2 . W. Sierpinski.

{ < a, toute droite située dans P et distincte de chaque droite ds, ot £<E,
contienne au plus deux points de la suite {ge}ecy. Il en résulte immé-
diatement que toute droite située dans P et distincte de chaque droite d,
ol £<a, contient au plus deux points de la suite {gsle<e-

Soit T, Pensemble formé de toutes les droites dg, ol £<<a, et de
toutes les droites du plan P qui passent par deux points an moins de
la suite {gs}ice. Comme a<<g¢, Tensemble T est de puissance <2%. Les
points d’intersection de la droite d, avec les droites de T, distinctes
de d,, forment donec un ensemble E, de puissance < 9% et la droite de.
contient 2% points qui n’appartiennent ni & E, ni & la suite {gs<e-
Si U'ensemble des points de d, qui sont des termes de la suite {g:}s<e €86
de puissance mg,, POSODS fu =1} dans le cas contraire, soit g. le premier
terme de la suite {Peli<y, tel que goucBe eb ¢uag: POWT f<a.

On voit sans peine que toute droite d gitude dans le plan eb dis-
tinete de chaque droite ds, ot & <a, contient au plus deux points de la
suite {gslsce-

La suite transfinie {gs}:<, est ainsi définie par Pinduction trans-
finie. Démontrer que ’ensemble S de tous les termes de cette suite satis-
fait aux conditions du théoréme n’offre pas de difficulté.
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An Extension of Sperner’s Lemma, with Applications
to Closed-Set Coverings and Fixed Points

By
F. Bagemihl (Rochester, N. Y.)

I. Introduction. The methods used in this paper are closely
patterned after, and intended to enlarge to some extent the range of,
those developed by Sperner, Knaster, Kuratowski, and Mazur-
kiewicz in [4] and [2]. We first intreduce below the notion of an n-di-
mensional m-plex, which is, roughly speaking, what one obtains from
an n-dimengional simplex by cutting out a finite number, m—1, of n-di-
mensional simplexes. Sperner’s Lemma (see [2]; [3], p. 193; [4]) is then
sharpened and extended (Lemma 1, Corollary 1) to m-plexes satisfying
certain simple conditions (pertaining either to the nature of m or to
the orientation of the constituent simplexes). This extension is applied
to obtain generalizations (Theorem 1, Corollary 2) of theorems — one
of Knaster, Kuratowski, and Mazurkiewicz (see [2]; [3], p. 194),
which they used to give a proof of Brouwer’s Fixed-Point Theorem,
and one of Sperner (see [2]; [3], p. 194; [4]), which he used to give
a proof of the invariance of dimension — on closed-set coverings; & fixed-
point theorem (Theorem 2) for n-dimensional m-plexes with m odd,
derived along the lines of the proof of Brouwer’s Theorem given in [2]
(or [3], p. 196); a corollary (Corollary 3) on retraction; and a general-
ization (Theorem 3) of Kakutani’s theorem [1] on fixed points.

II. Preliminaries. Let § be an n-dimensional (closed) simplex
with vertices g, vy,...,0s; We shall write S=(v,;...0,). Its k-dimensional
(0<k<n) face with vertices wiy,vi ..., Will be denoted bY Viy0y e Vi
Tf » >0, we shall denote by 8t =+ (vy0;...v,) the oriented simplex ob-
tained from § by giving ity vertices the order of succession indicated
by the order in which these vertices are written down.

An oriented n-dimensional simplex + (vjoi...v;) is said to have the
same orientation a8 -+ (Vo ...vs), if, and only if, there exists a continuous
deformation D{+ (vvy...0)} = + (vg?;...0,) such that D)= (0<<i<n).
I 4 (vv...0s) does not have the same orientation as - (¥gv;...v.), then
it is said to have the opposite orientation.

. 1*
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2) " 2;
Suppose that n>1. Let Si=(of" of’... vi"), o= (0§ oP... vP),

ey S= (@ 2. of™) (m>1) be n-dimensional simplexes satistying
the following conditions:

M 8C8 (i>1)

(II) the frontier of &, contains no point of & (i>1);

(III) 8; n8;=0 (4,j>1; 15=79).

"Denote by 8,[8,8;...8,] the (closed) set of points of 8, obtained
by deleting from §, all points of §; (¢>1) which do not belong to the
frontier of 8. We. call 8,[8,8;...8-] an n-dimensional m-plex (m=1,
8,=simpler; m=2, 8,[8,]=duplex; m=3, 8,8,8;]=triplez; etc.). If
each S; is given one of the two possible orientations to form an oriented
simplex Sf“, then we speak of an oriented m-plex Sf[S{S;"Si] The
vertices of S,,8,,...,8. are called the vertices of the m-plex, and the
k-dimensional (0<{k< n) faces of S;,8,,...,8 are called the k-dimensional
faces of the m-plex. It is convenient to regard the m-plex itself as its
n-dimensional face, and to denote this face by 5> 1P...e(P,

We say that an n-dimensional m-plex is divided simplicially into
subsimplexes, if it is divided into a finite number of n-dimensional sim-
plexes, the intersection of every pair of which is either the empty set
or a common k-dimensional face. .

Let an =n-dimensional m-plex 8,(8,8;...8,] (oriented or not) be
divided simplicially into subsimplexes. If, with every vertex w of these
subsimplexes, there is associated 2 number g(w) such that

" if w lies on a k-dimensional side 'ug) vg’...vfll‘) of the

m-plex, then @(w) is one of the numbers iy,iy,..., 1%,
then ¢(w) will be called a verlex function of this simplicial division of
the m-plex.

Relative to a particular vertex function ¢ of a specific simplicial
division of a given m-plex, a subsimplex (w,w;...,) such that g(uy)=14
(0<i<n) will be called a representative subsimplex. Let o stand for the
number of representative subsimplexes. '

Suppose that g(w) is a vertex function of a simplicial divition of
ann-dimensional oriented m-plex 87 [87787.. 871, where 85 = + (s, oD,
and that + (wyw;,...2,) is an oriented representative subsimplex (p(r)=1

for 0 iCn). I + (wow,...w,) has the same orientation as - (2§° of...o),

we call the former a positive representative subsimplez, otherwise, a ne-
gative representative subsimplex. Denote the number of positive (negative)
representative subsimplexes by ez(ow). Obviously o= gp+ on.

Let the number of the simplexes S y S5 yy S whose orientation is
the same as (opposite of) that of 87 be = (»), 80 that we have n+v=m—1;
such a simplex will be referred to as a - (r-) simplex.

Consider a subsimplex T'= (#yt;...1,) of a simplicial division, such
that ¢(t)=1i (0<i<n—1). If the orientation of + (tot;...1s) is the same
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as (opposite of) that of -+ (u§”o..o"), we say that +igh..twq is
a positive (negative) representative face of T. Let us denote the number
of positive (negative) representative faces of the subsimplex 7 by
ap(T)(an(T)). When we refer to -t f;...hy as a positive (negative) re-
presentative face, we mean simply that it is a positive (negative) repre-
sentative face of some subsimplex 7. Because of the assumed simpli-
ciality of the division, if +#'#...%7-; is-an (n—1)-dimensional face of
some subsimplex, this face is on the frontier of S{" 87 87 ... 837 if, and
only if, it is a face of precisely one subsimplex. On the other hand, it
is not on the frontier of 87 [87 87 ... 8571 it, and only if, it is a face of pre-
cisely two subsimplexes. In this case, if ¢(ff)=1i (0<<i<n—1), it is a po-
gitive representative face of one of these subsimplexes, and a negative
representative face of the other one. Let the number of positive (neg-
ative) representative faces on the frontier of Sf’ [S;’";S';‘L ...S,;ﬂ be oplon),
and let the number of positive (negative) representative faces on the
frontier of 87 (1<j<m) be o¥(eP).

By the term representative face we shall mean an (r—1)-dimensional
face wyw;...w,_; of some subsimplex of the division, such thab g(w;)=1
(0 i< n—1). Let y stand for the number of representative faces which
are not on the frontier of 87 [8F87..87%1 )

If wow, ... w,—y 18 & representative face on the frontier of S1 [SQ' S;’L Bl
then, because of (1), wyw;...%0,y must lie on +v’...vil, for some j.
If, in addition, j>1 and the orientation of --wyw,...%, 1 is the same as
(opposite of) that of +o§%P o, then -Fwyw,...w, is & positive
(negative) representative face if S}' is & »-simplex, but a negative (po-
sitive) representative face if 87 is a m-simplex.

By an incomplete subsimpler (let the number of such subsimplexes
be %) we mean a subsimplex T= (tyt,...%,) such that g(t)=1i (0 <i<n—1)
and g(t,) #=n. Clearly g(f,)=1{, where 0<{ip<n—1. If il lipetna
is a positive (negative) representative face of T, then B 797000 AU
is a negative (positive) representative face of T, and these two are the
only representative faces of T.

11I. Lemma 1. Let ¢ be a veriex function of a simplicial division
of an oviented n-dimensional m-plex. Then
(2) op+a=gn+r+1.

Proof. Let the m-plex in question be Sf[SQ‘S;S,,JT] We shall
prove the lemma by induction on #, verifying it for n=1, and, simul-
taneously, for » under the a.ssxlmptiop that it is true for some n—1>1.

‘We have : :
@ . Zap(T)=0pr+x (39
Here, as well as in what follows, the summation is extended over all
subsimplexes T of the simplicial division.

and Tay(T)=on+1-
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We shall prove (3); the proof of (3") is entirely analogous. Given
any T, it is one of the following (the numbers indicate the contribution
of T to Zap(T), or, 7, vespectively):
(a) a positive representative subsimplex (1=1+0),
(b) an incomplete subsimplex (1=0-+1),
() meither (a) nor (b) (0=0+0).
Each T thus contributes the same to the left as to the right of (3), so
that the equality holds.
We also have

{4) Zap(T)=0op+y and (4) Luy(L)==oay-+vp.

We may again confine ourselves to the first equality. Consider
any (n—1)-dimensional face of any subsimplex of the simplicial division.

This face is one of the following (the numbers referring this time to the
terms in (4)): '
(a') a positive representative face on the frontier of the m-plex

(1=1+0),
(b’) a negative representative face on the frontier of the m-plex
(0=0-0),
(¢') a representative face not on the frontier of the m-plex (1=0-1)
(@') not a representative face (0=104 0).
Evidently (4) is true.

From (3) and (4) we obtain

?

(5) op=0p+(p—y),
and (3') and (4') vield

&) en=on+(p—7z).

Eliminating y—y from (5) and (6"), we find that

m
© o o= or—ov=2 (o —off).
J==1

It n =(}), it is easily seen that of’=1, o?=0, and that o?=1

g 0, and 62’=0 or 1, according as 87 (j>1) is a =- or a »-gimplex
ence, op —oy=I1—n-+v and substituting this value in (6 > 00
that (2) is true for n=1. v (0 o see

If % >1, the induction hypothesis, appli ¥ ertex functi
Of. the simplicial division of ::—Pvf}) 'uﬁl).s.’. %,]ljllihfﬁdfloee? eb;utf: 113:3(;11]21]111?
Plicial division of the m-plex, yields o— o®=1. The sa.megwr 1111;011‘(
a,pph.ed to +v8’w§”...v§,’11 (>1) shows that G'g);—o'%)z—l 01: il "uc-’
cording as 8 is a #- or a v-8implex. Thus again op—oy=1—x + ’
This completes the proof of the lemma. e

An Extension of Sperner’s Lemma 7

Corollary 1. If m=v+1, then ¢ >0. If m is odd, then (even ij the
m-plex 48 mot oriented) o is odd (and hence o> 0). :
For if we add gy to both sides of (2), we obtain

p=2oy+r—m+1,

which shows that ¢ >0 if »>x. The addition of gr to both sides of (2)

yields
o==20p+ w—v—1,

which implies that ¢>0 if x>»+41. If we combine these two results,
we get the first part of Corollary 1, and the second part follows easily
from the fact that m==n-+»-41.

The assertion that p is odd if m=1, is “Sperner’s Lemma”.

IV. Theorem 1. Let Oy, 0y,...,C, be closed sets such that every k-di-
mensional face 1),%)715? ...1;,(-,’? of the n-dimensional m-plex Sf [S:”S: ;S':]
is contained in the union CpU CyU..U Cy. If wsEv+1, or if m is odd
(in which case it is not necessary to assume that the m-plex is oriented ),
then C,N 0 N ... C,#0. S

Proof. For a fixed natural number d, consider a simplicial division
of the given m-plex into subsimplexes of diameter less than 1/d. Let w
be an arbitrary vertex of any one of these subsimplexes, and let 1)%’ ”i(f...vg?
be that face (of the m-plex) of lowest dimension, which contains w. By
hypothesis, the face off of)... o is contained in the union Cj, U C;U ..U Cy,
and consequently there is at least one (specific) i; (0 <Ch<k) such that

(7) we C.
Put )
(8) @(w)=1z.
Then (1) is satisfied, so that ¢ is a vertex function of the simplicial di-
vision of the m-plex. From (7) and (8) we see that
(9) w € Oy

By hypothesis, either ms=»+1 or m {s odd, so that according to Corol-
lary 1, there exists a representative subsimplex, which we shall denote
by (wdwd...wd), where g(wf)=1 (0<ign). From (9) we obtain

(10) ufeC, (0<i<n).

Now let d tend to infinity. We may assume that 'y:‘}im wd exists,
and since the diameters, 1/d, of the subsimplexes tend to 0, we have

(11) . y = lim w? (ogiLn).
‘ o
Since, by assumption, the sets C; are closed, it follows from (10)

and (11) that y e C,1 0 N ... (1 C,y and the theorem is proved.
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Corollary 2. Let the n-dimensional m-plex S8 [‘?1 Q’F] be con-
tained in the union of the closed sets Cg,0y,...,Cqy and let the intersection
of the face sP= @V P 0. 0P with € (0<i<n; 1<i<m) be
empty. If m=v+1, or if m is odd (m which case it is not necessary to as-
sume that the m-plex is oriented), then CyyC;N...NC,=%0.

Proof. An arbitrary face vm v(’) vf”
in any face s (

of the m-plex is contained
with the same ]) for Whlc]l ¢ is none of the numbers
0y0yy «e, 7% ; 2004 therefore, since, by the hypothesis of Corollary 2, 1(’)17,({) 15,")
contains no point of any C; with such an index 4, this face must be con-
tained in the union of the remaining closed sets. Thus, the hypothesis

of Theorem 1 is satisfied, which implies the conclusion of Corollary 2.

V. Theorem 2. Let 8[8,8;...8,] be an n-dimensional m-plex, with
m odd, and let  be a continuous mapping of this m-plex into the n-dimen-
sional Buclidean space containing it, such that the frontier of the simplex S;
(1< jm) is mapped into the simplex S;. Then the m-plex has at least one
fized point under the mapping f.

Proof. Let &= (@ vP...cP) (1<j<m).

Agsume first that every k-dimensional face v") z,(J") ) o 8 (G>1)
is pa.rallel to the corresponding face ¢ vfp... ofY of 8. Rega.ld the vert-
ices ¥ (0<<iCn) as vectors of n-dimensional space, and let the points »
of the given m-plex be represented barycentrically in the form

(12) 2=bp 05"+ by o .+ b,

where every b >0, and by+b,+...+b,=1.
a unique barycentric representation:

Let o' =f(x). Then «' has

2=boo?+ b P .+ b D,

Because of the assumed special position of the simplexes §; relative
to §,, there exist fixed, nonnegative numbers af’ 0<i<n; 1<i<m)
with the following property: If # is on the (n—1)-dimensional face
o4 o0 Y of 8j, then, for the h-th coordinate of x in (12),
we have

b;,= aﬁ,’).

(In particular, if j=1, ¢¥=0 for every i). Since, by hypothesis, the
frontier of §; is mapped into S,

)
Consequently, if z is on the k-dimensional face vo) (’)

7 (/) )
if Vs U ,'u(,’ 7, are the remaining vertices of S,, then,

— a({)

—k in—k’
. ()] )
by + by + b,-k=1—~(al.i —i—aﬁé —}-...-}—ai‘l‘,l)_k),

b, =09, b, =g ’” ,
(13) AR Y

.o of 8, and.
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and

) 3 J. ‘
(14) b= al, by>df, b

iz

> a(” .
ik

- Let C; be the set of points & of the m-plex, for which b;<Cb;.
to the continuity of f, the sets C,,0y,...,0, are closed.

We shall show that they satisfy the hypothesis of Theorem 1. In-
deed, suppose that there were a point 2 of a k-dimensional face v v3... o
of the m-plex, which did not belong to the union C;OUC’,IU UGy,
Then we should have

Due

bi’0>b"0’ b;1>b b‘,k>b

and hence, by (13), !

ipyeery ik

(15) Biy+ b+ + b > 1— (6] + 0 .. +a) ).

On the other hand, by (14),

(16) by +b +. -|—b >a”) ag’+...+ag)_k

Combining (15) and (16), we should obtain

BY + by B> 1,
which is impossible.
Let y « 00, 0...NC,; ¥ exists according to Theorem 1. By the
definition of C;, we have, for z=y:

by< by, 1< Dyyeee, b by
and hence

1= B + By oo by <ok by oo + B=1.

Oonsequently b;=b5;, and therefore y'=y, ¢ e, ¥ is a fixed point under
the mapping f.

Now let us remove from our m-plex Sl[S 8;...8,] the special as-
gumption made at the beginning of the proof. Leb Si[8%85...85] be an
auxiliary m-plex, however, for Which the special assumption does hold,
and which is the image of 8y[S;8s... S] under a homeomorphism g of 8,
onto S% such that g(S;)=8f (L<j<m). Then, according to the first part
of our proof, the mapping gfg—! has a fixed point a*< S7{83 85 ... 87], so that

gfg=(z*) =",
and hence
foHe*)=g—He"),
which means that the point g-—(#*) € 83[S:S;...
This completes the proof of Theorem 2.

S.] is fixed under f.
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VI. RBemarks. The following example shows that if z=»+41 or
if m 15 even, then the conclusion of Theorem 1 or of Corollary 1 need
not hold.

Let » be 2 nonnegative integer, 87 =+ (i'oP...v%) be an n-di-
mensional oriented simplex, and w be the barycenter of the (n—1)-di-
mensional face, ¥v$"... o, of §F. (If n=1, then w=1+{"). On the open
segment 1w, choose 2v-1 Points, 2¢,Y1,21,Y2y%0y -y Yuy 2 i the order
0,200 Y1, 21 YasBas ey Yoy 2ny 2. It will be convenient to denote v’ by v,

Call the »-dimensional simplex

1) (L 1 (1)

(yi e v vs ...v}Blluj_H,.. Vy) 0<i<y; 1<<i<n)

Aisgy where 7(j)=j+1 for j=1,2,...,n—1, and r(n)=0. Put

Ci= U Ay

OLi<lw

(0<E<<n; k£41)

and
h=8— U Ci
0Lk
Py .
(where X denotes the closure of the set X). The sets C; (0<k< n) are
obviously closed, and

amn

Ogrl?{n(r"l’c = {203 Y1s%1) Yoy 2oy ey Yoy Bl

On the open segment 2w, choose a point uy,. If » >0, then on the
open segment &y,., (0<r<r—1) choose two points, Uy Uryy,1, 0 the
Order 2, %;,ti1,1,%m+1. The points chosen all belong to (.

On the open segment y,2,, take a point hy, and let H, be the (n—1)-
dimensional hyperplane which contains %, and is perpendicular to the
segment yow. If »>0, then on the open segment Uz (1< 7<) take
two points, k/,k,, in the order y,,k;, h,,2. Let H.,H, be the (n—1)-di-
mensional -hyperplane which contains #;, L., respectively, and is per-
pendicular to the segment .

In the interior of the simplex A (0<<E<Cn; k=£1), select a point gy
which belongs to H, If »>0, then in the interior of the simplex 4,
(1<r<y; 0<k<n; k1), select two Points, u/x, %, which belong to H;,H,
respectively.

Consider the following 2v--1 oriented n-dimensional simplexes:

(18) Rj: + (’Cl'ra Ury oo um) (0 \<\7'<’V),

(19) Ry = (ty0 Uy .. Uyy) 1<r<v);

(the simple.zxes (19) are defined only if »>0). These simplexes are mutu-
ally exclusive and lie in the interior of 8 s 80 that they may be regar-
ded as constituent simplexes of an oriented n-dimensional m-plex

icm
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RITRY B ... RfRIRE...R}), where m=2»+2, an even number. The ES |
simplexes (18) are =-simplexes, the » simplexes (19) are »-simplexes,
and consequently w=v4 1.

Lot Cr (0<<i<n) be the intersection of ¢ with the m-plex just
defined; obviously O is closed. These closed sets and our m-plex satisfy
the condition expressed in the first sentence of Theorem 1. From the
construction of the simplexes (18) and (19), it is clear that the m-plex
does not contain the points 24, 41,2y, ¥a,%; ..., ¥u,%. This means, if we bear

(17) in mind, that
N0 N...NCi=0.

Thus, the conclusion of Theorem 1 is false. This implies, in view
of the proof of Theorem 1, that =0 for some vertex function of some
simplicial division of our m-plex, so that the conclusion of Corollary 1
is false too.

It is also possible to give an example which shows that Corollary 2
may fail to hold if w=»41 or if m is even. .

Theorem 2 is obviously false if m=2, for there is no fixed point
under the mapping of a duplex §,[S,] into the barycenter of S,.

Theorem 2 has the following corollary (cf. [3], p. 197):

Corollary 3. The frontier of an n-dimensional m-plex 8i[8,8;... 8],
with m odd, is not a retract of the m-plex.
Proof. Let p be a point on the frontier of the m-plex; p, then, is

on the frontier of precisely one §;. By 5 we mean the point of inter-
section of the frontier of §; with the ray emanating from p and passing

through the baryeenter of §. Clearly p=%p, and p=p.
Now suppose that there existed a retraction, f, of the mn-plex onto
its frontier. Then, by definition (see [3], p. 75),

(20) flx)=1= for every x on the frontier of the m-plex.

According to Theorem 2, the function mj' has a fixed point, 7. e.,
there exists a point «, (naturally on the frontier of the m-plex) such

that f(@,) =z, Hence, j(x,)=To5~a,, contradicting (20).

Theorem 2 can be used to extend Kakutani’s generalization of
the fixed-point theorem of Brouwer. The proof of this extension is for-
mally so analogous to Kakutani’s proof of his Theorem 1 in [1], that,
after making a few necessary remarks, we may refer the reader to Ka-
kutani’s paper for the details of the proof. With this in mind, our no-
tation and terminology will be chosen as close to Kakutani’s as possible.

Let 8§ =8,[8,8;...8,] be an r-dimensional m-plex with m odd, and B
be a closed, bounded region (inr-dimensional Buclidean space) containing 8.
Denote by K(R) the family of all nonempty, closed, convex subsets of E.
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A point-to-set mapping z—®(z) « K(R) of § into K(R) is called upper
semi-continuous, if lLmxz,=wm,, y, e P(r,), and limy,=y, imply that
Yo € D(x,). Our extension of Kakutani’s theorem may be stated as follows:

Theorem 3. Let x—Z(x) be an upper semi-continuous poini-to-set
mapping of an r-dimensional m-plex S=8,[8,8;...8,], with m odd, into
R(R), such that if 2 is on the frontier of 8; (1<(j<<m), then O(2) is a subset
of the simplex 8;. Then there exists an x,e 8 such that zy e D(x,).

By the n-th barycentric simplicial subdivision of the m-plex 8, we
mean the simplicial division of § defermin d by the n-th barycentric
subdivision of every subsimplex of some fixed simplicial division of 8.
If, now, in Kakutani’s proof, we replace the appeal to Brouwer’s Theorem
by an appeal to our Theorem 2 proved ahove, and make several obvious
minor modifications, we obtain a proof of our Theorem 3.
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Sur la caractérisation topologique de I'ensemble
des bouts d'une courbe

Par
B. Knaster et M. Reichbach (Wroctaw)

Généralités. Nous entendons ici par courbe tout continu (en-
semble compact et connexe dans un espace séparable) de dimension 1
au sens de Menger!), par l'ordre du point p d’un ensemble Z, en sym-
bole: ord(p,E), le plus petit nombre cardinal pour lequel il existe dans
tout entourage de p (ensemble ouvert contenant p) un entourage dw
méme point dont la frontiére a exactement ce nombre des points com-
muns avec F, enfin par bout (extrémité) de E — tout point pour lequel
ord(p,B)=12%). Cette égalité implique que pe F lorsque E est fermé.

Le livre — déja classique — de Menger?), auquel ces notions sont
empruntées, contient des théorémes dont il résulte en particulier que
Pengemble C! des bouts d’une eourbe ¢ gueleonque est un G5 de dimen-
sion -0 %). La question s’impose, si les deux derniéres propriétés néces-
saires sont déja caractéristiques, c’est-d-dire & la fois suffisantes pour
quun ensemble soit celui des bouts d’une courbe. Les considérations
qui suivent donnent réponse & cette question.

Il y a d’abord lien de fixer ce qu’il y est & caractériser fopologi-
quement. Etant donné un ensemble B, l'existence d’une courbe C telle
que B=C* n’est un invariant de ’homéomorphie de B ni dans des espaces
topologiques fort pauvres (tels, en particulier, que la dendrite 4 5) dont
nous ferons, & la fin, un usage essentiel pour la solution du probléme),
ni dans des espaces trés vastes (celui de Hilbert par exemple). Envisa-
geons en effet les deux exemples.

1) Voir C. Kuratowski, Topologie I, Monografie Matematyczne. Warszawa-
Wroclaw 1948, deuxiéme édition, p. 162.

2) K. Menger, Kurventheorie, Leipzig-Berlin 1932, p. 97.

3) Op. cit., p. 99.

4) Ibidem, p. 105 et 112. .

5) Cf. H. M. Gehman, Concerning the subsels of a plane continuous curve, Annals
of Mathematics 27 (1925-1926), p. 42 et 43, ot une construction analogue est employée
3 un but différent. La partie de 4 située au-dessous de l'axe des z est homéomorphe
3 celle de la courbe de Gehman située au-dessus de cet axe.
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