References

[1] A. D. Alexandroff, Additive Set Functions in Abstract Spaces, Introduction, Chapter 1, Recueil Mathématique 8 (1940), p. 307-348.

[2] - Additive Set Functions in Abstract Spaces, Chapter 2 and 3, Recueil Mathé-

matique 9 (1941), p. 563-628.

- [3] E. Sparre-Andersen and B. Jessen, On the Introduction of Measures in Infinite Product Sets, Danske Vid. Selbskab. Mat. Fys. Medd. 25 (1948), no. 4, p. 1-7.
- [4] B. W. Gnedenko and A. N. Kolmogoroff, Предельные распределения для сумм независимых случайных величии, Москва-Ленинград 1949.

[5] P. R. Halmos, Measure Theory, New York 1950.

- [6] A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin 1933.
- [7] E. Marczewski, Indépendance d'ensembles et prolongement de mesures (Résultats et problèmes), Coll. Math. 1 (1948), p. 122-132.
- [8] Ensembles indépendants et leurs applications à la théorie de la mesure Fund. Math. 35 (1948), p. 13-28.
- [9] On a Test of the \u03c3-Additivity of Measure, Cas. pro pest. mat. a fys. 75 (1949), p. 140.
 - [10] Measures in Almost Independent Fields, Fund. Math. 38 (1951), p. 217-229.
 - [11] On Compact Measures, Coll. Math. 2 (1951), p. 321.
- [12] C. Ryll-Nardzewski, On Quasi-Compact Measures, Coll. Math. 2 (1951). p. 321-322.
 - [13] W. Sierpiński, Hypothèse du continu, Warszawa-Lwów 1934.

Instytut Matematyczny Polskiej Akademii Nauk Mathematical Institute of the Polish Academy of Sciences

On Quasi-Compact Measures

C. Ryll-Nardzewski (Wrocław)

This paper *) is a continuation of paper On Compact Measures by Marczewski [6] (quoted in the sequel as C). Here I consider only σ-measures, i. e. countably additive measures in a countably additive field and I define the notion of quasi-compact o-measure. This notion is equivalent to that of perfect measure introduced by Gnedenko and Kolmogoroff 1).

It is known that the distribution function of a measurable real function f(x), i. e. the set function defined by the formula $\mu_f(E) = \mu[f^{-1}(E)]$ can be considered either for Borel sets E, or for all sets E possessing measurable inverse images $f^{-1}(E)$. In the case of Lebesgue measure these two variants are not essentially different, as was proved by Hartman 2). Theorem VI proves that this property is characteristic of quasi-compact measures.

In connection with the abstract characterization of the Lebesgue measure, formulated by Halmos, von Neumann [3] and Rohlin [7] I shall prove that in the domain of separable measures the compactness, the quasi-compactness and the point-isomorphism with the Lebesgue measure are equivalent (Theorem VII).

Other relations between the compactness and quasi-compactness are stated in Theorems II and III.

Applying Marczewski's theorem on the invariance of compactness under Cartesian multiplication (C 6 (vii)), I shall prove that quasi-compactness has the same property (Theorem VIII).

In this paper I shall preserve the terminology and notation of C, in particular the letter X will always denote a set, on subsets of which the considered measure is defined.

^{*)} Presented in part to the Polish Mathematical Society, Wrocław Section, on November 17, 1950. Cf. the preliminary report [8].

¹⁾ Gnedenko and Kolmogoroff [1], § 3, p. 22-23. This equivalence follows from Theorem VI.

²⁾ Hartman [4], p. 21, III.

In many proofs I shall use Marczewski's notion of characteristic function of a sequence of sets 3) $E_n \subset X$, i.e. the function h defined as follows:

$$h(x) = \frac{i_1}{3} + \frac{i_2}{9} + \frac{i_3}{27} + \dots, \quad \text{ where } \quad i_n = \left\{ \begin{array}{l} 0 \ \text{ if } \ x \in X - E_n, \\ 2 \ \text{ if } \ x \in E_n. \end{array} \right.$$

1. Definitions. Homomorphisms. Measurable functions. We say that a σ -measure μ in a σ -field M is *quasi-compact*, if each sequence of sets $Q_n \in M$ satisfies the following condition:

(q) for each $\eta > 0$ there is a $Q_0 \in M$ such that $\mu(Q_0) > 1 - \eta$ and that the sequence $\{Q_0 Q_n\}$ forms a compact class.

Let μ be a σ -measure in a σ -field M of subsets of X and v a σ -measure in a σ -field N of subsets of Y. A mapping h of X onto Y is called a homomorphism of μ to v if M is the class of all $h^{-1}(E)$, where $E \in N$ and if $\mu[h^{-1}(E)] = v(E)$. If h is a homomorphism after the removing of a subset of X of measure μ zero and a subset of Y of measure v zero then it is called an almost homomorphism.

If h is one-one then it is called an isomorphism or an almost-isomorphism respectively.

It is easy to prove the following

Lemma. If v is an almost-homomorphic image of μ and v is compact [quasi-compact], then μ is also compact [quasi-compact].

A σ -measure μ in a σ -field M being fixed, we call measurable a real function f such that $f^{-1}(G) \in M$ for each open set G of real numbers.

Theorem I. A σ -measure μ in a σ -field M is quasi-compact if and only if, for each real valued measurable function there exists a set $Q \in M$ such that $\mu(Q) = 1$ and that f(Q) is a Borel set.

Sufficiency. Let $Q_n \in M$ for n = 1, 2, ... and h be the characteristic function of the sequence of sets $\{Q_n\}$. By hypothesis there is a Borel set $Y \subset h(X)$ such that $\mu[h^{-1}(Y)] = 1$. For each Borel subset E of Y we put

$$\nu(E) = \mu[h^{-1}(E)].$$

Let M_0 denote the smallest σ -field containing the sets Q_n and $h^{-1}(Y)$. It is easy to see that the σ -measure ν is an almost homomorphic image of $\mu|M_0$. By Lemma, the measure $\mu|M_0$ is quasi-compact and consequently the sequence $\{Q_n\}$ satisfies condition (q). Therefore the measure μ is quasi-compact.

Necessity. Let μ be a quasi-compact σ -measure, f — a real measurable function and $\{I_n\}$ the sequence of all rational intervals. Then

the sequence $f^{-1}(I_n)$ satisfies the condition (q) and consequently there is a set $Q_0 \in M$ such that $\mu(Q_0) > 1 - \eta$ and that

(*) the sequence $\{Q_0f^{-1}(I_n)\}$ forms a compact class.

The number $\eta>0$ being arbitrarily small, it suffices to prove that $f(Q_0)$ is closed. Let y denote a point of accumulation of $f(Q_0)$ and $\{I_{n_k}\}$ a decreasing subsequence of $\{I_n\}$ such that $(y)=I_{n_1}\cdot I_{n_2}\cdot \ldots$ Since $Q_0f^{-1}(I_{n_k})\neq 0$ for $k=1,2,\ldots$, then by (*) $Q_0f^{-1}(y)\neq 0$, i.e. $y\in f(Q_0)$.

2. Compactness and quasi-compactness.

Theorem II. Each compact o-measure is quasi-compact.

Proof. Let μ denote a compact σ -measure in a σ -field M of subsets of X. By virtue of C4(iii), there exists a compact class $F \subset M$ which approximates M with respect to μ . Let $Q_n \in M$ for n = 1, 2, ... Then there exist two sequences of sets: $P_n, R_n \in F$ such that

$$P_n \subset Q_n, \qquad R_n \subset X = Q_n,$$

$$\mu(Q_n - P_n) < \eta/2^{n+1}, \qquad \mu[(X - Q_n) - R_n] < \eta/2^{n+1}.$$

Let us put

$$Q_0 = \prod_{n=1}^{\infty} (P_n + R_n).$$

Obviously $\mu(Q_0) > 1 - \eta$ and $Q_nQ_0 = P_nQ_0 \in F_{sb}$. Consequently, it follows from C2(ii) and (iii), that the sequence $\{Q_nQ_0\}$ forms a compact class.

Theorem III. A σ -measure μ in a σ -field M of subsets of X is quasi-compact if and only if the σ -measure $\mu|(D)_3$ is compact for each denumerable class $D \subset M$.

Sufficiency. Since $\mu|(D)_{\beta}$ is compact by hypothesis and consequently quasi-compact by Theorem II, there is a set $Q \in (D)_{\beta}$ such that $\mu(Q) > 1 - \eta$ and that the class of sets of the form EQ, where $E \in D$ is compact.

Necessity. Let $M \supset D = \{E_n\}$. The characteristic function h of $\{E_n\}$ transform $(D)_{\beta}$ onto the σ -field B of sets Bh(X), where B runs over the class of Borel sets. The function h determines a homomorphism of the measure $\mu|(D)_{\beta}$ to $\mu_h|B$. In view of Theorem I, there is in h(X) a Borel set A such that $\mu_h(A) = 1$. Consequently the measure $\mu_h|B$ is compact h0, whence, by the Lemma the measure $\mu(D)_{\beta}$ is also compact.

Theorem III implies directly

Theorem IV. If μ is a quasi-compact σ -measure in a σ -field M, and if L is a σ -subfield of M, then $\mu|L$ is also quasi-compact:

³⁾ Marczewski [5].

⁴⁾ Cf. Rohlin [7], p. 109 and 112.

⁵) This follows from the compactness of each σ -measure defined in the field of all Borel subsets of a Borel linear set, of C4.

3. Completion. Distribution function. A σ -measure μ is called *complete* if any subset of a set of measure zero is measurable. By the *completion* of a σ -measure μ we mean the smallest extension of μ to a complete σ -measure 6).

Theorem V. Let μ and $\overline{\mu}$ be σ -measures in σ -fields M and \overline{M} respectively, and let us suppose that $\overline{\mu}$ is the completion of μ . The measure μ is compact [quasi-compact] if and only if $\overline{\mu}$ is compact [quasi-compact].

Obviously the compactness of μ implies the compactness of $\overline{\mu}$. Conversely, let $\overline{\mu}$ be compact and let \overline{F} be a compact class which approximates \overline{M} with respect to $\overline{\mu}$ and for which $\overline{F} = \overline{F}_b \subset \overline{M}$ (cf. C4 (iii)). It suffices to prove that the class $\overline{F}M$ approximates M. In fact, it is easy to see that for each $E_0 \in M$ and $\eta > 0$ there exist the sets $P_n \in \overline{F}$ and $E_n \in M$ such that

$$P_{n+1} \subset E_n \subset P_n \subset E_0$$
 for $n = 1, 2, ...$

and

$$\bar{\mu}(P_n - E_n) = 0$$
, $\mu(E_n - E_{n+1}) < \eta/2^{n+1}$ for $n = 0, 1, ...$,

whence $P_1P_2...=E_0E_1...=P \in \overline{F}M$ and $\mu(E_0-P)<\eta$.

For quasi-compactness the proof reduces to the case of compact measures in virtue of Theorem III.

For each measurable function f we denote by M_f the σ -field of all linear sets E with $f^{-1}(E) \in M$. The set function

$$u_t(E) = u[t^{-1}(E)]$$
 for $E \in \mathcal{M}$

is called the distribution function of f.

Obviously μ is a σ -measure and if μ is complete, then μ_f is also complete.

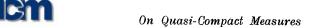
In what follows we shall also consider the partial measure $\mu_f|B$, where B is the field of all Borel linear sets.

Theorem VI. A complete σ -measure μ is quasi-compact if and only if for each real measurable function f the σ -measure μ_f is the completion of $\mu_f|B$.

Sufficiency. If f is a measurable function then $f(X) \in M_f$. Since μ_f is the completion of $\mu_f[B]$, there exists a Borel set $A \subset f(X)$ such that $\mu[f^{-1}(A)] = \mu_f(A) = 1$. It follows from Theorem I that μ is quasi-compact.

Necessity. Let $f^{-1}(Y) \in M$, where f is a measurable function. Put

$$g(x) = \begin{cases} f(x) & \text{if } f(x) \in Y, \\ y_0 & \text{if } f(x) \in Y, \end{cases}$$



where y_0 is any point with $y_0 \bar{\epsilon} Y$. Since g is measurable and μ is quasi-compact, there is by Theorem I a Borel set $A \subset g(X)$ such that $\mu[g^{-1}(A)] = 1$.

It is easy to see that

$$A - (y_0) \subset Y$$
 and $\mu_f[A - (y_0)] = \mu_f(Y)$.

Consequently, μ_f is the completion of $\mu_f B$, q. e. d.

Let us remark that Theorem VI can be formulated without the assumption on the completness of μ , as follows: A σ -measure μ is quasi-compact if and only if for each real measurable function f the completions of μ_f and $\mu_f | B$ are identical.

4. Separable measures. A σ -measure μ is separable τ) if there exists a basis $\{E_n\}$ of measurable sets, i. e. such a sequence of sets that

1° if $x \neq y$ then $x \in E_{n_0}$ and $y \in E_{n_0}$ for a number n_0 ;

 2^{0} the measure μ coincides with the completion of μ M_{0} , where M_{0} denotes the σ -field spaned on $\{E_{n}\}$.

Obviously

(**) A, separable σ -measure remains separable after the removing of any set of measure zero.

A σ -measure is called *almost-separable* if it is separable after the removing of a set of measure μ zero.

Theorem VII. The compactness, the quasi-compactness, and the point almost-isomorphism with the Lebesgue measure are equivalent for almost-separable complete σ -measures.

Each σ -measure almost-isomorphic with the Lebesgue measure being obviously compact and each compact σ -measure being quasi-compact in view of Theorem II, it remains to prove that each almost-separable and quasi-compact σ -measure μ is almost-isomorphic with the Lebesgue measure. Obviously, we can suppose that μ is separable. Let $\{E_n\}$ be a basis of measurable sets and h the characteristic function of the sequence $\{E_n\}$.

By Theorem I there is a Borel set $Y \subset h(X)$ such that $\mu h^{-1}(Y) = 1$. In view of (**) we may assume $h^{-1}(Y) = X$. Since $\{E_n\}$ have the property 1°, \hbar is a one-one mapping of X on the Borel set Y and the Borel subsets $h(E_n)$ of Y have the analogous property in Y. Consequently, h transforms the σ -field M_0 on the field of all Borel subsets of Y 8). In virtue of 2°, h is an isomorphism of μ and a σ -measure in Y, isomorphic with the Lebesgue measure.

⁶⁾ Cf. e. g. Halmos [2], p. 55.

⁷⁾ Halmos and von Neumann [3], p. 333.

⁸⁾ Because for each Borel linear set \overline{Y} , the σ -field spanned by a sequence of Borel subsets of Y with the property 1° is that of all Borel subsets of Y. Cf. Halmos and von Neumann [3], p. 335 and 337.

Theorem VII permits us to prove that some measures are not quasi-compact. E. g. no proper extension of Lebesgue measure to a σ -measure is quasi-compact. In fact, by Theorem III it suffices to prove that no proper extension of Lebesgue measure to a separable σ -measure is compact. By a theorem of Rohlin 9) such extensions are not isomorphic with the Lebesgue measure and consequently are not compact.

5. Cartesian multiplication. Let μ_t be a σ -measure in a σ -field M_t of subsets of a space X_t (where t runs over any set T of indices). In addition to the terminology of C, we call the σ -product of $\{\mu_t\}$ the σ -extension of any product of μ_t .

Theorem VIII. Each σ -product μ of quasi-compact σ -measures $\{\mu_t\}$ is quasi-compact.

By virtue of Theorem III it suffices to prove that $\mu | (D)_{\beta}$ is compact for each denumerable class $D \subset (M)_{\beta}$. Obviously there is a family $\{D_i\}$ of denumerable classes such that

$$D_t \subset M_t$$
, $(D)_{\beta} \subset [\sum_t (D_t)_{\beta}^*]_{\beta}$.

We denote by L the last field.

It follows from C6(vii), that $\mu | L$ is compact, whence, by Theorems I and III, the measure $\mu | (D)_{\beta}$ is compact, q. e. d.

Notice that Theorem VIII can be generalized as follows: Each product of quasi-compact σ -measures has the quasi-compact σ -extension.

References

- [1] B. W. Gnedenko and A. N. Kolmogoroff, Предсланые распределения для сумм независимых случайных величин. Москва-Ленинград 1949.
 - [2] P. R. Halmos, Measure Theory, New York 1950.
- [3] and J. v. Neumann, Operator Methods in Classical Mechanics II, Annals of Mathematics 43 (1942), p. 493-510.
- [4] S. Hartman. Sur deux notions de fonctions indépendantes, Colloquium Mathematicum 1 (1948), p. 19-22.
- [5] E. Marczewski (Szpilrajn), The Characteristic Function of a Sequence of Sets and Some of its Applications, Fund. Math. 31 (1938), p. 207-223.
 - [6] On Compact Measures, Fund. Math. 40 (1953), p. 113-124.
- [7] W. A. Rohlin, Об основных понятиях теории меры. Математический Сборник 25 (1949), р. 107-150.
- [8] C. Ryll-Nardzewski, On Quasi-compact Measures, Colloqium Mathematicum 2 (1951), p. 321-322.

Instytut Matematyczny Polskiej Akademii Nauk Mathematical Institute of the Polish Academy of Sciences

Undecidability of Some Simple Formalized Theories

В

A. Janiczak 1 (Warszawa)

The aim of this paper 1) is to prove the undecidability of the theory of two equivalence-relations and of some related formalized theories 2).

With the exception of theorems 2 and 3 in section 2, I consider theories whose logical basis is the functional calculus of the first order with identity. Individual variables $x_1, x_2, ...$ are the only variables which occur in those theories 3).

Negation, conjunction, alternation, implication, and equivalence will be denoted by the symbols $(x, \cdot, +, -, \leftrightarrow)$; the quantifiers by the symbols (Ex_j) , (x_j) . Multiple conjunctions and alternations will be denoted by Greek capitals Π and Σ . The sign π will be used as the symbol of identity within the theory, whereas π denotes the relation of identity in the meta-theory.

When describing a formalized theory I shall enumerate its extralogical constants and axioms. It is known that those data determine the theory univoquely.

- § 1. The theory T_1 of two equivalence relations. The extralogical constants of the theory T_1 are two functors R_0 , R_1 each with two arguments. The axioms of T_1 are as follows:
- $(1) \quad (x_1) x_1 R_0 x_1,$
- (2) $(x_1x_2)(x_1R_0x_2 \rightarrow x_2R_0x_1),$
- (3) $(x_1x_2x_3)(x_1R_0x_2\cdot x_2R_0x_3 \rightarrow x_1R_0x_3),$
- $(4) \quad (x_1)x_1R_1x_1,$
- (5) $(x_1x_2)(x_1R_1x_2 \rightarrow x_2R_1x_1)$,

³⁾ Rohlin [7], p. 123.

¹⁾ This paper is a modified version of a paper submitted by the author shortly before his unexpected death (July 1951) to the faculty of Mathematics of the University of Warsaw, to obtain a lower scientific grade in Mathematics. The paper was prepared for print by A. Mostowski with the assistance of A. Grzegorczyk.

²⁾ For the notion of decidability see Tarski [6], p. 50. Numbers in brackets refer to the bibliography at the end of the paper.

²⁾ In the terminology of Church [1] the theories are based on the applied functional calculus of the first order with identity.