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fm.lt-e sequence of squares K, with diameters 24, and with middle
points (zy,y,). The sequence of subharmonic functions

1
Un(,Y) “Tog it log [#—&n+y —yn]

gznlw%erges asymptotically to 0 in K, but it diverges at every point
; ‘ ]

4. Divide a fixed square K into four squares. Denote by K
and K, the squares lying on the principal diagonal of K zu'ld. b‘;
K3 and Ky, the two remaining squares. Now divide oa(:h of the
4 squares Ky (j=1,...,4) into four squares and denote the sqli(»rex
t'hus obtained by Ky, (i=1,...,4%) so that the squares Iy ; (i=1, ... 4. -fL2l)
lie on principal diagonals of Ky ;. Continue this proé}ess t(; ixifini‘t r
s? that Koiq; (fi:l,...,%&"“) lie on principal diagonals of K y
(7=1,...,4"). Let 2h, be the diameter of K, 7, and let ( "
the middle point of K. '

The sequence of subharmonie funetions

mﬂ;}r?/n.l)t be

Feat
O L
Un(B,y) = 2 Tog 2 log ("v—mn,p + f’/—yn,p)
-

=1

approximates pointwise the function u(w,y)

=1 in K, but it
1not converge asymptotically to w(2, ) ’ 1t does
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On Partition of an Ordered Continuum.
By

Josef Novak (Praha).

The result of the consecutive division of an ordered conti-
puum is & system of intervals which satisfy certain conditions
(Theorem 3). By these conditions — as in axioms 1040 — a sy~
stem b of intervals of an ordered confinuum € — called a parti-
tion of O — is defined. From a thorough study of these axioms
a row of properties emerges concerning the partition P and the
ordered continuum C. For instance: For a given ordered conti~
nuum O all the partitions have the same cardinality equal to the
least cardinal m(C) of the set which is dense in C. Therefore the
cardinality of the partition of C is topologically invariant.

In this paper the following theorem ig proved: Let € be an
ordered continuum. Then there exists an ordinal ¢ of power <m(C)
such that C is similar to a lexicographically ordered set whose ele-
ments are transfinite sequences of zeros and ones of order-types <¢
(Theorem 4). It is interesting to compare this result with the follow-
ing theorem of Sierpirskil): For a given ordinal » every ordered
set of power 8, is similar to a lexicographically ordered set whose
elements are transfinite sequences of zeros and ones of type w,.

We shall prove at the end of the paper that a necessary and
sufficient condition for all ordered continua of power %, to contain
a point with character cg, is the inequality: Ng<2¥ (Theorem 5).
From this it follows that every ordered continuum of power ok
and of m(C)==, contains a subset which is dense in ¢ and whose
points have character ¢, (Corollary).

1) See W. Sierpinski, Sur une propriélé des ensembles ordonnés, Fund.
Math. 36 (1949), p. 56.
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Let ¢ be an ordered continuum 2). We say that the system P
of closed intervals?) of C is a dyadic partition or simply a partition
of C it the following four conditions are satisfied:

1° For any two intervals XeP and Y e the product XN¥ =X
or XNY =X or XNY is not an interval at all.

20 CeP.

30 For any interval X e% there are two subintervals X, ¢'p
and X, € P such that X=X,V X, and such that the product X, "X,
contains exactly one point?). . i

40 The product of every monotone system of intervals be-
longing to P is either a one-point-set or an interval which belongs
to the system .

In the sequel, in Theorem 3, it will be proved that in every
ordered continuum there exists at least one partition.

Let XY or ¥ >-X mean the same as X==Y¥ and XDY. Then
every partition of an ordered continnum is a partially ordered
system with respect to the relation <.

Lemma 1. Let P be a dyadic partition of an ordered conti-
nuum C. Then B does not contain any infinite (strictly) deereasing
sequence ¥ &1, >...SY,>... of intervals 1, ¢P.

. Proof. Suppose, on the contrary, the existence of a parti-
tion P of an ordered continuum C and the existence of a sequence

Yo7, ST, Y,e B, n=1,2,... init. Then UY, is an inter-
1

v?.l in 0. Denote by P’ the subsystem of all intervals X'« 5, X'DUY,.
Since € eP’ we have P'+0. Now, we shall prove the following
statement:
If X' eP’ and if X'=2,0X, where X, e and X, eP t
ither T o8 Tcp VA, 1€ and X, eP then
Otherwise there would be UY,[X ] "n (X,
) : X, and LY, X, con-
sequently there would exist an integer m such that nei’t,,her 32’", CA.
nor ¥,CX, so that ¥,NX, and ¥, NX, are intervals both dit‘f

2) We assume that every ordered continu i
] 1 'y ¢ um contains two different end-
points. The (}egeuerate interval which contains only one point or whicl is
empty set will not- be counted as an interval. o

s N
Pa‘rﬁﬁo)nhiore giﬁrzﬁly vivoe could define for any natural number p > 1 the p-adic
y postulating 1°, 20, 4° and by replacing 3¢ b i \dition:
o : ‘ y 3% by the following condition:
oot ﬂit f}(:l‘ anydmt;erval, XeP there are p intervals X;e95 such th:t X= L_)OL'
e product X;MXit1, i=1,2,..,p—1, contains exactly one point.

a1
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ferent from ¥,. On the other hand ¥,==UX, and ¥, CUY,CX'=
=X,U X, so that either X; (Y, or X,({ Y. Therefore ¥ ,NXF4X;
or ¥,,0X,==X, But this contradicts the property 1°

If XeP', YeP’ then UF,CXNY and according to 10 we
have XO¥=X or XNY=Y, in other words XCY or YCX. Hence
9§’ is a monotone system and from the property 49 it; follows that
NP’ eP’. According to 3° there are two intervals P, eP and PreP
such that OP'=P,UP, and that P,OP, conbains only one point.
As we have just shown either P, P’ or P,eP’ so that NP'CP,
or NP'CP,; consequently NP'#=PUP,. This is a contradiction.

Lemma 2. Let P be o dyadic partition of an ordered conti-
nuum O and let X «P. Then there exists emactly one couple of inter-
vals X, eP and X,eP satisfying the condition 30.

Proof. Let X eP. Let X;eP, i=1,2,3,4, be intervals such
that X =X,UX,=X,UX, and that the products X,NX, and X;0X,
contain no more than one point. From 1° it follows that either
X,=X, and X,=X, or X, =X, and X,=4X,.

Definitions. Let P be a dyadic partition of an ordered con-
tinwum C. According to the condition 3¢, inside every interval XeP
there is a common end-point of two intervals X;eP and X, eP
where X=X,UX,. According to lemma 2 there is only one point
in X like this. It will be called a d-point of the interval X. The
set of all d-points in ¢ will be denoted by D(%) or simply by D.

Let A, A=0C, be an interval or a point of an ordered con-
tinuum €. Let P be a dyadice partition of ¢ and let A be no d-point.
Denote by B(4) the subsystem of all intervals X ¢ such that
¥D4 and X=4=4. According to the conditions 1° and 2° the sub-
system P(4) is non-void and monotone. Hence, according to
lemma 1, the system P(4) is a well-ordered system with respect
to the order-relation 3. The system P(4) will be called the chain
of A. We define the order of A as an ordinal which equals the order-
tiype of the subsystem $P(4). For A=( we define the order a=0.

1f 4 i a d-point of an interval X P then A ¢X;NX,, where
X,eP, X,eP and X, UX,=X. Then there are two different sub-
systems P,(4)CP and P(4)CP the first of which consists of all
intervals of P containing A inside or as a right end-point and the
second consists of all intervals of b containing the point 4 inside
or as a left end-point. Both subsystems Pi(4) and Pr(4) are non-
void and well-ordered with respect to the relation <3. The system
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Pi(4) will be called the left and. P,(4) the right chain of the point 4
50 that there are two order-types: a of the system P,(4) and § of
the system P.(4). The ordinal max (a,8) will be called the order
of the point A.

The order of A will be denoted by a(P,4) or by a(4) or

simply by .
’ The least ordinal «(%P) such that there is no interval X P
of order «(X)>a(P) will be called the order of the partition P.
From the conditions 3° and 4° it follows that the order «(#) of any
point zeC and the order a(P) of any partition of the ordered con-
tinuum € are limit ordinals.

Lemma 3. Let P be a dyadic partition of an ordeved conti-
nuum C ond let X, e P and X, e B be two different intervals of the
same order. Then the intervals X, and X, have at most one point in
.common.

Proof. If X, e, X,¢P, X,=+=X, and if the product contains
at least two different points then according to 1° either X,CX,
or X,CX;. Therefore either X,eP(X,) or X, «P(X,). Consequently
_C‘(X1) =+ a(Xy).

Lemma 4. Let P be a partition of an ordered continuum C.
Then there is a one-to-one correspondence between the system P and
the set DCC of all d-points.

Proof. Let X P be any interval of . Let us attach to X
its- d-point whose existence is secured by the condition 3°. Accor-
ding to lemma 2 there is only one d-point of X like this. Therefore
we have a mapping f of P into the set D. This mapping is one-to-
one. Indeed, let X e, YeP, X+=¥. If the product XNY con-
taing at most one point the corresponding d-points of X and ¥
are different from each other, one of them being inside X and the
other ingide Y. If XNY is an interval then by 1° we have either
XCY or YCX. Consider the first possibility XCY¥. According to 3°
there are two intervals ¥; e, YyeP such that ¥=Y,UY, and the
product ¥; MY, contains only one point viz. the d-point of ¥. With
respect to the property 1° we have either XCY, or XC¥, so that
the d-point of ¥ is not inside X and therefore it is different from.
the d-point of X which lies inside X. The same holds true in the
case for which YCX. To complete the proof it is sufficient to re-
mark that for every d-point #¢C there is an interval X P whose
d-point is the point ». Therefore f maps P onto D.
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Tet ¢ be an ordered continuum. Then € is dense in itself.
Therefore among subsets which are dense in C there is a subset
with the least power. This power will be denoted by m(C). In the
sequel we shall use the symbol m(C) only in the meaning just stated.

Theorem 1. Let C be an ordered continuwm. Then every parti-
tion P of C has the power m(0). The set D(P)CC of all d-points is
dense in C_and has the power m(0) as well.

Proof. Let P be a partition of an ordered continuum C. Sup-
pose on the contrary that the set D(P)CC of all d-points is not
a dense subsetin (. Then there is an interval 7C(C such that IND=0.
According to 4° we have ICNP(I) P so thab according to 3° the
product NP(I)=2%,UZ, where Z, P, Z,eP and the product Z,NZ,
consists of one d-point only. Since this d-point does not belong to I
we have ICZ, or ICZ, Consequently Z, eP(I) or Z,eP(I) and
NP(I)CZ, or NP(I)CZ,. This contradicts the fact that OP(I) =
=Z,UZ,. Therefore D is dense in C.

Now, we shall prove that the power of the ordinal «(%) ean-
not exceed the power m(0) which will be denoted (for the present)
by 8. As a matter of fact, if the power of a(P) were >R,y there
would exist in P a chain of power N,4s. Consequently there would
be a decreasing or an increasing sequence of points in C of power
Ro+1>m(0), which is impossible. If the power of a(P) were Nyt
then we could choose a subset D'CD of power m(C)=s, which
iz dense in €. With respect to lemma 4 there would exist an ordi-
nal a, of power &, such that the d-points of all intervals X ¢ with
a(X)>a, would belong to the set D—D’, the power 8oy with an
isolated index being a regular power. Let Y eP and a(¥Y)>a,.
Since the set D’ is dense in C there is a point &’ « D’ lying inside Y.
Then 2’ is a d-point of a certain interval Z e and we have
o' e Z,NZ, where Z,ePB, Z,eP, Z,VUZ,=7Z. As 2’ is inside Y and
inside Z, it follows from condition 1° that ¥ CZ or ZCXY. The first
possibility YCZ= %,U Z, would imply (according to 1°) that ¥CZ,
or ¥CZ, This is not possible because 2’ is an interior point of Y.
Therefore ZCY¥. Then Y e B(Z) or ¥Y=2Z so that a<a(¥)<a(Z).
But in this case z' e D—D’ and we have a confradiction. Thus the
power of a(P) is <m(C).

Aecording to lemma 3 the cardinal number of all intervals
Y P which have the same order a(Y)=4 is <m(0). As we have
just proved the cardinal number of all orders « of all intervals
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X P is likewise <<m(C). Therefore the power of the system P
is <m((C) and according to lemma 4 the power of the set D is also
<m(C). On the other hand the power of the set D is =m(C) be-
cause D is dense in 0. Thus — with respect to lemma 4 — the proof
is complete.

Now, let P be a partition of an ordered continttum (. The
system P is partially ordered with respect to the relation <. An-
other partial order can be introduced into P by defining X. <Y
for X P, ¥ P, whenever the product XNY contains at most
one point and if there are two points e X and ye¢Y such that
z<y (in O). It is easy to see that for any two intervals X3, ¥ eP
one and only one of the four relations holds: X <¥, Y=Y, Y.< X,
X|Y and that X-<Y, ¥-<Z implies X <Z. ' '

Let P be a dyadic partition of an ordered continuum (. Let
C* be the system of all chaing of all points @ e (. Now, some points
# ¢ 0 have only one chain, the other points — the d-points — have
two different chains. Let P(x)CP and P(x,)CP be two different
chains; in the case v=uwm=w, that is in the case in which & is
a d-point, we shall understand by P(z,) the left and by P(w,) the
right chain of the point #. It is evident that neither PB(z,)CP(w,)
n0or P(w,) CP(a;) holds. Thus there exist two intervals I, e Pl )— P(a,)
and J,eP(z)—P(,) which have — by 1° — at most one point in
common. Therefore we can define the order in C* in the following
manner: P(w) <P(zp) if I,- <I,. Then C€* is an ordered system
and < is an order-relation in it. Indeed, we may easily see that
for two different chains P(z,) and “P(x,) either 5}3(931)"<£B(m5) or
P(z) < P(e;) and moreover the rule of transitivity holds true: If
Play) <P(zy) and P(ay) <P(zy) then P(oy)<Play).

Every d-point has two different chains which are-the neigh-
bour-elements in C*. If ‘we consider only the right chaing PB,.(z)

of d-points & ¢ ¢ we get an ordered system € wi i
red syst without § -
elements. This follows from: Y ' nelenhonr

Theorem 2. Let B be a dyadic partition of an ordered conti-
nuum C. Let C b.e the system of all chains in B of points weC from
which oll left chains have been omitted. Then C s similar to C.

Proof. After omitting all left chains from the system C*
we get a system C such that every point # ¢ ¢ has only one chain
in C. There is a one-valued mapping of ¢ onto €. Tf z <z
%<0, 2,6 C then there are two different chaing Py e ‘Cl fmily
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WP(ity) € €. Therefore there are two intervals I, e P(uwy)—P(z,) and
I, e Play)—B(x,). With respect to 1° we have - I;- <1, so that
P(@,) < P(2,). Thus the mapping is a similarity function.

Theorem 3. Let C be an ordered continuum. Then there exists
at least one partition B of C.

Proof. Let BC ( be a subset which is dense in . Let us choose
a point b e B inside €. Then b is an end-point of two intervals I,- <1,
such that I,UI,=C and bel,NI,. Having already constructed
intervals Iiy...¢<nCC for all ordinals A<a whereby iz=0 or =1
we shall define the intervals I[oil__jg_“(§<a) in the following way: If «
is an isolated ordinal we choose inside every interval Tiyty.tpo(sa—n)
a point of the set B which divides the interval into two closed sub-
intervals I,o,l_,,ig___o(g\/a)-<I,~011,,.1§...1(5<a) the first of which is to the
left of the other. If « is a limit ordinal we form all products

ZQ Ligiy.odgte<ns where ig=0 or =1 for £<a. Each such product is
[

either a closed interval or a point; in the former case we shall
denote it by Iigy..ie.. <o) We continue this construction as long as
there is the least ordinal & for which there does not exist any
interval I;ogi,'_ig,.,@@). Such an ordinal does exist. As a matter of
fact the number of all possible intervals of the 'continuum C
equals the number of different couples of points of ¢ whose car-
dinal number equals the cardinal number of C.

Denote the system of all intervals Iioilmig.‘.(g‘(a) where a<,
including ) the interval C, by the symbol &. Our task will be to
prove that & is a partition of the continuum C.

From the construction it follows at once that the conditions
20, 30 and 49 are satisfied. Tt remains to prove that the system &
also satisfies the condition 1°. Let X=Ii0i1---i§---(§<“) and Y=1, JitengG<H)
be two different intervals of ©. Three cases are possible:

1) a<{p and iz;=jg for £<a. Using the method of transfinite
induction it is easy to prove that Ijon,"jg.“(g/\'ﬁ)C.Zloil__.ig‘"@(a).

2) A<a and ig=7jg for <. Then according to 1) we get the
inclusion Tiyy..iz.¢<a) © Ligi-gg-(6<p-

3) there exists the least ordinal ¢ <min(e,f) such that
jg=7j; for. £< & whereas fs==js. Since d<a and 6<f we have
XCIioil i (§<5+1)EG and YCIj0i1---f§m(§<45+l)Eg and the 'pI‘OdllCt

...!5‘... ” N
I.~0,~1..15s...(s‘<‘5+1)ﬁIMr~ Je <D contains only one point so that the

1) For a=0 we understand by Tiig...ig..(6<e) the whole continuum C.
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product X' NY contains at most one point. Thus the proof is
complete. v o

Theovem 4. Let C be an ordered continuum. Then there exists 5)
an ordingl 9 of power <m(C) such that ¢ is similer to a lewicogra-
phically ordered sct whose elements are lramsfinite sequences of zeros
and ones of order-types <.

) Proof. According to theorem 3 there is a partiticn P ol the
given ordered continnum C whose elements can be denoted by
symbols Iiol1---ig-»(s‘<a) where 7¢=0 or =1. Let C* he the systelﬁ
of all cha}-ins P(a) of all points e and let P(s) e C* be any chain
Then, using the method of transfinite induction we can easily provc1
that (:c):ﬂ‘l}(m)-—-1(20‘1‘,0,-1_",5".(5{5) where a<Ca(z). Therefore we can

attach to every chain P(z) ¢ C* a transfinite sequence %y ...7%...(E<a)
of zeros and ones such that 9067:‘0;‘,...1'5...(§<z)6‘13(50) for every i<a
Let us denote the set of all such sequences by €* It ‘B(m)<‘1}(o/5
are two different chains and (Tgly . tg... (<)), (j(,jl,..jg...(f<ﬁ;))
t-wq corresponding transfinite sequences then there cxists u; least
gﬁ;ﬁaﬂiné sgmh U.la.‘t Iiofl,..ig...(§<a+9=i= I oty g E<O41), ﬂ"m fi.rst interval
belong: g4 0 P(x) and the second to P(y) s0 shat ig=j¢ for £<é,
xj]}«lsai}:d; Iioil...ig.‘.(§<d)=ljioIl...lg..‘(§<d+l)uljoj14..jg.-.@(d—f—l)- As B() <P(y)
o that (i 1911...1§...(§+d<1)"<Ij0j%,._{'§,_,(§.<6+1). Toerefore i3=0 and j;=1
b ,‘ 01»}...l§‘..(f<6))<.(]ojl...]g...(£</3)), < denoting here the
lexicographical order-relation in the set G*. From this it follows
that C* is similar to *, Evidently ( ’ o
that a<{9, where P==a(P).
the ordinal ¢ iy <m(0).

' .NOW, if we consider the set CCO* of all chains T(2)C9 -
taﬂ.mn.g_ no left chain we see that the correspmilt?i;ll; ﬁ(’rv)(gg (SS‘OI(:f
transfinite se'que.l.mes (Tot1---Te... (E<a)) €€ i a lexicographically or-
derede;let which lls — according to Theorem 2 — similar to ¢
e example of the interval C'=¢0,1> of real s Vs
that the supremum m(C) of the 01'dina.1<19 ’e&)nnot s:llfa:iﬂilsgﬁﬁz
other_ hand, in some special cases, the power of @ ciﬁn b(*‘ ‘<m('0')
For instance, let us consider the lexicographically orderjed eon‘ri:
nuum  €=<0,1>x<0,1>. Then there exists a 1)artiti011‘ % Whoée

1 i r
elements are intervals I’0i1~--l§--~(§<"‘)’ where a<w? so that §=w2.

t] fyiy.edg... (E<a)) e €* implies
According to Theorem 1 the power of

%) I do not know whether there alw i
g YAYS ex: h [ order
where @ is the first ordinal of power m(O).yb R 1 partition 5 of order 4
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The power of the system P is 2%, From Theorem 1 it follows that
m(0)=2%. Nevertheless the power of # is %, which is <m(C).

Theorem 5. Every ordered continuum of power K, contains
at least one point with character ¢y if and only if ¥.< o®

Proof. The condition is necessary. In fact, let 8y =2% and
Jet C=P X @ be a lexicographically ordered continuum, where Pis
the set of all ordinals <w, and @ is a lexicographically ordered
set whose elements are transfinite sequences iyf...4¢...(§< ;) Where
4g=0 or =1 for £<w,, in which,i.e.in C, the identificaticns of every
two neighbour elements have been made. Since ) in @ there is no
point with character ¢y, and because there are no countable de-
creasing orv inereasing sequences of points in ¢ converging to the
end-point ae@ or be@, it is easy to see that in C there is no
point with character cy. As the power of Q is =™ we conclude that
the power of C is 8,.

The condition is sufficient. As a matter of fact, if we let 8,< ok
and suppose that, on the contrary, there exists an ordered conti-
nuum € of power &, containing no point of character ¢y then aceor-
ding to Theorem 3 there exists a partition P of the continuum ¢
whose elements can be denoted by symbols Iy .ie.(e<e) where
'i§=() or =1.

Let mgmiy...mg...(E<a), where a<w; is a limit ordinal, be
2 transfinite sequence of natural numbers g2 2. Let us attach
to this sequence a transfinite sequence éydy...ig..(§<a) ‘of 7eros
and ones in the following manner: For = wpu+p, where p 18 & non-
negative integer, we put ;=1 if and only if &= ou-t MoptMopitt
+ .. Mputp where p'is a suitable non-negative integer. For exa;mp.Ie
if we have the sequence 3222... the correspending sequence will
be 0001010101... For a sequence MMy ... M. (§ < ) there is only
one corresponding sequence igiy. iz (< a). Otherwise, if there
were two different corresponding sequences igfy..dg...(E<a) and
joja-e-je---(E<a), where a <oy, then there would be the least index
d=wv+gq, ¢=>0, such that =0, js=1, say. As js=1 Wwe have
8= Wy Moyt Mawit+ -+ Movgg 10T 2 suitable ¢'>>0 so that 4=1,

8) See J. Novik, On some ordered continuw of power oR pontaining a dense
subset of power N,. Casopis pro péstovani matematiky (JexocuoBATNKEL MATEMB~
TegeckHEl xypHEal, T. 1(76) 1951, crp. 82 (Jlemma 2). Cgechoslovak Mathematical
Journal, Vol. 1(76) 1951, p. 67 (Lemma 2)).
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which would be a contradiction. Therefore we have a single-valued
correspondence f(moml..‘.'mg...(E<¢z))=i()fz'1.../z (E<a).

Now, let mymy...mg.. and  ngiy ... (E<F). where
a<Low, and f<o; are two limit ordinalg, be two different trans-
finite sequences of natural numbers mgz=2 and ng=2. Then
flmginy ..ome...(§ <@)) =lpl...fg... (§ <) and frgny...ng. (§<f)) =
Jodi--je-(E<p) are two different corresponding sequences. Indeed,
Jet us consider two cases. In the first case we have «=p and there
exists the least ordinal p=wu+r<a, 0, such that me==mn, that is
Mg<itg OT My >0, Whereas mg=ng for £<o. Consider the first possibi-
lity mo<ny. Denote by o=wu+Map+Moptit .+ Maptr 80 that f;=1.
AS M= Nopp T0r 0<E<r Whereas Maptr < Nopdr the index ¢ can-
not occur among ordinals of the form: wv-Nev+ Nevtit oot Novsp
where p>>0. Therefore j,=0 and the sequences dyiy...7...(§<a)
and jojy...je-.-(E<a) are different from one another. If we consider
the second possibility m,>n, we get the same result. In the second
case we have as=f that is either a< f or a> f. Suppose a<p. Since
a and f are limit ordinals, then js=1 for = a--n. whereas 75 does
not exists at all. We can get the same conclusion for a > f. There-
fore, also in the second case, the sequences are different from each
other. Thus we have proved that the correspondence f is one-to-one..

Now, we shall prove the following statement: Let momy...mq...
(E<w,) be any transfinite uncountable sequence of natural num-
bers mg=2. Let flmymy...mg... (E<oy))=1yt;...7¢... (E<m;). Then
I,oil,.,;g,.@<a) ¢ P for every ordinal e<w,.

Suppose that, on the contrary, there exists the least ordinal
ag<w, such that I, Ity E<te) is no interval belonging to P whereas
T tyipee<any € B for every o' <a, With respect to the conditions 2°
and 4° the product a’chI i A E <) contains only one point x,eC.
From the condition 19 it follows that a, i3 a limit ordinal >0.
Thus there exists an ordinal g such that ay=cwu+ o or a limit
ordinal v such that wy=w». In the first case when ay=owp+o we
put En=op+Meu+ Moptit oo +Mopsn for n>0 so that ig=1.
Because, by our hypothesis, m:>>2 for all £<w,, we have 1g,-1=0.
In the second case when a,=cv there iy an ordinary increasing
sequence f{w,); of ordinals », converging to v and we also have
tg,=1 for £,= wry+ My, and 4;,_;=0. In both cases we obtain an
ordinary increasing sequence {£,} of isolated ordinals &, converging
t0 ay and such that iy =1 whereas ig_1==0. Then I byl <y 1) C

(&< a)
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the four intervals are different from one another. Thus we can con-
clude that the right end-point of the first interval precedes the right
end-point of the second interval and that the left end-point of the
fourth interval precedes the left end-point of the third inter-
val. From this it follows the existence of an ordinary decreasing
sequence of right end-points of intervals Tiji.. e..0¢<5m) rig]:}t- con-
verging to the point @, and the existence of an ordinary infinite
increasing sequence of left end-points of intervals Tpu..i.a6<z+0
left converging to the point . Therefore the character of the
point @, is eo. This is contrary to our supposition. Consequently
Ligty.tge (<o ¢ P and our statement is prm"f:d.
Tet f(mgmy ... Mg... (< @yp))=TlotrTs o (£ < o). From our
statement and from the condition 4° it follows that the product
n T I i (E<0) exists and that it is either a single point or an inter-
[ 2N
val. 1n this product we can choose a point o= g(iyis-- L(E<wy))=
= g(f(mgmy...mg...(E <)), Let dgiy..eig..(E<oy) and joyl...jg...(_§<(u1)
be two different sequences of zeros and ones corresponding to
tWO Sequences My ...Ms...(£< o) and ngny...ng (€< o) and'let
d==cwu-+p, Where p is a non-negative integer, be the least 01‘.dmal
such that 7s==js. Consider the case is<js, that is s=0, jo=1.
According to Liemma 3 the product I,-o,-l,,_,rg__,g@ﬂ)ﬂl Jodtemig <O
containg at most one point in common. Now jp=1 for '77=m‘u+
F Rop Noprit - Noptp 204 7 > 8o that the 1_eft end-pomja of 1trhe
interval Iy .. j..<o+1) precedes the left end-point of the mtellval
Therefore 17011-~i;‘--‘(5<"7+1) (@] Iiofr g B = 0. Since

qe

Ty jgecdpo G0

N Tpyigigts<e) © Tiptyotg(a<ntn and @26y C Tjgjguig @D
alo =

N Ijofx---j;
(24N .
so that the points

RN

g(ipTy.. ig..(E<w,)) and G(Godr-eJe--(E< o)) differ from one another.
Thus the correspondence g is one-to-one. Since the correspon-
«dence f is one-to-one, as well, the composed correspondence g(f)
between the transfinite sequemees (Mg#ry...mg...(§< ;) wh.ere ms
are >2, and the chosen points g(j(mt,'m,...mg...(§<w1)’)) is o.nef
to-one. From this it follows that the cardinal number.oi'lall pmggi

i inal num

g(f(mgmy ..z (E< @) e ¢ 18 the jiajzl,n:“&ai 2tge ﬁiﬁdthen Ry

we have 0O Ijiy.ie.(<a O NI jsticn = 0
ey

of all sequences Mgy ... Mg (E< )
This is a contradiction.
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Now, we ean answer the?) question whether there exists an
ordered continuum ¢ of power 2%, where m(C)<#&,, without con-
taining points with character ey The answer to this question is
negative. As a matter of fact, suppose on the contrary that C is
such an ordered continuum. Let P be a partition of C. Since ¢
does mnot contain any point with character ¢y, every symbol
Tigtptpein<ey; Where ip=0 and ip=1 for infinitely many natu-
rals » and «/, denotes an interval of ¢ belonging to PB. The car-
dinal number of all intervals like these is 2%. According to lemma 3
every two intervals of this sort have at most one point in com-
mon. As m(0) <8, we have 2%=x, and consequently 2% <28 Thyg
the above supposition contradicts Theorem 5.

Corollary. Every ordered continuum € with power 2% and
with m(0)=n, contains a subset of power 2% which is dense in C
and whose points have character ey,.

Proof. Every?) interval JC ¢ has the power 2%. Since m(J) <,
there is & point in J — as we have just shown — with character ¢y,
Qonsequently, the subset 4,CC of all points with character Coo
is dense in O and the power of A, is =8, and <2% at the same
time. Therefore if the power of 4,, were < 2% then we should have
8, <2% Now, let P be a partition of €. The cardinal number of
the system of all intervaly of B of order o and of all points of ¢
of the same order w is 2%. According to Lemma 3 and because
m(0)==#, the system of allintervals of P of order w has the power <§,.
Therefore the cardinal number of all points in € of order w is 2%.
The power of A, is >2% every point of order o belonging to the
set A, Thus we should get a contradiction.

Remarks, 1 do not know whether or not there exists an
ordered continuum of power 2% with m(0)=g, such that the power
of 0—A4,, is 2%,

From Theorem 5 it follows that the more general question
wh_ether there exists an ordered continuum of power 2% without
points of character ¢y, is equivalent to the question whether 2%=2%

7) See J. Novik, 1. c. ad ), p. 79.
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Characterization of Types of Order Satisfying
g+ 0y =0y + O
By

N. Aronszajn (Lawrence, Kansas, U.S.A).

Introduction. The question of what types of order o, and ¢
are commutative with respect to their addition is ome of several
seemingly simple questions in the theory of ordered sets. A few
cases of commutative types of orders have been known for a long
time:

(a) ag=0m, o=>0n, Wwith some type of order d, m and n being

natural numbers,

(b) ag=a0+8-+ a0* or

== g —+6-4 age* with some type of order 4.

A. Tarski has communicated to the author that in the middle
thirties he proved that (a) and (b) represent all the commutative
types if one of them is assumed to be either enumerable or dispersed.
He also made a conjecture that these two cases exhaust all possible
commutative types, but a counter-example was constructed by
A. Lindenbaum. (None of these results have been published).

In the present paper we shall give a complete characterization
of all commutative pairs aq, oy of types of order. The characteri-
zation is obtained by using the theory of partitions of ordered sets,
and also by introducing the new notion of semi-similarity between
ordered sets. We are thus able to attack the problem in a much
more general form.

We consider a class of types of order {as}, iel, where I is
an arbitrary set of indices. In I we introduce two order relations
which make of I two different ordered sets I’ and I'". The problem
s then one of characterizing all the classes {ai} satisfying the
«generalized commutativity” equation

521" = EZI, i
Fundamenta Mathematicae. T, XXXIX,
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