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On Quasi-Compact Measures
By

C. Ryll-Nardzewski (Wroclaw)

This pdper *) is a continuation of paper On Compact Measures by.
Marczewski[6] (quoted in the sequel as C). Here I consider only o-mea-
sures, i.e. countably additive measures in a countably additive field”
and I define the notion of quasi-compact o-measure. This notion is equi-
valent to that of perfect measure introduced hy Gnedenko and Kol-
mogoroff?l).

It is known that the distribution function of a measurable real
funetion f(ir), i. e. the set function defined by the formula 1 (E) =1 f (E)]
can be considered either for Borel sets E, or for all sets E possessing
measurable inverse images f (E). In the case of Lebesgue measure these
two variants are not essentially different, as was proved by Hartman 2).
Theorem VI proves that this property is characteristic of quasi-compact
measures.

In connection with the abstract characterization of the Lebesgue
meagure, formulated by Halmos, von Neumann [3] and Rohlin [7]
I shall prove that in the domain of separable measures the compactness,
the quasi-compactness and the point-isomorphism with the Lebesgue
measure are equivalent (Theorem VII).

Other relations between the compactness and quasi-compactness
are stated in Theorems II and II1I.

Applying Marczewski’s theorem on the invariance of compactness
under Cartesian multiplication (C 6 (vii)), I shall prove that quasi-com-
pactness has the same property (Theorem VIII).

In this paper I shall preserve the terminology and notation of C,
in particular the letter X will always denote a set, on subsets of which
the considered measure is defined. :

*) Presented in part to the Polish Mathematical Society, Wroclaw Section, on
November 17, 1950. C'f. the preliminary report [8].

1} Gnedenko and Kolmogoroff [1], § 3, p. 22-23. This equivalence Iollows
from Theorem VI.

%) Hartman [4], p. 21, T1I.
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In many proofs I shall use Marczewski’s notion of characteristic
funetion of a sequence of sets3) H,CX, i. e the function A defined ag
follows:

. [0ifrxeX—E,-
where 6=\ it g B,

1. Definitions. Homomorphisms. Measurable functions.
We say that a c-measure p in a o-field M is quasi-compact, if each se-
quence of sets @, e M satisfies the following condition:

(q) for each >0 there is a @, ¢ M such that ;(Q,) >1—y and
that the sequence {Q,Q,} forms a compact class.

Let u# be a g-measure in a a-field M of subsets of A and » & o-mea-
sure in a o-field N of subsets of ¥. A mapping b of X onto Y is called
a homomorphism of « to » if M is the eclass of all A Y(B), where B ¢ N
and it u[hY(E)]=rB)%). If h is a homomorphism after the removing
of & subset of X of measure i zero and a subset of Y of measure v zero
then it is called an almost homomorphism *).

If kh iz one-one then it is called an Zsomorphism or an almost-iso-
morphism respectively.

It is easy to prove the following

Lemma, If v is an almost-homomorphic image of n and v is com-
pact [quasi-compact), then u is also compact [quasi-compact). ]

A s-measure x in a o-field M being fixed, we call measurable a real
tunction f sueh that (@) ¢ M for each open set G of real numbers.

Theorem I. A c-measwre u in 6 o-field M is quasi-compact if and
only if, for each real valued measwrable function there exwists . set Q ¢ M
such that »(Q)=1 and that j(Q) is a Borel set.

Sufficiency. Let ¢, e M for n==1,2,... and h be the characteristic
fanction of the sequence of sets {@,}. By hypothesis there is a Borel set
¥Ch(X) such that u[h*(¥)]=1. For each Borel subset E of ¥ we put

W) = u[h Y B)].

Let M, denote the smallest o-field containing the sets ¢, and A ().
It is easy to see that the c-measure v is an almost homomorphic image
of u|M,. By Lemma, the measure «| M, is quasi-compact and consequently
the sequenee {@,} satisfies condition (q). Therefore the measure 118
quasi-compaect.

Necessity. Let u be a quasi-compact g-measure, f — a real mea-
surable function and {I,} the sequence of all rational intervals. Then

) Marezewski [5].
4) Cf. Rohlin 7], p. 109 and 112.
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the sequence f (/) satisfies the condition (q)
is a set Qe M such that M(@e)>1—yn and that

() the sequence {Q,f"(I,)} forms a compact class.

The number » >0 being arbitrarily small, it suffices to prove that
(@) is closed. Let y denote a point of accumulation of 1(@) and {I,}
a decreasing subsequence of {I,} such that (y)=1, L .

— ; -3
Qof (L) 0 for k=1,2,..., then by («) Qo Hy)5£0, i ¥ ef(Q,).

and consequently there -

Since

2. Compactness and quasi-compactness.

Theorem II. Bach compact o-measure is quasi-compact.

Proof. Let x4 denote a compact o-measure in 3 o-field M of sub-
sets of X. By virtue of C4(iii), there exists a compact clags FCM
which approximates M with respect to .. Let Qne for n=1,2_...
Then there exist two sequences of sets: P,, R, ¢ F such that ’,

PnCQn: R,,CX——-Q,,,
:"’(QH_ Pﬂ) = 7]/2"-“7 (X — Qn)‘_lfn] < 7]fI2"+"~
Let us put

LS

Q=[P 1),
Obviously u(@o) >1—1n and Q.Q,=P,Q, ¢ F.. Consequently, it fol-
lows from C2(ii) and (jii), that the sequence {@.Qo} forms a compact class.

Theorem. III. A c-measure i a o-field M of subsets of X is quasi-
compact if and only if the o-measure | D); is compact for each denumerable
class DC M.

Sufficiency. Sinee u|(D); is compact by hypothesis and conse-
quently quasi-compact by Theorem II, there is a set Q e (D)g sueh that
#M@)>1—n and that the class of sets of the form EQ, where E e D is
compact.

Necessity. Let MDD={E,}. The characteristic function k of {B:}
transform (D); onto the o-field B of sets Bh(X), where B runs over the
class of Borel sets. The function % determines a homomorphism of the
measure u|(D); to uy|B. In view of Theorem I, there is in A(X) a Borel
set 4 guch that ;,(4)=1. Consequently the measure 44| B i3 compact 5),
whence, by the Lemma the measure u(D)g is also compact.

Theorem III implies directly

Theorem IV. If u is a quasi-compaci o-measure in a o-field M,
and if L is a o-subfield of M, then w|L is also quasi-compact:

®) This follows from the compactness of each s-measure defined in the field of
all Borel subsets of a Borel linear set, of C4.
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3. Completion. Distribution funection. A ¢-measure u is cal-
led complete if any subset of a set of measure zero is measurable. By the
completion of a o-measure u we mean the smallest extension of n to
a complete oc-measure ¢).

Theorem V. Let y and u be o-measures in o-fields M and M re
spectively, and let us suppose that u is the eompletion of u. The measure
i 18 compact [quasi-compact) if and only if u is compact [quasi-compact]..

Obviously the ecompactness of u# implies the compactness of u.
Conversely, let x be compact and let F be a compact class which ap-
proximates 3 with respect to u and for which F=F;CM (cf. C4 (iii)).
It suffices to prove that the class FM approximates M. In fact, it is

easy to see that for each Ej;e¢ M and ;>0 there exist the sets P, F
and E, e M such that

P,,CE,CP,CE, for n=1,2,..
and
WPy~ E) =0,  p(By—Eq)<n/2r  for n=0,1,..,

whence Py P,...=EE;..=PeFM and u(E,—P)<y.

For quasi-compactness the proof reduces to the case of compact
measures in virtue of Theorem ITI.

For each measurable function f we denote by M, the o-field of
all linear sets E with ™ (E)e M. The set function

A B)=plf(E)] for EeM

is called the distribution function of f.
Obviously » is a o-measure and if » is complete, then u, is also
complete.

In what follows we shall also consider the partial measure u/B,

where B is the field of all Borel linear sets.

Theorem V1. A complete oc-measure u is quasi-compact if and only
if for each real measurable function § the o-measure ur is the completion
of us|B.

Sufficieney. If f is a measurable function then f(X)e M, Since
47 is the completion of uy 13, there exists a Borel set ACf(X) such that
alf AN = pur(4)==1. It follows from Theorem I that . is quasi-compact.

Necessity. Let 7*(¥) e M, where f is & measurable function. Put
flw) it flx)eY,

g(w):{yo i fn)ey,

%) Cf. e. g. Halmos [2], p. 55.
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where y, is any point with y,< Y. Since g is measurable and n I8 quasi-
compact, there ix by Theorem T a Borel set 4 Cg(X) such that u[g 1 (4)]=1.
It is easy to see that

A—(y) CY and s A —A{¥o)]=puY).

Consequently, s, is the completion of pr B, (. e d.

Let us remark that Theorem VI can be formulated without the
assumption on the completness of u, as follows: A o-measure ¢ is quasi-
compact if and only if for each real measurable funetion 7 the completions
of yir and B are identical.

4. Separable measures. A o-measure » is separable ?) if there
exists a basis {£,} of measurable sets, i. e. such a sequence of sets that

10if x5ty then 2 € E, and y ¢ E, for a number »u,;

2° the measure » coincides with the completion of n M,, where
M, denotes the o-field spaned on {E,l.

Obviously

(=2) A, separable o-measure remains separable after the removing
of any set of measure zero.

A o-measure is called almost-separable if it is separable after the
removing of a set of measure i zero.

Theorem VII. The compactness, the quasi-compaciness, and the
point almost-isomorphism with the Lebesque measure are equivalent for
almost-separable complete c-measures.

Each o-measure almost-isomorphic with the Lebesgue measure
being obviously compact and each compact g-measure being quasi-
compact in view of Theorem 1I, it remains to prove that each almost-
separable and quasi-compact c-measure x is almost-isomorphic with the
Lebesgue measure. Obviously, we can suppose that ux is separable. Let
{E,} be a basis of measurable sets and & the charaeteristic function of
the sequence {E,}.

By Theorem 1 there is a Borel set YC (X)) such that g 7 ¥) =1.
In view of (#=) Wwe may assume 7 (¥) =X. Since { E,} have the property 1¢,
h is a one-one mapping of X on the Borel get Y and the Borel subsets
h(E,). of Y have the analogous property in ¥. Consequently, & trans-
forms the o-fieldl 2, on the field of all Borel subsets of Y 8). In virtue
of 29, i is an isomorphism of x and a c-measure in Y, isomorphic with
the Lebesgue measure.

%) Halmos and von Neumann [3], p. 333.

5) Because for each Borel linear set ¥, the ¢-field spanned by a sequence of Borel
subsets of T” with the property 19 is that of all Borel subsets of T. ('f. Halmos and von
Neumann [3], p. 335 and 337.

Fundamenta Mathematicae. T. XL. 9
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Theorem VIT permits us to prove that some measures are not quasi-
compact. E. g. no proper extension of Lebesgue measure to a o-measure
i3 quasi-compact. In fact, by Theorem III it suffices to prove that no
proper extension of Lebesgue measure to a separable o-measure is com-
pact. By a theorem of Rohlin®) such extensions are not isomorphic
with the Lebesgue measure and consequently are not compact.

5. Cartesian multiplication. Let #, be a o-measure in 2 o-field
M, of subsets of a space X, (where ¢ runs over any set 7' of indices).
In addition to the terminology of C, we call the o-product of {u} the
g-extension of any product of g. :

Theéoremn TIIT. Each o-product y of quasi-compact c-measures {y}
is quasi-compact.

By virtue of Theorem III it suffices to prove that y{( D), is com-
Pact for each denumerable class D C(M);. Obviously there is a family
{D;} of denumerable classes such that

DCM,  (D,;C[Y Dy
t

We denote by L the last field. .

It follows from C6(vii), that ul L is compact, whence, by "Theo-
rems I and 111, the measure p|(D)s is compact, q. e d.

Notice that Theorem VIII can be generalized as follows: Each
produet of guasi-compact o-measures has the quasi-compact s-extension.

References

) [11 B. W. Gnedenko and A. N. Kolmogoroff, Ipede.tsune Jacipede denu s
AR CYHH HESACHCUMBIY C.TYHANHBY GE.LOLH, Nocrsa-Jenmnrpaz 1949,

12} P. R. Halmos, Measure Theory, New York 1950.

[3] — and J. v. Neumanun, Operator Methods in Classical Mechanics IT, Aunals
of Mathematics 43 (1942), p. 493-510.

[4] 8. Hartman, Sur deur notions de fonctions indépendantes, Colloquium Ma-
thematicum 1 (1948), p. 19-22.

[3] E. Marczewski (Szpilraju), The Characleristic Function of a Sequence of Sets
and Some of its Applications, Fund. Math. 31 (1938), p. 207-223.

[8] — On Compact Measures, Fund. Math. 40 (1953), p. 113-124.

e : -
{71 W. A, Rohlin. 06 aenvsnmr wnnamusr meopuy  qepp. Marenatnuecrni

Cdopunx 26 (1949), p. 107-150.

{8] C. Ryll-Nardzewski, On Quasi-compact Measures, Collogiumn Mathema-
tieurn 2 (1951), p. 321-322.

Instytut Matematyczny Polskiej Akademii Nauk
Mathematical Institute of the Polish Academy of Sciences

%) Roblin [7], p. 123.

icm

Undecidability of Some Simple Formalized Theories
By

A. Janiczak | (Warszawa)

The aim of this paper?) is to prove the undecidability of the theory
of two equivalence-relations and of some related formalized theories 2).

With the exception of theorems 2 and 3 in section 2, T consider
theories whose logical basis is the functional caleulus of the first order
with identity. Individual variables ay,x,,... are the only variables which
occur in those theories 3).

Negation, conjunction, alternation, implication, and equivalence
will be denoted by the symbols ', -, +, —, <>; the quantifiers by the
symbols (Ez;), (r;). Multiple conjunctions and alternations will be de-
noted by Greek capitals 77 and X. The sign =~ will be used as the symbol
of identity within the theory, whereas == denotes the relation of identity
in the meta-theory.

When describing a formalized theory I shall enumerate its extra-
logical constants and axioms. It is known that those data determine
the theory univoquely. :

§ 1. The theory T, of two equivalence relations. The extra-
logical constants of the theory T; are two functors Ry, R, each with two
arguments. The axioms of T, are as follows:

(1) (ar)a, Roxy,

(2) (ryr) (1 Rody—as Kgury ),

(3) (@ aa) iy Ry o - 20 Ryty =y Rity),
(4)  {w)a By,

(3) () (g Ry vy 00 Ry iy,

1) This paper is a modified version of a paper submitted by the author shortly
before his unexpected death (July 1951) to the faculty of Mathematies of the University
of Warsaw. to obtain a lower scientific grade in Mathematics. The paper was prepared
for print hy A. Mostowski with the assistance of A. Grzegorezyk.

2) For the notion of decidability see Tarski [6], p. 50. Numbers in hrackets
refer to the bibliography at the end of the paper.

3} In the terminology of C‘hurch [1] the theories are hased on the applied func-
tional ealeulus of the first order with identity.
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