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pyramid 6 (c) has been drilled out. Adjoining 6(c) therefore completes
our construction, for it is easily checked that all the identifications
described by f bave been carried out.
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The Existence of Pseudoconjugates
on Riemann Surfaces.

By

M. Morse and J. Jenkins.

§ 1. Introduction. Among the characteristics of a function U
which is harmonic on a Riemann surface G* are the topological
interrelations of the level lines of U. One has merely to look at the
level lines of Rz, Rez, R loge, ete. to sense both complexity and
order. The dual level lines of a conjugate ¥ of U add to this order
and complexity. It seems likely that outstanding problems in Rie-
mann surface theory, such as the type problem, the nature of
essential singularities, the existence of functions on the Riemann
surface with restricted properties cannot be thoroughly understood
in the absence of a complete analysis of the topological characteristics
of these level lines.

Such a topological study properly belongs to a somewhab
larger study namely that of PH (pseudoharmonic) functions and
their psendoconjugates (defined in §2). A first problem is that
of the existence of PH functions U on G* with prescribed level
sebs locally topologically like families of parallel straight lines except
in the neighbourhood of points of a discrete set w of points z,. Ab
a point #, the level curves of U may cross after the manner of the
level curves of a harmonic funetion with a critical point at #g.

Let I be the finite z-plane. In case G*=F and w=0, and
excluding all recurrent level curves other than periodic curves,
Kaplan has solved the above problem in [5]. More recently
Boothby has extended Kaplan’s result to the case of a general o.
As explained in [4] the a priori exclusion of recurrent level curves
other than periodic curves does mot seem justified. The writers
of thiz paper have accordingly established the existence of PH
functions without this hypothesis of non-recurrence [41.
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The present paper gives a solution of a second major problem
in the topological theory, namely the existence of a function V,
PO (pseudoconjugate) to a given PH function U. When w=0
Kaplan has affirmed that the set of level curves of I/ are topologically

equivalent to the trajectories of a differential system of the form »

dx , dy
at =p(-”),’!j)7 '(ﬁ = f{(mﬂ/)

(P*+*==0),

where p and ¢ are of class ¢” over E. The method of proof of this
theorem as outlined by Kaplan in a few paragraphs in [6] does
not seem to form an adequate basis for proving the existence of V.

We here give an explicit topological proof of the existence
of 4 V, PC to U. The key to this proof lies in the proper use of the
theory of p-length as developed for arbitrary curves in a general
metric space [8, § 27].

The results and methods of this paper will lead in a subsequent
paper to theorems on the existence of PH functions and their
psendoconjugates on an arbitrary open Riemann surface.

The reader familiar with the geometric theory of dynamical
systems as initiated by Poincaré [9] with its attention to sin-
gularities, periodicity, recurrence, etc., will recognize that the
nnderlying topological theory of the level lines of a PH function
is a form of 2-dimensional topological dynamics.

§ 2. Review of earlier theorems. Let S be the complex
z-sphere with Z the point 2=oco. Let w be a set of isolated points
in @*=8-Z with no point other than Z as limit point on §.

The family F, the sets G* and G. An are, open arc, or
topological circle in G* is for us the 1—1 continuous image in G*
of a closed interval, open interval, or circle respectively. These
elements are to be distinguished from parameterized curves (p-curves)
which are mappings, and not sets. Let F be a family of elements
a, B, ¥ ete., which are open ares or topological circles in G = G*—aw
and which include one and only one a meeting each point pe@.

The family F' shall have the following local property. Let D
be the open dise (jw|<1) in the complex w-plane. With each poing
peS—Z there shall be associated an “F-neighbourhood” X, of p
with X,CGU p, and a homeomorphic mapping T, of X, onto D
under which p goes into w=0 and the maximal open arcs of F|X,
go into the maximal open level ares of Rw” in D when n=1, an(’l)
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in P with the origin deleted when n>1. We term #n the ewponent
of p. The exponent of p shall be 1 for pe@, and exceed 1 for pew.
Points pew are termed F-singular points. A value weD is termed
the canonical parameter of its antecedent in X,.

The open arcs of F|X, which have limiting end points at
pew are termed F-rays of X, incident with p. They are 2x in
number, therehy showing that n is independent of the choice of Xp.
These F-rays of X, divile X,—p into 2n open regions termed
F-sectors incident with p.

Right N. With each pe@ one can also associate a neigh-
bourhood N, of p with N,C@, and a homeomorphic sense-preserving
mapping of IV,, onto a square K: (—1<u<l) (—1<v<1) such
that p goes into the origin in K and the maximal subares of F | N,
go into ares w=¢; —1<{v<C1, where the constant ¢ ranges over
the interval [—1, 1]. We refer to N, as a right ¥ of p and term
w and v canonical coordinates of the antecedent in N, of (u,v) in K.

Transversals. By a transversal A is meant an open arc in @
whose intersection with any right N with canonical coordinates
(u,7) has locally the form v=g(u) where ¢ is single-valued and con-
tinuous. By the principal transversal of a right N is meant the open
arc in N on. which v=0, —l<u<I1.

F-vectors. Any sensed subarc 4 of an « e¢F will be called
an F-vector. By definition a F-vector is simple, closed, and never
a topological circle. The following lemma is established in [4, §3].

Lemma 2.1. Each F-vector is in some right N.

Coherent sensing. Let each aeF De given a sense. The
resulting family F° of sensed a will be called a sensed image of 7.
We shall refer to a continuous deformation A of an F-vector 4 in
the space of F-vectors metricized by means of the Fréchet distance
between any two sensed arcs. We shall understand that each image
of A under 4 is sensed by 4, that is that the sense of the image
arc shall be determined by the images under 4 of the initial and
final points of 4. We say tnat F* is coherently sensed if any continuous
deformation A of an F-vector A, initially sensed by F*, through
F-vectors sensed by 4, is necessarily a deformation through F-vectors
sensed by F°. In the case at hand, where G*=8—Z is simply con-
nected, there are two distinet coherently sensed images F° of B

[4, §51
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The following theorem came next in our development:

Theorem 2.1. When G*=8—w each ueF is the homeomorphic
wmage in G of an open interval with limiting end points on S, distinet
unless both are coincident with Z. Bach finite end point is a singular
point of F.

The family F*. It is shown in [4, § 7] that when G*=8—Z
there are mo topological circles in G* formed from the union of the
clogures of a finite set of a<#. In this case we define F™* as the sot
of all open ares h, k, m, ete. in G* with the following properties.
If p is an F-non-singular point of h, h shall contain the ap e P
meeting p, and any finite limiting end point or end points of ap;
if an F-singular point ¢ is in h, & shall contain just two of the ael
with ¢ as a limiting end point. An % ef* may be identical with
an aeF, or it may bhe formed from a sequence of ae# of one of
the forms

ere U Oy Cp Uy Uy .oe
s O (1 Gg; O Oy Uy ...

(g O wov .

The following theorem bears on the behaviour of subares
of heF* [4, Cor. 7.5].

Theovem 2.2, When G*=8—Z an arc g m 8—Z which is
the a?osm‘e of a finile sequence of ack intersects the closwre of an
F-neighbourhood X, or of a right N, if at all, in a single are.

Corollary 2.2. When G*=8—2Z cach h e F* has Z as a limiting
end point in both senses. '

Bands R(N). Given a right N the union of the sets a el
which intersect N will be called the band E(N). In accordance with
Lemma 8.1 [4] each band R(N) is simply comnected when G*=§—2,
and in accordance with Theorem 8.1 [4] the boundary BR(N) of
R(N) in 8 is the union of Z and at most a countable set of non-
intersecting open arcs heF* of which at most g finite number have
diameters on 8 which exceed a finite constant d. An % e F"* in BR(N)
is either concave towards R(N) in that R(N) containg just one I-sector
incident with each. singular point of ¥ in h, or sem.iwonca/ue towards
H(N) in that R(N) includes just one F-gector ineident with each
singular point of ¥ in h except for one singnlar point q of F in h;
corresponding to ¢, R(N) containg just two F-seetors incident
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with ¢ and the F-ray incident with g between the two F-sectors
incident with ¢. An b «F*|AR() which meets AN is always concave
towards R(N) (Cf. Theorem 8.1 [4]).

A singular point p of F in SR(N) is termed of type 1 or fype 2
relative to R(¥) if R(N) contains one or two F-sectors respectively
incident with p.

An entrance to R(N). An open arc 5 in SR(N) will be called
an entrance to \R(N) if  is the union of a finite or countably in-
finite set of aeF each joined to its successor or predecessor at
a singular point in ¥, and if # intersects SN in an open arec. An
entrance » to B(N) is an open subarc of an heF* in BR(N) such
that h intersects SN and is accordingly concave towards R(N)
[4, Th. 8.1].

We shall make use of the following decomposition of G*
{4, Th. 9.1].

Theorem 2.83. When G*=S—Z there ewisis a sequence of
non-intersecting bands R(N.), r=1,2,..., and for each R(N,) with
r>1 an open entrance 7_to R(N,), such that the 5, do not intersect
each other or any of the bands, and such that G*=TUnion X,, n=1,2,...,

where Xy=R(N,) and for n=2,3,...
(2.1) Zy=Zp s URN) U s Zp s NEN)=7,UZ

and where the N, are so chosen that any compact subset of G* is included
in X, for n sufficiently large.

‘We note that each X, is open and simply connected. If X,
contains a point pe@, it contains the a«F which meets p.

Let U, be harmonic irn a neighbourhood H of geG* and not
identically constant. Let ¥ be a topological mapping of a neigh-
bourhood H, of g onto H. Then U,V is termed PH (pseudoharmonic)
at ¢. A function U is termed PH over a region RCG* if U is PH
at each point of R.

Let @ be analytic in a neighbourhood H of ge@* and not
identically constant, and let ¥ be a sense-preserving topological
mapping of a neighbourhood H, of ¢ onto H. Then ¢¥ is termed
interior at q. A function f is termed ¢nierior over a region RCG*
if f is interior at each point of R. :

If U is PH over a region R and V real, and if U -4V is interior
over B then V is said to be PC (‘pseudoconjugate) to U over R.
Fundamenta Mathematicae T. XXXIX. 18
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§ 3. Bands R(N) conformally represented. Let U be
given as PH over B(N) with the a ¢F as level lines. It is relatively
easy to use signed u-length along the aeF|R(N) measured alge-
braically from the principal transversal 1 of N to obtain a function
¥V PC to U. To extend the definition of ¥V to SR(N) is more difficult
because SR(N) is not readily given as a p-curve. The arcs of SR(N)
meeting Z require a definite parameterization which is related to
the parameterization of the a e F'|R(N). To this end we find it useful
to map a unit dise D|(j¢|<1) directly conformally onto R(XN), and
then by continuously extending the mapping of D over D to obtain
the desired parameterization of arcs in SR(N).

Canonical coordinates (u,) in a right N. Let (u,o)
be canonical coordinates in a right N. Set u-iv=w. To each
point ze¢N corresponds a complex canonical parameter w=¥(z)
given with N. The mapping ¥ is given as 1—1 continuous and sense-
preserving in N. The value of U at the point weN reduces to
a strictly monotone function of w.

Convention. In this paper we shall choose the camonical
coordinate w in each right N so that U(u) is strictly increasing.
Let B* be a coherently sensed image of F so chosen that in each right N
the canonical coordinate v increases in the positive sense of F*|N along
each level arc of U.

This relation of F* and U to the canonical coordinates (u,v)
in one right N implies a similar relation to the canonical coordinates
in an arbitrary right ¥. This follows from the orientability of §
and the fact that F* is a coherently sensed image of F. In this con-
nection recall that canonical coordinates (u,v) in a right N are to
be chosen so that the mapping u--iw=gp(2) which carries zeN
into the canonical point (w,v) is an interior transformation.

The open arc f. Let A be the principal transversal of V.
Let the point on A with eanonical coordinates (1,0) in N be denoted
by A(u). The coordinate % ranges on an interval I=[—1,1]. Let
BueF®|(uel) meet A in the point A(w). In particular f, and fs
are in F* and on BR(N).

The conformal mapping f. Let f be a direct conformal.
inapping of the open unit disc D onto R(N). An arc keF* in R(N)
is a free boundary arc of R(N) in the sense that it is an open are
which does not meet the closure of SR(N)—h. The mapping f can
be extended to a homeomorphism which maps an open arc 1° on.
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AD onto & [2, p. 86]. If f is further extended so as to map each
point in the set

(3.0) Q = BD — Union 1° (he F*| BR(N))

into Z, then the extended f maps D continuously into S.

Indeed if {z,} is a sequence of points in D tending to a point
in @, the image sequence {f(2,)} can have no accumulation point
in R(¥) or on an arc heF* in BR(N). Thus f(zz) 2% as n 4 co and f
maps D continuously into S.

Without loss of generality- we may assume that f carries z=-1
and z=—1 in AD into A(1) and A(—1L) in BR(N) respectively.

If Y is any set in B(N) we will denote f*(¥) by X°. The sensed
antecedents fP and P, in gD of §, and f_, respectively in BR(N)
are open ares in D which appear in gD in counter-clockwise and
clockwise sense respectively, with =1 an inner point of £P and
z=—1 an inner point of p2,.

Let (a) be the set of a<F|fR(N), and (aP) the set of the
respective antecedents of « e (a).

Let d(a) and d(a?) be respec'tively the diameter in S of ae(a)
and of 2 in («P). As stated in § 2 there are at most a finite number
of the ae(a) with d{a)>1/n. The same is true of the aP ¢(aP)
since Xd(a?)<2x, the length of gD. It follows that d(aP)—0 if
d(a)—0, and conversely that d(a)—0 if d(a?)—0.

The antecedent Z”. This antecedent of Z S is closed.
It is nowhere dense in AD since it can contain no subarc of gD.

The antecedent 2. Since §_, and g, are in fR(N), p2, and
p? are in D. For —l<u<l, 2 is in D since f, is in R(N). The
point (7,0)=(1,0) in AD is in P. We shall restrict @=arcz|(z¢D)
to values on the interval 0<<O<2x.

The end points Exp (i0y(u)) and Exp (i0y(u)) of 2. For
zefP|(uel), @=arcz has limiting initial and final values which
we denote by O,(u) and O,(u) respectively. That Oy (u) and Ohu)
exist is immediate when w=+41. If 2 (—1<wu<1) did not have
unique limiting end points in AD, Ef—ﬂf ‘would include some
subare of an a® ¢ (¢?) since Z” is nowhere dense in AD. Since f is
continuous over D, f,—f, would then include some subare of an
ae(a) contrary to the faet that [7,,—/5’,, contains at most ttwo points
of 8. Hence the limits ©,(u) and O,(u) exist and are unique. The
limiting end points of ¢2 are then Exp (0,(x)) and Exp (i@,x)).

18*


GUEST


icm

276 M. Morse and J. Jenkins:

Lemma 3.1, The functions O; and 0, are monotone on the
interval I: —1<u<1, with Oy inereasing, Oy decreasing, ond

(3.1) 0<B,(w)<m, a<Ou)<2m.

The principal transversal i of N is in R(¥) and has an ante-
cedent AP in D which is a eross cut of D with initial and final end
points z=—1 and z=1 in AD. Each BPl(u e I) is divided by AP

GV

2:EXPi 8, (-1)

into a half open are with initial point P(w) in AP and final point
Exp (i0y(w)) in D, and a half open arc with final point P(y) in 22
and initial point Exp (¢@y(w)) in BD. The relations (3.1) clearly
hold for w=-1 and hence hold for each u e I. .
. Por —l<u<l, B, is in R(N) and has limiting end points on
AR(N). Since R(X) is simply connected f, separates RE(N). In
particular if w'<u'<<w"’ in I, fu separates fw and fur in B(N),
for otherwise A(u’) and A(u'’’) would be connected on ‘R(N)—fu~
and fy would not separate R(N). The monotonicity of @, and O,
follows. It is clear moreover that T

0<0,(1) KO(—1)<m<Oy(—1) <O) < 27

from which we infer that @ is increasing and @, decreasing.

Let C;(N) and Cy(N) be subares of gD conditioned as follows:
(3.2) CoN): Oy(—1)20>0,(1))
(3.2)” O N): 0,(1)>0=0y(—1).
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The arc C,(N) bears all the final end points of the B2 (u € I),
and Cy(N) all the initial end points. Then Co(¥N) and 0,(N) clearly
contain each of ¢ (a?) except pP and 2,. We shall be more explicit
in the case of Cy(IV).

Lemma 3.2. Corresponding to each aeF with aP e Co(N)
there is @ unique value u e I such that P lies in an arc on pD of one
of the forms
(3.3) Og(u—) >0 >0,(u),

(3.4) Ox(u) >0 >Oy(u+).

Let J be the interval of values of @ such that Exp (i0) is
in «P. Then J is open and contains no value Oy(s)|(seI); for the
final end point Bxp (i@y(s)) of P has an f-image which is either
an F-singular point or Z, and accordingly not in a. HenceJ must
be in an interval of the type (8.3) or (3.4). Since no two intervals
of type (3.3) or (3.4) intersect, the interval (3.3) or (3.4) containing J
must be unique.

The p-curve By in 8. Let the half open arc of B, with initial
point A(u) be closed by its final end point in §, and he parameterized
by u-length in § to define a p-curve Ba.

If g is a p-curve it is econvenient to introduce the carrier gl
of g defined as the union of the points in the range of g.

The extensions Byt and By of Bpin 8. Let Bf be extended
as a p-curve by the arc of points Exp (i0) of D on which

(8.5) 0,(u)=0220,(u-t) (—1<u<l)

taken in the sense of decreasing ©® and admitting the possibility
that (3.5) may reduce to a point and B2 coincide with its extension,
Let B2, be the resultant extension of B2 as a p-curve, and
Byp= ]‘(Bf+) its p-curve image in E(N). Recall that a p-curve is
not a set, and that IB,I,)+] is in general not the full anteced mt of the
set |Buy], since Z is in |Bay| (see Lemma 3.3) and [B2y| will not
in general contain the whole set ZP. We shall suppose that But
is parameterized by p-length measured along Bay from 2(x), and
note that Byy is a p-curve in- B(N) extending By.

Let BZ be similarly extended in D as a p-curve by adding
the arc of gD (if any exists) on which

(3.6) Oy(u—) =0 =0,(u) (—l<u<l)
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taken in the seme of increasing 6. Let Bf.. be this extension of BZ.
Set B,_=j(BL_), parameterizing B, by means of p-length in §
to form a p-curve B, extending B,.

We understand that @y(u-+) and By are defined for —1<u<1,
and that O,(u—) and B,— are defined for —l<u<C1.

We shall need the following lemama.

Lemma 3.3, When G*=
By is Z.

The f-image of the point Exp [¢@(w)] in AD is either Z or
a singular point of F'. Since the singular points of F have Z as their
sole limit point in S the f-image of Exp (10,(u—)) or Bxp (10,(u—))
must be Z. But these points are respectively the terminal points
of Bpy and By so that the lemma follows.

Note that the relation O,(u)=0,(u-+) implies B,= B,y and
the relation @,(u)=0,(u—) implies that B,=B,_. In either case
the terminal point of B, is Z by virtue of Lemma 3.3.

§ 4. B,y and B,_ as Fréchet limits. We treat the case
of Byy. The case of B, is similar.

S8—Z the terminal point of Byy or

Lemma 4.1. Given ¢>0 and u in the interval —1<u<1,
an e-neighbourhood of |Boy| contains |BF| provided t>u, and t—u
8 sufficiently small.

(a) If the lemma were false there would exist a sequence of
values i, tending to  from above as %% co, and points zne len|
such that 22, not in |B2.| as n 4 co. Two cages are distinguished.

Case (i). 2, eD. Set p,=7f(#n), n=0,1,..., where f is the con-
formal mapping defined in § 3. For a suitable se(—1,1), fs e F|R(N)
meets p,. The point p,efs is a limit point of points 9, only if £,—>s.
Hence s=u. But p, is not in |B,|C|Buy| by hypothesis (a). Hence
Py is in py—|B,. Hence p, is not a limit point of points in |By|
a8 ta—>u, 50 that 2, is not a limit point of the sequence z,,2,,... We
infer that case (i) is impossible.

Case (il). z,¢pD. We shall show here that ¢, must lie in |Boy|
contrary to hypothesis (a).

For u<t<1let 4 be the subarc of 1 on which z= A(s) (u<s<t).
Let 7, be the arc or point of fD on which @y(ut)=02=0,1). Leb
C; be the topological circle on D formed by the circular sequence
of the four ares (with n; possibly a point)

lBu+la e lBﬂ; As.
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Let X; be the closure of the Jordan region bounded by C:.
Tor u<.s<t, BY is in X; As ¢} u, X; contracts on itself as a point
set, and C;NBD is an arc of X;NPD which contracts on itself to
IB2,]NBD as a limiting arc or point. The point #, is in X for each
t>u. In case (ii) 2, must then be in C;NAD for each ¢ > and hence
in |B2,|NAD. From this contradiction to (a) we infer the truth of
the lemma.

A right neighbourhood relative to R(N). Let g be an
arc in BR(N)—Z whose end points are F-non-singular and whose
F-singular points are finite in number and of type 1 relative to B(N).

Lemma 4.2, There exvists a neighbourhood M of g relative
to R(N) such that M is the homeomorph of a square (0<<u<{1) (0<v<1)
in which the open edge u=0, 0<v<l, conlains the image of g and
each arc u=-const==0, 0<v<1 corresponds to an F-vector in B(N).

The lemma is true if there are no singular points of F on g,
by virtue of Lemma 2.1. It is also clearly true if g is the closure
of two F-rays on the boundary of an F-sector. The lemma is readily
established in the general case following the pattern of the proof
of Lemma 3.1 of [4].

The neighbourhood of g in Lemma 4.2
bourhood of g relative to B(N).

In the proof of Theorem 4.1 use will be made of various distance
functions. If 4 and B are non-empty subsets of § let d(4,B) denote
the inferior limit of the distances d(p,q) between pe 4 and g ¢ B. Leb

is termed a right neigh-

6(4,B) = sup d(p, B).
peAd
If A, B, C are subsets of §,
(£.1) 8(4,0)<5(4,B)+ (B, ().
If B=B,UB,,
(4.2) 8(4,B) > min [§(4,B,), d(4,B,)]

If g and & are p-curves in S, o(g,k) shall denote the Fréchet
distance between g and h. '

Theorem 4.1 is basic in the proof of the existence of a V pseudo-
conjugate to U. We prepare for its proof.

An e-decomposition of Byy. We suppose % e[—1,1). Given
¢>0 the number of open arcs y eF* in Byy such that (y,Z)>=ef4
is finite (see § 3). Let y,,...,y, be these open arcs ordered as they
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appear in the p-curve B,y. No one of the y,, i=1,...,m inter-
sects By. Let y, be the maximal initial half open are of B, which
does not meet Z. The initial point of y, is A(u) and y,D|B,|. Let

(4.3) Jor G113 fm

be subarcs of yg,v,,...,7,, Tespectively, whose end points are F-non-
singular and are such that the initial point of g, is A(u) and

oy, —9,, %) <el+

Parameterizing ¢, as in B,y it appears that By is a sequence
of sub-p-curves

(4.4) 90 R0y 91 Fixy oy Yoy Bom -

No p-curve g, intersects any other p-curve g; or any p-curve k;.

A right neighbourhood M, of g,. Recall that —1<u<1.
The set N—f, is the union of two open sets M* and N" of which
N* containg A(1). Then RN")CR(N Moreover y,,...,y,, are in
BR(N) NBR(N™) while y, is in BR(N"). Bach F-singular point of y,,
i=1,...,m, is of type 1 relative to R(N) and R(N™), by virtue of
the definition of the extension B, of B, and [nature of @, Each
P-singular point of y, is of type 1 relative to R(N®) by virtne of
Theorem 8.1 (b) [4]. By Lemma 4.2 then, the respective g, in (4.4)
have right neighbourhoods

(4.5) Mo My, ... M,

relative to R(N"). Bach M, in (4.5) will be 50 restricted that each
maximal sub-p-curve of B in M, (when B, M,==0) is at a Frécheh
distance less than e from g, (sensed as in %), and that M, NJ,=0
for r==i.

(r=0,...,m).

Lemma 4.3. Corresponding to the given we[—1,1) and ¢>0
a constant t; (1>1,>u) for which t,—wu is sufficiently small has the
following property. Bach simple p-curve By for which w<t<t, admits
a decomposition
(4.6) o Ky 95, B, 008, BE,

nlo successive mon-intersecting p-curves such that o(gt, g)<e,’ and,
r

settmg
@ K'=Tnion |k], K=Union |k,

S(K%E) <efa.
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e shall refer to D and make use of the fact that B2, is
simple. Sef
Exp [i0,(u-+)] =g
The point ¢ is the final end point of Boy. As | w the final
end point Bxp [i0,(t)] of Bf tends to ¢ while the initial end point
#P(1) of B? tends to the initial end point i”(w) of BZy; at the
same time
+)—0

The simple are Bf,’.;_ meets the

5(|B7,|Bx

in aeccordance with Lemma 4£.2.
disjoint sets
(4.8) 3,37, M0, g
in the order written. It follows from Lemma 4.2 that if #;—u is
sufficiently small and if v <t<t <1, BP will meet each of the sets
HM? in (4.8) in at least one maximal p-curve (¢} and by virtue
of Theorem 2.2 in at most one p-curve, there will be a terminal
p-curve (kh)? of BP which intersects no M7P, and the initial point
}.D(t) of Bf will be in M5. We suppose t, and ¢ so conditioned.

It follows from this choice of g and M, that o(g,g,)<e. The
residual p-curves k% in (4.6) are determined. Set Umon lg|=T,
r=20,1,...,m. In the relation

(4.9) O(KY KU I') > min [§(K4 K), d(KLT)] [Cf. (4.2)]
the left member tends to 0 as £}« by virtue of Lemma 4.2, while

d(K*,I') remains bounded from 0. Hence for #,—u sufficiently small
and w<t<<ty

(4.10) 8K K) <K, EUT).

Relation (4.7) then follows for suitable choice of 7.

Theorem 4.1. If t| ue [—1,1) then By lends to By in the
sense of Fréchet.

Corresponding to ¢> 0 let B,y be given the decomposition (£.4),
where 6(K,Z)<ef+. If t; is chosen as in Lemma 4.3 and if u <t <ty
then &(Kf K)<e[+. Moreover by (4.1)

S(kE, Z) <8(E',Z) <H(ELEK) + 8(K,Z)<e[2 (r=0,...,m).

Hence both ki and k. are within a distance e/2 of Z so that
o(k k) <e. By virtue of Lemma 4.3 o(gt,9,)<<e. We infer that

o(By, Buy) <6 (u<t<ty)

and the theorem follows.
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§ 5. Definition of V|(B(N)—Z). We are supposing that U
is PH over §—Z, each a eF a level set of U and that each F-singular
point in o is a topological “critical point of T.

Lemma 5.1. Let Ny be a right neighbourhood with canonical
coordinates (uw,v). If V is continuous over N, amd strictly increasing
with v for w constant, then V is PC to U over N,

Since U has each aeF as level set the value of U at the point
(u,v) in N, depends only on w. Let Uy(u) be this value and let Vy(u,v)
Pbe the value of V at (u,2). By hypotheses V,(u,v) increases in a strict
sense with o for w econstant and we(—1,1), so that Uy(u)+iV(u,v)
defines an interior. transformation from the (w -+dv)-plane to the
(U,+14Vy)-plane. The mapping from the (w--4v)-plane to the z-plane
in which (u-iv) corresponds to the point 2 e N represented by
(u,v) is interior by convention as to admissible coordinates (u,v).
The mapping from N, in the z-plane into the (U+iV)-plane is
aceordingly interior, and hence V is PC to U.

Lemma 5.2. Given a band R(N) there ewists a function V,
PH and bounded over R(N), PCto T with boundary values on fR(N)—Z
which are strictly monotone on each a <F in BR(N), increasing in the
positive sense of a as derived jrom F°, and such that V is continuous
over B(N)—2Z.

Definition of V|R(N). We refer to the principal trans-
versal A of N with its 1—1 continuous parameterization A(u), —l<u<1,
and to the open arc B, of F* meeting 1 in the point A(u). For zefu
let V(2) denote the signed u-distance measured from A(w) along
Ba to 2; taking V(2)>0 when 2 follows A(u) on f,, and negative
when z precedes A(u) on f,. The parameter x4 is bounded.

The mapping
(5.1) U(2)+1iV(2) = p(2) = w’' (2 « B(IV))

of R(N) into the w'=U-4V plane is continuous over R(N), since
U and V are continuous over R(N). It is 1—1 since the value of
U(2)=wu uniquely determines the open arc f, on which # lies, and
the signed u-length V(2) then uniquely determines the point 2 e fa.

The mapping ¢ from the z-plane to the w’-plane is also sense
preserving, as we shall now prove. It is sufficient to prove that
@V is sense preserving. Let (u,v) be canonical coordinates in N as
previously. By convention as to canonical coordinates v increases
in the positive sense of F* along each arc = constant in N. But V as
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defined above similarly inereases in the positive sense of F* along
each arc u=constant in ¥. It follows from Lemma 5.1 that U4V is
interior over N. Hence UiV is interior over R(N) and ¥ is PCto U.

Definition of V|(BR(N)—Z). For zef, or fy V(2) is defined
as the algebraic u-value at z on By or f—; as measured from A(1) or
A(—1) respectively. The continuity of V|E(¥) at such a point 2 is
clear. There remain points 2 on f{Cy(N)]—Z or f[O(N)]—Z. Suppose
2ef[Cy(N)]—Z. Then z is either in an aeF°|fR(N) or is an F-sin-
gular point zew O AR(N). .

1. Consider aeF°|fR(N). Such an « is in a unique p-curve
By or B,_, say Byy. Parameterize B,y by u-length measured
from A(u). At each point zea whose parameter in B,y is u set
V(2)=p. Since By|(t >u) converges in the sense of Fréchet to Byt
as t | u, it follows from the theory of u-length that V, as just defined
over R(X), takes on continuous boundary values on a. The boundary
values of ¥ on « as given by u-length on B,y are strictly increasing
in the positive sense of « as derived from F°. The case of an @ eF*|Bu—
is similar.

II. Consider zew NBR(N) with 2 of type 1 relative to
R(X). In this case z is the common end point of two aeF*|BR(N),
say « and a”. Then any sufficiently restricted open subarc of
a'UzUq"’ containing # is in a unique p-curve By or B,.. One
defines ¥(2) as in I and proves that V|R(N), as defined on a neigh-
bourhood of z relative to R(N) is continuous at =.

IIT. Consider zew NARIN) with z of type 2 relative to
R(N). In this case there exists a unique uwe(—1,1) such that z is
the terminal point of f;. With X® defined as in §4 let M* be
N—(XN*UB,). Then zis in

BR(N®) O AR(M™) = R(N*) N R(M")=p,U Z.

But V|, is already defined, and extends both V|R(N®) and
V|R(M*) continuously. As in I and II unique extensions of VIR(®)
and V| R(M") over neighbourhoods of # relative to E(N¥) and R(M™)
respectively exist and make ¥ continuous over such neighbourhoods.
It follows that these two definitions of V|8, and hence of V(z) agree,
and make V|R(N) continuous over a neighbourhood of z relative
to R(N).

The case of a 2ef[C(N)]—Z is similar and this completes
the proof of Lemma 5.2.
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§ 6. The definition of V over S8—Z. An heF* will be
said to have a sense derived from F* if each aeF® in b has the sense
in  which is proper to it in F*°. Clearly an heF* can derive a sense
from F° only if at each F-singular point p in b the two F-rays in h
incident with p are separated among I-rays incident with p by
an even number of F-rays incident with p, including a null set of
such F-rays. In this connection we shall use the following lemma.

Lemma 6.1. Bach h < I* in BR(N) which is concave towards

R(N) admits a sense derived from F®. On h so sensed, the function V,
defined in § b over R(N)—2Z, is strictly increasing.

The function V, as defined in R(N) in § B, increases in the
positive sense of each «eF°|R(N) and so by virtue of Lemma 5.2
increases in the positive sense of each aeF*|pR(N). Since the b in
TLemmsa 6.1 clearly admits a sense derived from F*, Lemma 6.1
follows.

Once V has been formally defined over §—Z it is necessary
to show that V it PH, and PC to U. For this purpose Lemma 6.2
is needed.

The following lemma has been established in [3 p. 26].

Lemma 6.2, If a mapping ¢ from S to & w-plane is continuous
in @ neighbourhood H of a point p e 8 and interior at each point of
H—p, then ¢ is interior ot p.

Definition of V|5n. Use will be made of the notation of
Theorem 2.3 beginning with. N,. From § 5 a definition of V|(B(N,)—Z)
is obtained on setting N=DN;. Proceeding inductively we shall
assume that this definition of V has been extended over Xp,—4—Z
for n>1, 50 that ¥V is PH over X4 and PO to U over 2y, cOD-
tinuous and bounded over X, 3—Z with values on each ael on
which V has been defined which are strictly increasing in the positive
sense of F®. This induction will be completed at the end of § 6.

Since Z,1D7, by virtue of Theorem 2.3, V|(7,—2) is defined.
Tet V* be defined over B(N,)—Z as in § 5, so as to be PH and
bounded -over R(N,) and PC to U. The open arc s, serving as an
“entrance’” to R(N,) is a subarc of an open are h e F* in SR(N,)
and by definition meets fN,. According to Theorem 8.1(b) of [4],
% is then coneave toward R(N,) and hence admits a sense derived
from F°. In accordance with Lemma 6.1 the entrance 7, may be
parameterized by the values #2)=V(2)|(ze7,). These are values
already assigned to 7, by our inductive hypothesis.

icm

The Euxistence of Pseudoconjugates 285

The open arc 7,, sensed by F*, can be equally well parameter-
ized by the values

(&) =V*(2)|(z €7,),

where p(z) is the signed u-length, measured along »;, from the inter-
section of 5, with the closure of the principal transversal of No.
Values u(2) and #(z) which parameterize the same point ze7, stand
in a relation

t=T(u) (r<p<<ps),

where (uy,4,) is the finite range of V*(z) over 5,, and T is a con-
tinuous strictly increasing function mapping (u,#,) onto the fi-
nite range (f,%,) of #2) over 7,. Let T' as defined over (g, 1)
be extended over the u-axis 5o as to map the p-axis homeomorphi-
cally onto the ¢-axis. Set )

F()=TV*(2) (ze B(N,)—Z).

In particular this definition of ¥ over 7,—Z agrees with the
definition of ¥ over 7,—Z as derived from the earlier definition
of V|(,—_,5—’n_1—Z). This completes the definition of V[(E,,——Z). It is
clear that V is bounded and continumous over X,—Z with values
on each aeF on which ¥V has been defined which are strictly in-

creasing in the sense of F°. A definition of V|{(8§8—Z) is implied.

Theorem 6.1. Corresponding to any funciion U given as PH
over S—Z there exists o function V, PH over S—Z and PC i0o U.

The function V as just defined over §—Z is clearly PH over
each R(N,) and there PC to U. It remains to consider V in a neigh-
bourhood of a point p-7,. I p is F-non-singular we introduce
a right N, of p with canonical coordinates (u,v). We note that 1, Ng
satisfies the condition u=0. As defined V is increasing over each
aer}(fn_I——Z) in the positive sense of a, by our inductive hypo-
thesis. By construction V is increasing over each aeF‘}(E(N n)—2Z)
in the positive sense of a. In N, this is the sense of increasing v by
virtue of our choice of F*. It follows from Lemma 5.1 that ¥ is PO
to U on Ng.

If p e, is F-singular the preceding analysis shows that UiV
is continuous in & neighbourhood X, of p and interior at each point
of X,—p. It follows from Lemma 6.2 that U--4V is interior at p.

This completes the induction and the proof of the theorem.
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§ 7. Uniformization of PH funections. A PH function is
obtained locally from a harmonic function by composition with
a topological transformation. The question naturally arises whether
a similar result holds in the large. This is the case for a PH funetion
when defined in a simply connected domain as stated in Theorem 7.1.

. Theorem %1, Let U be PH in a simply connected domain J,
in the z-plame. There then ewists a homeomorphism ¢ from J, onto
a domain Jy in the w-plane and a function U* harmonic on Jy such
that U==U*gp.

Indeed J, is homemorphic to §—Z under a transformation ¢
from J, to §—Z. Hence U'==Uy~1is PH over S —Z. By Theorem 6.1
there exists V', PH over §—Z and PC to U’. Then V=V'p is PH
over J, and PC to U=U'y [3, p. 39].

The function U4-iF=g is interior on J,. and thus f=g(z)
maps J, on a simply connected Riemann surface Ry spread over
the [=(U+iV)-plane. By the general uniformization theorem there
exists a domain J, in the w-plane and a function f analytic on J,
such that ¢=f(w) maps J, onto R;. The mapping f g is a homeo-
morphism ¢ of J; onto J, and if one sets f=U*- ¢V* with U*
and V* real, we have g=fp and U=U*p. This proves Theorem 7.1.

It is clear that the theorem holds for a U which is PH in any
simply connected Riemann domain. :

Recall that V' and thus ¥V may be constructed so as to be
bounded. If this is done the Riemann surface Ry is of hyperbolic
type. From this we deduce the following corollary.

Corollary 7.1. If J, is of hyperbolic type the mapping ¢ of
Theorem 7.1 may be chosen so as 1o map J, onto dtself.
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