which clearly
implies the property (E). :

01, Let by, @y buo € B (where wely, ve Voo n=12,...). Sup-
pose that

(+) a,=(B) X a, and b,=(B) ]!b/,,.

>
. P-Z'Jn ne n

for n=1,2,... Then there is an S.~isomorphism k of B into the complete
Boolean algebra B(F) of all subsets of a set F=£0 such that h preserves

all the sums and product (=), i.e.

(++) 1) hay) = > hlan) and hk{b)= 2 (b,
uely, ver,

Let Y be the set of all prime ideals 7) of B. For every ae B, let
Y(a) be the set of all prime ideals p such that a non ep.

Consider ¥ as a topological space with the sets Y(a) (a ¢ B) as the
class of neighbourhoods. Stone!s) has proved that ¥ is a totally dis-
connected bicompact Hausdorff space and the mapping ¥=Y(a) is an
isomorphism of B into B(¥Y/).

The sets
1’11 - 1v((:ln) - E lv(anu}a
uely
Zn == ” Y(brw) —Y(bn)
vel,
(n=1,2,...) are nowhere dense*) in 9. The set Z= _:_; Y, + %}1 Z, being

of the first category in %/, we infer that the set & =9 —7Z is dense *9)
in . Consequently, if as=0, then the set

h(a) =& X(a)

is not empty, i. e. k is an isomorphism of B into B(X).

) Mac Neille {1], p. 437.

15) See e. g. Sikorski [2], th. 3.6. . . .

16) If X, (Io) are sets, then Xy (II T,) denotes the set-theoretical union (inter-
section) of all Xu (Fo). .

17) A set pcB is said to be a prime ideal provided that 19if a,b e p, and cca, then
a+bep and cep; 2° for every aeB, either aep or —aep; 3° e non € P.

1) Stone [1], p- 378.

1) For the proof, see Rasiowa-Sikorski [2], lemma (iii).

20) See Sikorski [1], p. 257, footnote ).
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Since

};(an) =T, + _\_‘ Y (),

uely,

Y(bn) _.‘Zu :”!,l Y(ann)y
we find by multiplying this equations by & that the equations. (++)
holds. .
9.2. Let J==0 be an at most enumerable set, let B be a complete Boolean
algebra, and let ¢k e F*(J,B) be given mappings (k,m e I,). Then there is
an &,-homomorphism hy of B into B, such that %)

) (7, B0) P (i} o) = {7, B) Dul (i}, (5]

for every we 8* and for every substitution @;=j; € dJ.

Moreover, if bzte is a given element in B, we may suppose that Tro(B)
= the zero of B,.

The class of all sums and products 5.1 (») (where A=B, I= L,
we 8% p=1,2,..., {i} is any sequence of elements in J) is at most enu-
merable since we may suppose that the sequences {j;} are finite (see
the remark before lemma 5.1). By 9.1 there is a set F£0 and an ,-iso-
morphism % of B into B(¥) which preserves all the sums 5.1 (*). Let
2o & and let

ho{a)="h(a)-(z,) for aeB.

he I8 an &§,-homomorphism of B into the two-element Boolean
algebra B,= B((x,)) which preserves all sums and products 5.1 (x). Con-
sequently the equation 9.2 (x) holds. The easy proof by induction on
the length of « is omitted.

If bs%e, then Wb)AZE. If we choose z, so that , non e (b) we obtain
ho(b) =0 ¢ By,

Since the system o, has the property (E) and the formula (N) is
& theorem, theorems 6.1, 6.2, 7.2 and 7.3 hold for the system ;. These
theorems are the eclassical Godel and Skolem-Lowenheim theorems 22),
This remark results from the following theorems 9.3, 9.4, and 9.5.
) 9.3. 4 set RCS* is satisfiable in a set J=~0 (tn the sense defined
in §6) if and only if R is satisfiable in J in the sense of Tarski [1].
) Consequently, R is satisfiable in the sense defined in § 6 if and only
if 1t is satisfiable in the sense defined by Tarski [1].
) For brevity we shall say that R is T-satisfiable (in J) if it is satis-
fiable (in J) in the sense defined by Tarski [1].

#) Clearly hy,p is the superposition of %, and ¢.
’.‘) Lowenheim [1]; Skolem [1], [2], [3}; K. Godel [1]; Hilbert-Bernays [1];
Henkin [1]; Beth [1]; Rieger [1]; Rasiowa-Sikorski [2] and [3].
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Tarski’s original definition of satisfiability can he translated in
the algebraical language from § 6: a set RCS* is T-satisfiable in J if
and only if R is satisfiable in J and B,®). Consequently, if R is T-satis-
fiable in J, then R is satisfiable in J in the sense of § 6. Therefore it is
sufficient to prove that

9.4. If a set RCSE is satisfiable in J==0 and in a complete Boolean
algebra B, then

(a) R is satisfiable in J and Bg;

(b) R is satisfiable in I, and B,.

Consider first the case where fgxﬂ. By hypothesis, there is a sub-
stitution ’

ry=j,edJ and FE=¢keFXJ,B)
such that
(J,B) @ ({ji}, {yh)) =e< B for every aelR.

Apply the first part of 9.2. We find that
(J,Bo) @el({fi}, {hopm}) =ho(e) = the unit of B,

for every « € R, which proves (a). The part (b) follows from (a) and 6.5 (B).

Suppose now that T> %o. Apply all the notations of § 8 to the case
S=d,. Then S*=&F and SF is the classical functional caleulus with
individual constants &g, #_y,£_s,... Since R is satisfiable in J and B, we
find from 8.2 that B is also satisfiable in J and B. However, each for-
mula g ¢ B is closed. Consequently B has the property (D) in §f. By 7.2
the set B is consistent. Hence, by 6.2, R is satisfiable in I, and in a com-
plete Boolean algebra L*. By 8.2 and 6.5 (B), R is satisfiable in I, and L*.
Since I,=»,, we may apply the already proved part of 9.4 (b). We infer
that R is satisfiable in I, and B,, i.e. (b) is completely proved. The sta-
tement (a) in the case of J> ¥, follows immediately from (b) and 6.5 (B).

Theorem 6.1 may be expressed in the following, more precise form:

9.5. For every a e S}, the following conditions are equivalent:

(i) « is provable in SF;

(i) « is valid, i.e. (J,B)®P.=¢¢ B for every set J#0 and for every
complete Boolean algebra B;

(iii) « is valid in the set Iy, 4.e. (I, B)@.=eeB for every eomplete
Boolean algebra B;

(iv) if L* is an S*-extension of L,, then (I, L*)P.=e e L";

(v) (J,B,)Pe=¢€ B, for every set J#0;

%) See Rasiowa-Sikorski [2], § 2 and the proof of (i).
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(vi) there is an infinite set J and o complete Boolean algebra B such
that (J,B)®.=¢e¢eB;

(vii) there is a complete Boolean algebra B such that (I,,B)®.=e¢ ¢ B;

(viii) (Z4,Bo)Pa=¢ € By.

Notice that the condition (J,B,)P.=e¢ is the algebraiéal formulation
of the validity of « in J in the sense defined by Tarski [1]2¢). The con-
dition (v) is thus the algebraical formulation of the validity of « in the
sense defined by Tarski. The implications (i)—(v), (v)-=(viii), (viii)— (i)
form the classical completeness theorem of Godel.

By 6.2 it suffices to prove the following implications:

(it)—(v). This is trivial.

(v)—=(vi). This is trivial.

(vi)—(vii). This follows from 6.5 (A).

(vii)~(viii). This follows from 6.4 (a) since B, may be interpreted
as the subalgebra of B composed of the unit and the. zero of B.

(vili)— (iv). Suppose that there is a substitution
such that oi=fielo, Fn=phe Fk(L”L*)

(Zo, I*) P ({1}, {om}) =D e e L*.

By 9.2 there is an J,-homomorphism h, of L* onto B, such that
ho(b) =0 e B, and that 9.2 (+) holds. Hence

(Los Bo) Pul{fi}, {hogm}) = ho(b) =0 ¢ By
which contradiets (viii).
The equivalence (i)=(vi) implies that

9.6. Hvery complete Boolean algebra is functionally free and fune-
tionally o-free.

§ 10. The Lewis caleulus. Consider now the case where & is
the sentential caleculus of Lewis designated here by J,2). Besides the
sign +, -, —» the gystem &, contains also the two unary sentential ope-
rators: the negation sign — and the possibility sign C. The axioms
of &, are the formulas T,-T); and the following

T Cla+p)=Ca+CB

Ty a«—Ca

Ty CCa—Cu

Ty —Cla-(—a).

Clearly the formulas (N) of § 7 are theorems in o,.

’f) See also Rasiowa-Sikorski [2], (ii).
*%) This system is referred to as the system §, in Lewis-Langford [1].
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The functional calculus obtained by the method described in § 2
where § =, and I=1, will be denoted by §F. Clearly §F is the Lewis
functional calenlus ).

By S, and 8§ we shall denote the sets of all formulas is &, and $%
respectivelv Analogously L, will denote the Lindenbaum algebra de-
scribed in § 4 where §*=J f and R = the empty set.

For brevity we shall write L« instead of —C€—a for every aeSf or §,.

It is well known ¥) that S;-algebras are closure algebras and con-
versely. A closure algebra®®) is an algebra {C;e; +, .-, —, C) such
that <('; e; +, - , =, —> is a Boolean algebra (with the unit e, join a-+b,
meet a-b, complement —a, and the operation a—b=(—a) 4+ b) in whieh
a closure operation Ca is defined, such that, for every a,be (),

I. Cla+b)=Ca-+-Cbh III. aCCa
II. CCaCCa IV. C0=0.
_ Clearly the operation Ia=-—-C—a is the algebraical analogue to

the sentential operator I.

An element a ¢ (" is closed if a=Ca; a is open if a=1Ia.

An &S}-algebra is a complete closure algebra and conversely.

In the sequel the letter (' will exclusively denote a closure algebra.

It &=£0 is a topological space®) with the closure operation CcxX
defined for all XC&, then the class of all subsets of & is a complete
closure algebra denoted by C(&

The system &, has the property (E), i. e. for every closure algebra €
there is a complete closure algebra C* and an &,-isomorphism which
preserves a given enumerable set of infinite sums and products (see § 3).
For instance, one can construct i and €* (by means of MacNeille’s
minimal extensions ) of Boolean algebras) so that h preserves all in-
finite sums and produets in € %), However, for our purpose it is con-
venient to construct the Si-extension C* in another way. This eon-
struction is given by the following lemma, which clearly implies the
property (E).

10.1. Let  pybps @y bpne ¢ (where weln v eV, n=1,2,..) Sup-
pose that
(+) a,=(() \;anuw b, =(C) III by (n==1,2, )

26) This system is equivalent to that in Rasiowa [1].

27) MeKinsey-Tarski [3], p. 4.

28) MeKinsey-Tarski [1], p. 145.

=) A topological space is a set & with a closure operation defined for all Xc&
and satistying the above axioms I-IV of Kuratow ski {1], p. 145,

30y See Rasiowa [1], p. 111.

Fundamenta Mathematicae. T. XL. 6
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Then there is an Sy-isomorphism h of ¢ into the closure algebra C(%)
of all subsets of a fopological space E==0 such that h preserves all the sums
and products (+), i. e.19)

ha,) = S M)y, h(b,) = 1[ h(bun)-
uely, vely,

By 9.1 there is a set & and J,-isomorphism % of <(Cje; 4, ,—,—>
into the Boolean algebra of all subsets of a set & which preserves all
the sums and products (+). We define. the closure operation in % as
follows:

for every AC&, €.V is the intersection of all sets h(a) where X Ch(a),
ae(C and a=Ca.

The mapping X'= k(a) is the required §,-isomorphism of C into C(&).

Since &, has the property (B) and since the formula (N) is a theo-
rem in &, we may apply all the theorems 6.1, 6.2, 7.2, 7.3 to the case
$*=4&}. Those theorems may be treated as analogous to the Godel and
Skolem-Lowenheim theorems, proved for the classical functional caleulus.
As we shall see later (10.5 and 10.8), in all definitions of satisfiability
and validity (see § 6) we may restrict the domain of arbitrary complete
closure algebras to the domain of closure algebras C(¥ ), formed from
all subsets of topological spaces &. Moreover, we can construct a uni-
versal topological space &, such that C(¥,) plays the same part in &%
as the two-element Boolean algebra B, in the classical functional calculus.

For this purpose, besides the system &} we shall also examine
another system S{ constructed by the method described in § 2 where
we set S=d, and I = the set 7, of all integers (see § 8). The set of all

formulas in §F is denoted by S3.

10.2. (Deduction Theorem). Hvery set RCSF (or: CS8F) of closed Jor-
mulas a, each of which has the form a==18, has the property (D) in Si(in 35,

It is sufficient to prove that the set A of all formulas « with the
property

there is a sequence uy,...,a, e B such that bag .. -ay—«

fulfils the conditions (i)-(v) from § 2 where K(R) is replaced by K.

The proof of this fact in the case of (i)-(iv) is the same as for the
clagsical functional caleulus.

The case (v) follows from the statements given below:

(1) ¥ +1Iy—q, then - Iy-—Ia.

(2). If the formula ; is a part of a, and if «, is the formula obtained
from o, by the replacement of g, by a formula 8, then

FL(T T - [T (B=F2) > (c1=a,)
iy iy iy
where the sequence Biy y%zyy -0, %y, cONtaing all variables which are free

in fy=f,.
The proof of (2) is by induction on the length of o,.
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10.3. 4 set RCS8Y is satisfiable in a set J==0 and in a complete closure
algebra € if and only if the set of all formulas Yu, where a € R, is satisfiable
in J and in C.

This follows immediately from 3.1 and the fact that the equation
a==r¢ is equivalent to Ia=e.

Let ()CS% be a consistent (in &%) set of closed formulas a, each
of which has the form a=1Ip (3 ¢ 5F). Let Z,(Q) denote the Lindenbaum
algebra constructed by the method of § 4 where we set §*=8% and R=@.
By 10.1 there is a topological space ip such that (&) is an Si-ex-
tension of Z;(@). Analogously there is a topological space & ¢ such that
C(X)?) is an S}-extension of L,. Let &, be the Cartesian product of all
the spaces &9 and &;p where @ fulfils the conditions mentioned above.

10.4. Each closure algebra C(¥3) and C(Fp) 8 Sy-isomorphic to
a complete subalgebra of C(X,). The &S,-isomorphism mentioned above
preserves all infinite sums and products. B

" Consequently C(&,) is an Si-extension of L, and an Si-extension
of L,(Q).

This is a particular case of the following general theorem: Let &
and %Y be two non-empty topological spaces. The transformation A{X)
=Xx % is an §, -isomorphism of C(&) into C(F x Y} which preserves
all infinite sums and products.

Theorem 7.3 can be formulated in the following stronger form:

10.5. 4 set RCSY is satisfiable if and only if it is satisfiable in I,
and C(&,).

It suffices to prove that each satisfiable set RCS% is satisfiable
in I, and C(¥;). By 10.3 we may restrict ourselves to the case where
each formula a ¢ R is of the form a=If (f e 83).

‘Apply the notations of § 8. By 10.2 the set RCS} has the property (D).
By 8.2 R is satisfiable. By 7.2 R is consistent. By 6.2 and 10.4 R ig satis-
fiable in [, and in O(&,). By 8.2 and 6.5 (B), R is satistiable in I, and C(&,).

The following theorem is another formulation of the completeness
theorem 6.1 for the system 7.

10.6. The following conditions are equivalent for every o e 8F:

(i) a is provable in 8

’(ii) a is valid;

(ifi) (J ,C(& )) D, =% 3) for every set J0 and for every topological
space F0;

(iv) (Lo, C(&,)) Pu=2;.

The implication (i)— (ii) follows from 5.3. The implication (ii)—-(iii}

and (iii)—(iv) are trivial. The implcation (iv)—(i) follows from 6.1 (iv)
and 10.4.
—W is the unit element of C(X).

(54
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The equivalence (i)=(iv) in 10.6 may Dbe otherwise formulated
ags follows: )

10.7. The closure algebra C(%,) is [unctionally o-free.

Clearly the space &, may Dbe replaced in 10.6 (iv) and in 10.7 by
the topological space &7 which has an enumerable open bhasis.

On the other hand,

10.8. If & is a complele metric space, or & locally compact regular
space, then C(&) is not functionally o-free.

Consider the formula

n=C— 3 Fi() - (C—CFi(x)]

1"1(1,,, C(%)) is the class of all sequences {X;} of subsets of &. The
value of the functional (I 0 C(E )) &, depends only on the substitution
Fi={X;} and is equal to '

C("’ E AY,*(C—CAXJ)
i=1
7. e to - L
F— 2 X, - F-X,
=1

using the usual topological notation. By Baire’s theorem, we find that,
in every complete metric space®) and in every locally compact regular
space 20},

o
@) F— 3 X F—X=*%,
i. 6. that (I, (X)) ®=%F= the unit of C(&). On the other hand the
formula «, is not provable since the equation (a) does not hold in every
topological space.
The question whether there is a metric space which is functionally
free or functionally o-free, is unsolved.

§ 11. The Heyting calculus. Consider now the case where & is
the Heyting sentential calculus ®) denoted here by &,. Besides the sign
4, -, — the system &, contains also the negation sign *) 1. The axioms
of &, are the formulas T,-T; and the formulas T, and T,, where the
sign — is replaced by 7. It is known that the formulas (N) (where — is
relaced by 1) are theorems in o,.

The functional caleulus obtained by the method of § 2 where S=dx
and I=1I, will be denoted by &;. Clearly &5 is the functional caleulus
of Heyting.

) See Kuratowski [2], p. 320 and p. 323.

#) Bee Heyting [1], p. 53 and X.ukasiewicz [1], p. 86.

#) Since we shall simultaneously examine the systems S* and Sy and the § -
and 8,-algebras, it is convenient to use different negation siigns for these systemig.
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By 8y and 8% we shall denoted the sets of all formulas in &, and S5
respectively. Analogously L, will denote the Lindenbaum algebra de-
seribed. in § 4 where $*=4&; and I = the empty set.

The &§,-algebras will be ealled Heyting algebras. Tt is known that
(Hie; +,-,~,1pisa Heyting algebra if and only if

(a) CH; =, -,—>isa psewdocomplemented lattice ) with the unit
clement e and the zero element 0 ="Te, and

(hy Ta=a—=0 for every ae H ).

An S7-algebra is a complete Heyting algebra and conversely.

The letter H will exclusively denote a Heyting algebra.

Tf ¢ is a closure algebra, then the class H(C) of all open elements
of (' is a Heyting algebra with the following operations *): join a b
and meet a-b are in H(C) the same as in '; the operation a—b in H(O)
is defined by the egquation a->b= l((—-a) +b; the “ecomplementation” g
is defined by (b). Note that the operation — in H(() is other than in C.

- In the sequel we shall often consider lattices H ('} and their sublattices;

—» will always denote the operation in H(C) (not in (), and —a will al-
ways denole the complement of ain C.

" Tt & is a topological space, we write H{F) instead of Hg('(SE')}
= the Heyting algebra of all open subsets of &.

The system &, has the property (B), i.e for every Heyting al-
gebra H there is a complete Heyting algebra H* and an &,-isomorphism
# of H into H* which preserves a given enumerable set of infinite sums
and produets. One ecan even construct (by means of MacNeille's mini-
mal extensions ) of Boolean algebras) H* and h so that k preserves all
infinite sums and products in H ¥). However, for our purpose it is con-
venient to constrict another complete extension of H. This constraction
will be the subject of Theorem 11.2, which clearly implies the property (E).
Theorem 11.2 must be preceded by the following lemma.

11.1. Let C be a closure algebra, a,b e C, au,bye H(C). The egnation
a=(() Y a, holds if and only if a:lH(C)) ;L,au.

usgl
If ¢ is eomplete, then H(C) is also complete. Moreover, in this case,
the equation b=TX{(C) [] b.) is equivalent to b= H(()) []I bo-
' reb pel
The simple proof %) is omitted.

15) See MeKinsey-Tarski [3], p. I2. Clearly each pseudocomplemented
lattive may be treated as a Heyting algebra. See §12, p. 88. See also Birkhoff[1],
p. 147.

36) See MeKinsey-Tarski [2], p. 130.

37) Rasiowa [1], p. 112.

38) The proef is similar to Rasiowa [1], lemmas 3.15 and 3.16. The Brouwerian
algebras examined by Rasiowa [1] are dual to Heyting algebras. Therefore Rasiowa
{11 examines the class of all closed elements of a closure algebra C instead of H(C )-
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11.2. Let H be a Heyting algebra, a,,an ¢ H (welU,, n=1,2,.).
Suppose that

() a,= (H)

D (n=1,2,..).

Then there are a topological space E0 and an S, -isomorphism h
of H into H (&) which preserves all the sums (+) and all infinite products, i. e.

Ia,) = S h{a,,) for ’1:13:‘!5"’
wely,

and
b)=1{ || h(b,)i whenever b= (H) |[b,.
pel’ vel
By a theorem of Mc¢Kinsey and Tarski®®) we may suppose that
H=H(() where ( i3 a closure algebra. By 11.1 we have

(=) a,=((") *\i; [ for w=1,2,...

By .1 there is an &,-isomorphism & of the Boolean algebra C into
the Boolean algebra of all subsets of a set &40 such that & preserves
all the sums (++). We define the topology in & as follows: a set XCE
is said fo be open if it is the set-theoretical union of all sets h(a) where
ae H(C) and h(a)CX. We obtain from 11.1

ha,) = l{;h(a,,u)z(li(éf)} 2 May)  for n=1,2,...
U,

uely uely

Suppose b={H (("))U]€ [Vbn, i. e. b is the greatest open element in H((C)
such that HCh, for every ve V. If h(e)Ch(b,) for every veV, then ¢Cb,
and consequently h(e)Ch(b). Hence h(b) is the greatest open subset of 3{'
which is simultaneously contained in all h(b,). This means that h(b)
=I{Ga‘h(b,,)9, i.e (see 1L1) that h(b)=(H(Z)) [] k(b,). The &,-iso-
morphism A, restricted to H(C), is the required gSg;isomorphism.

Since &, has the property (E) and since (N) is a theorem of &,,
all the theorems 6.1, 6.2, 7.2, 7.3 hold in the case.of &*=dJ3. Those the(/;-
Tems may be treated as analogous to the Godel and SkoleﬁhLﬁWﬂheim
theorems, proved for the classical funetional caleulus. However, as we
shall see later (11.5 and 11.6), in all the definitions of satistiability and
validity (§ 6), we may restrict the domain of all arbitrary complete' Hey-
"cing algebras to the domain of all Heyting algebras lI«(&’ ) where F=£0
Is a topological space. Moreover, we can constriet a universal topologilca,l
space &, such that H(,) plays the same part with regard to the sy-
stem Sz as the two-element Boolean algebra B, with regard to the cl ‘
sical funetional calculus.

as-

#) MeKinsey and Tarski[2], p- 130. The Brouwerian algebras exami i
that paper are dual to Heyting algebras. gebras examined in
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For this purpose. besides the system &7 we shall also examine the
system eS’,’f constructed by the method of § 2 where we set S=4J, and
I = the set I, of all integers (see § 8). 8 is the set of all formulas in §;".

11.3. (Deduction Theorem). Every set RCS;(or: CS3) of closed  for-
mulas has the property (D) in &; (in 5{).

The proof is the same as for the classical functional caleulus.

Let QC <} be a consistent (in S set of closed formnlas. Let L (@)
be the Lindenmbaum algebra construeted by the method of §4 where
we set $*=J8F and R=(. By 11.2 there is a topological space &,p such
that H(%0) is an Sj-extension of ZZ(Q)._Analogously there is a topo-
logical space &, such that H (%)) is an Sf-extension of L,. Let &, be
the Cartesian product of all spaces &2 and &0 where ¢ fulfils the eon-
ditions mentioned above.

11.4. Each Heyting algebra H(¥Y) and H(F,0) is &, -isomorphic to
a complete subalgebra of H(¥,). The isomorphism mentioned above preserves
all infinite sums and products.

Consequently, H{(X,) is an Si-extension of L, and an Sr-ertension
of L,(Q).

This results from the following general theorem: Let & and ¥ be
two non-empty topological spaces. The transformation h(X)=X v Y is
an §,-isomorphism of H(¥) into H(& ~ ) which preserves all infinite
sums and produects. .

Theorem 7.3 can be formulated in the following stronger form:

11.5. A set RCSS is satisfiable if and only if it is satisfiable in I,
and C(&,).

The proof is the same as that of 10.5.

Suppose RCR; is satisfiable. Apply the notations of §8. By 11.3,
the set 2C~ has the property (D). By 8.2, R is satisfiable. By 7.2 R is
consistent. By 6.2 and 11.4 R is satisfiable in 7, and in H(&,). By 8.2
and 6.5 (B) R is satisfiable in I, and in H(&),).

The following theorem is another formulation of the completeness
theorem 6.1 for the system JSj.

11.6. The following conditions are equivalent for every formula a € o

(i) « is provable in &;;

(ii) e is valid;

(iii) {J, H(XE)| @p=—=F14) for every set J7=0 and for every topologi-
cal space F=£0;

{iv) ‘Inyﬂ(gz)) b=,

40) Clearly & is the unit element of H(&).
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The proof is the same as that of 10.6. The equivalence (i)=(iv)
in 11.6 can be otherwise formulated as follows:

11.7. The Heyting algebra II(E,) is functionally o-free.

The space &, may be replaced in 11.6 (iv) and in 11.7 by the space &y -
The space &, has an enumerable basis.

The problem whether there exists a metric space & such that H(¥F)
iz functionally free or functionally o-free, is unsolved.

§ 12. The positive ealculus. Consider now the case where o is
the positive sentential calculus denoted here by o&,. The system ., con-
tains only the three logical signs -+, ., . The axioms of &, are the for-
mulas T;-Ty.

The functional caleulus obtained by the method of § 2, where &=,
and [ =1,, will be denoted by SF and referred to as the positive fune-
tional calenlus.

By 8, and 87 we shall denote the sets of all formulas in &, and & *
respectively. Analogously L, will denote the Lindenbaum algebra de-
seribed in § 4 where §*=&F and I? = the empty set.

It is easy fo verify that &,-algebras are relatively pseudocom-
plemented algebras and conversely.

If (Hies —,-,—,7) is a Heyting algebra, then CHiyey +,-,-+>
is a4 psendoeomplemented lattice having the zero element. Conversely, if
{P;e ~—, .~ ;- is a psendocomplemented lattice with the zero element 0,
then, if we sct Ja=a~-0, the algebra ¢(P;je; +, -, -, > is a Heyting
algebra.

Consequently &f-algebras are complete Heyting algebras and con-
versely. ’

If 7 is a closure algebra, let #'((") denote the class of all dense
open elements of ' {an element we ¢ is dense if Ca = the unit of ).
If C=C(X), where & iz a topological space, we write H'(F) instead
of H'{C(E):.

If (s a closure algebra, then H(C) and H'(C) are examples of
refatively pseudocomplemented lattices. The operations -+ and - are the
same as in C. The operation a—¥ is defined ag I(—a+0b). Conversely

12.1. For every relatively pseudocomplemented lattice P there is @ clo-
sure algebra ' sueh that P=H'(C). M oreover, I'(C) is the class of all non-
zero open elements in C.

Let P, denote the relatively pseudocomplemented Iattice defined
ag follows. Elements of P, are elements of P and new added element 0.
The operations in P are extended over Py in the following way:

&¢+0=a and a-0=0 {for every aelP,,

0—~a=c¢ for every aeP,,

a—~0=0 for every aeP.

icm
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It is easy to verify that P, is a Heyting algebra with the unit e
and the zero element 0. By a theorem of McKinsey and Tarski®),
there is a closure algebra ¢ such that Py=II(C). Consequently P is the
class ‘of all non-zero open elements of C. If a,beP, then ab=£0 since
ab e P. Therefore, if a ¢ P, there is no open bC—a, b==0. Consequently
each a e P is dense in (.

The system ., has the property (E). This results from the fol-
lowing theorem:

12.2. Let P be « relatively pseudocomplemented lattice, a,,a,, ¢ P
{we U7y, n=1,2,..). Suppose that

(+) tp={(P) 3 (n=1,2,..).
u'el,

Then there are a topological space ¥=20 and an &$,-isomorphism h

of P into H(&) which preserves all the sums (+) and all infinite products.

Let P, have the meaning as in the proof of 12.1. Clearly (+) implies

(*) ay= (Po) .Z’Y Qs

uell,

(n=1,2,..).

Analogously, it b= (P) [] b, then also
S 30

(++) b=(Py)

I n..
vel

By 11.2 there isx a topological space £=20 and an Sy-isomorphism A
of P, into FI(¥) whieh preserves all the infinite sums (*) and all the
infinite products (+x). The isomorphism & reduced to the set P is the
required o§,-isomorphism.

Since the system . has the property (E), Theorem 6.1 may be
applied to the positive functional calenlus &F. Analogously to §§ 9-11,
we cai formulate this theorem in a more precise form (12.3). The do-
main of all $¥-algebras can be redueed to S*-algebras H(F) where &F is
a topological space.

By 12.2 there is a topological space &, such that H(F,) is an SF-ex-
tension (see § 4) of the Lindenbaum algebra L.

12.3. The jollowing conditions are equivalent for every formula ae S¥:

(1) « is provable in S

(i) a is valid;

(iii) (J, H(E)| D =& %) jor cvery set J=0 and for every topalogical
space &;

(iv) (To, H(%.))| Pe=&...

The proof is the same as that of 10.6. The equivalence (i)==(iv)
may be expressed as follows

12,4, The pseudocomplemented algebra H () is functionally o-free.
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Theorem 6.2 is not interesting in the case of the system S§* since
each set of formulas in & is satisfied in each set J=%0. In fact, if H is
a Heyting algebra and ¢k(iy,...,in)=¢ ¢ H, then (J,H) ®a({ji}, {gi}) =e.

Theorems 7.2 and 7.3 cannot he applied to &7 since S contains
no negation sign.

§ 13. The minimal functional calculus. Consider at least
the case where & is the minimal #) sentential caleulus denoted here
by &Su. The system &, contains the binary operators +, -, -, and a unary
operator ~ (the negation). The axioms of &, are the formulas T,-T,
where the sign — should be replaced by ~.

The funetional caleulus obtained by the method of § 2 where =4,
and I= 1, will be denoted by ¥ and referred to as the minimal func-
tional caleulus.

By 8, and S} we shall denoted the sets of all formulas in J and
s respectively. Analogously I, will denote the Lindenbaum algebra
described in § 4 where $*=4& and R = the empty set.

Sy-algebras are algebras <M ;€ 4+, -, —,~> such that

(a) <Mje; +, -, —>is arelatively pseudocomplemented lattice with
the unit e;

(b) ~a=a—>~e.
In fact, an §,-algebra M is a psendocomplemented lattice in which,
identically, (see T,)
({@—>~Db)>(b->~a)=e¢,

[ 4~ bCh— ~ a.
Replacing a by b and b by ¢ we obtain
a—~b=b—~aq.
Consequently (see footnote )y
~NA=E>~ A=~ €.
Conversely, if ~a=a—>~¢, then obviously (see T3)
a>~b=a>0b—>~e)=b->(a>~e)= b—+~a,
hence identically
(@>~b)—>(b—+~a)=e.

We see that the operation ~a is completely determined by the
operations +, -, and by the element ~e. Clearly the element a,= ~e
may be completely arbitrary but fixed. In particular, it.is possible that
~é=e. Notice that, if ~ ¢ is the zero element of M, then (if we replace
~ by ) M is a Heyting algebra.

“) Bee Johansson [1] and Eukasiewicz [1], p. 86.
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Let € Dbe a closure algebra and let P=H{(C) (or: P=H'(C)) be the
pseudocomplemented lattice of all open (or: open and dense) elements
in C. Let a, be an arbitrary but fixed element in P. Setting ~a=a—q,
we find that {P;e; +,-, -, ~> is an S.-algebra denoted by H(C, a,)
(or: by F'(C,a,)). Clearly ay==~e¢. If ('=C(X) where & is a topological
space, we write (&, ag) instead of H{C(X),a,.

13.1. For every S.-algebra M there is a closure algebra U and an
open element ag e O such that M= H'(C,a,).

This follows immediately from 12.1.

The system &, has the property (E). In fact.

13.2. Let M be an &S.-alyebra, ay,@me M (1t € Uy n=1,2,..). Sup-
pose that

(+) a=(M) ¥ a, (n=1,2,..).
-

uely,

Then there are a topological space &, an vpen set GCE and an 150~
morphism of M into H(X,() which preserves all the sums (=) and all in-
finite products.

This follows immediately from 12.2.

We infer that Theorem 6.1 may be applied to the minimal func-
tional calenlus SF. Analogously to §§ 9-11 we ean formulate this theo-
rem in a more precise form (13.3). The domain of all Sa-algebras can
be restricted to &F-algebras H(F,H).

By 13.2 there is a topological space &, and an open set G,C&,
such that H(&,,G,) is an Si-extension (see § 4) of the Lindenbanm al-
gebra L,.

13.3. The following conditions are equivalent for every formula o e 8

(1)« is provable in $3F;

(i) « is valid;

(i) {J, H{&, )i Pu=X for every set J==0, for ervery topological
space =0 and for every open set GC;

(iv) (Lo, H(&y, () Ca=F,.

The proof is the same as that of 10.6. The equivalence (i)=(iv)
may be expressed as follows. }

13.4. The Si-algebra H(F,, () is functionally o-free.

The actual formulation of 6.2 is not interesting in the case of the
system & since each set RCSY is satisfiable in each set Js=0. In faet,
it M is an SF-algebra with ~e=e, and if Gk (i ey i) =€ ¢ M, then
(J, .M)(D,,({j,»}, {¢*} =e for every u. The correct formulation of 6.2 should
be as follows.

13.5. Each consistent set RCSY, is satisfiable in the set 1, and in an

«~algebra M such that ~ e=te.
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The formulas (N) (with ~ instead of —) are not theorems in eS’,L'

However, the following theorem, analogous to 7.2, is true.

13.6. If a set RCSE of closed formulas is satisfiable in a sel J==0
and in an Sy-algebra M with ~ez=c, then R is consistent.

The proof is the same as that of 7.2. In fact, the proof of 7.2 is
based only on the inequality —es%e. Bach set RCS; of closed formulas
has the property (D).

The necessary correction in the formulation of 7.3 is evident.

§ 14. The system &.. The content of the first part of this paper
suggests the consideration of the following new system &,. The logical
signs of &, are +, ., — and the negation sign —. The axioms of &, are
the formulas T-Ty and (N) where the sign — is replaced by —.

&F is the corresponding functional calculus determined by &. by
the method described in § 2, where =4, and [ =1I,.

It is easy to see that (N;e; &, -, —, ~> is an S.-algebra if and
only if

(a) <¥je; -, -, —+> is a pseudocomplemented lattice;

(b) = e is the zero element of N

The condition (b) is the only restriction for the operation —. For
elements az=e the operation —a may be defined in a completely arbi-
trary way.

Clearly, theorems analogous to 11.5 and 11.6 can be proved for
the system &, The formulation and the proof of those theorems is left
to the reader.

Notice that the system &F contains a subsystem which may be
identified with the system 7. In fact, we can define the negation 7
in &F as follows

Tu=a-»-= (0—a)

(and analogously, in o.-algebras, Ta=a— —¢). This subsystem is com-
posed of all formulas « eS* which can be Wutten with the help of quan-
tifiers, the signs -+, -, -+, 7, but without — . Clearly each formula from
this subsystem may be trealed as a founula in &7, and it is provable
in &7 if and only if it is provable in &7. This follows from the Godel
theorems for the systems &F and §;.

On the other hand, §* may be interpreted as a subsystem of S7.
It is sufficient for this purpose to replace the sign = by the sign 71 in
each formula ne 8%,

A. Mostowski has remarked that formulas T,-Ty and (N) form

a new set of axioms for the Heyting propositional calculus 8, (the sign —
should be replaced by 7).
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§ 15. Applications. Let » be the transformation of 8% into 8%
defined by induction as follows#) (g, # belong to S8%):

(i) ( (x,l, o &y ) = TP (g ey T3t
(ii) y(a :>~~-w<u “yp(f) '
(i) pla-f) = p(a) - p(#)

(iv) «wﬁ)—l(«wv(w, ()

(v) p(ia)=T—ypa)

(i) (S a) =Sy

(vii) y !J __Iyzp a).

15.1. Let (' be a complete closure alqebm and J=0 any set. For erery
a € 8 and for every substitution
ri=jied Pk e FYIL0),
we have ¥)
(+ 7—)([)!'(@&{]11*(‘7“ ] H(C ‘G..-v‘{_if},équ;‘.}.

Consequently, (J,C)@.y=v if and only if (I, H (‘)} D, =

The easy proof of the first part (by induction on the lenfrfh of «)
is omitted. The second part folh)\n immediately from the first and from
the fact that each mapping e F* ,I JI{C)) is of the form I¢ where
@ e F¥J,0).

15.2. 4 formula a e S} Is provable in &} if and only if p(n) is pro-
vable in SF.

This follows immediately from 15.1 (where C=C(&). ¥ — an ar-
bitrary non-empty topological space) and from the equivalences (i)= (iii)
in Theorems 10.6 and 11.6.

13.3. There is an &;-isomorphism h of L, into H(L,).

The isomorphism % is defined by the eguation

hla)=1y(x) for aeS3.

Consequently, ]

15.4. If C"in an Sf-extension of L, then H(C) is an $f-extension of L,.

It follows directly from the definition that S3C8%. More exactly,
8% is the set of all « ¢S} which do not contain the negation sign

15.5. A formula u € 8% is provable in 83 if and only if it 1s provable in S3.

This follows immediately from the equivalences (i)=(iii) in Theo-
rems 11.6 and 12.3.

42) The analogous transformation for the sentential calculi of Heyting and Lewis
has been examined by McKinsey-Tarski [3], p. 13.
43) Clearly Ig¥ denotes the mapping (% (jys -re» 7))
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Theorem 15.5 implies that

15.6. Ly is Si-isomorphic to the Sy-subalgebra of L, formed of all la!
where a does not contain the negation sign.

Henee )

15.7. Each &$;-extension of L, is also an Sk-extension of L,.

Therefore the space X, may be replaced in Theorems 12.3 and 12.4
by &, or ;.

If we replace the sign ~ (or: --) by 7, we may treat each formula
aeSy (or: aeff) as a formula € 8% If « is provable in & (in §F) it
is also provable in &§;. If « ¢ §F is provable in &, it is also provable in
&% (in S7F). Therefore the subseript 4 in Theorems 15.5-7 may be repla-
eed hy u (by »).

B
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