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Products of Abstract Algebras.
By
R. Sikorski (Warszawa).

There are four known operations on abstract algebras of a fixed
type, each of which permits the construction of new algebras from
given algebras. These operations are:

10 the taking of a subalgebra of an algebra,

2% the forming of a homomorphic image of an algebra by
means of a congruence relation,

3% the forming of the direct union of algebras,

40 the forming of the limit algebra of an inverse or direct
system of algebras.

In case of certain special algebras we also make other opera-
tions different from those in 19, 29, 39, 40, For instance, fields and
o-fields of sets may be considered as abstract algebras with respect
to the set-theoretical operations. In Measure Theory we form some
products and o-products of fields or of o-fields of sets respectively 1);
the forming of these products is different from the operations 1°, 20,
30, 4% These products have been generalized by me for the case
of Boolean algebras?). Topological spaces may also be considered
as abstract algebras, called closure algebras3). The operation of for-
ming of the Cartesian product of topological spaces is different
from the general operations mentioned in 19, 29, 30, 40,

In this paper I shall define a new general operation on ab-
stract algebras: the forming of the product of a family of abstract
algebras of a fixed type (§ 3). In the case of fields of sets or o-fields
of sets this definition yields the usual products from Measure Theory.
However, it may also be applied to groups, rings, lattices, Boolean
algebras, etc. The notion of the produet is related to the notion

1) See e.g. Halmos [1], Chapter VII.
2) Sikorski [5}
3) See e.g. Sikorski [6].
14%*
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212 R. Sikorski:
of a free algebra. The definition of the product can be so gene-
ralized that in the case of topological spaces it coincides with the
usual definition of the Cartesian product of these spaces (§§ 5, 14, 15).
The first part of this paper contains general remarks on the
product of abstract algebras. In the second are examined special
kinds of algebras: groups, rings, lattices, fields of sets, Boolean
algebras, closure algebras, ete.

I. General remarks.

1. Abstract algebras. We recall the fundamental notions4).

Let A be a non-empty set and let « be an ordinal. A trans-
formation o which associates with every sequence @ ={as}ecqs (tsc 4)
an element o(a) e A is called an operation of the type a.

An abstract algebra is, by definition, an ordered system
{A; 04,0,,...,0n> Where A is a non-empty set and o,,0,,...,0n are ope-
rations in A of the types a,a,,...,a, respectively 5). Instead of “an
abstract algebra <{4;oy,...,0n>" we shall often write, for brevity,
“an algebra A”, i.e. we shall denote an abstract algebra by the
same letter as the set of its elements.

Two abstract algebras {4;oy,...,0,> and {B;0;,...,0m> are said
to be similar if n=m and if the corresponding operations o; and o;
have the same type (i=1,...,m). If 4 and B are similar, we shall
denote the corresponding operations by the same letter o;.

Let <4j0,...,0np and {B; 04,...,0n> be two similar algebras.
A mapping h of A into B is said to be a homomorphism if h(oj(@))=
=0;(h(a)}®) for i=1,...,n and for all sequences @ of the type a;
(= the type of 0;). A one-one homomorphism of A onto B is called
an isomorphism. If it exists, A and B are said to be isomorphic.

1f a set SCA is closed under the operations o,...,0, (i.e. 0)(@}eS
whenever all elements of @ are in §), then {8;04,...,0,> forms an
abstract algebra called a subalgebra of {Ajo,,...,0n>.

A set KCA is said to generate a subalgebra S of A if § is the
least subalgebra of A such that ECS. )

4) See Birkhoff [1], pp. vii-viii.

%) The hypothesis that the number of algebraical operations o; is finite
is not essential.

%) If a={ag}. then h{a) denotes the sequence {h(a)}.
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(i) If @ set K generates a subalgebra A, of an algebra A, and
if f is & mapping of K into an algebra B similar to A, then there 18
at most one homomorphism k of 4, into B which is an extension of f,
i. e. h(a)=F(a) for a K.
(ii) %) If sets K and L generate two similar algebras 4 and B
respectively, and ij | is a one-one mapping of K onio L such that
(a) f may be extended to & homomorphism L of 4 into B,
(b) /71 may be ewtended to a homomorphism g of B into A4,
then h is an isomorphism of A onto B and g:h“’,

2. Factor algebrast). Let {(B;o,,...,00) be an abstract al-
gebra. A congruence relation in B is an equivalence relation a=b
(a,b e B) preserving all the operations oy.....0q, i. ¢. if @={ag}, b={bs}
and ag=Dhe for all £, then ofa@!=n(b) (i=1,...,n}.

Let a=>) be a congruence relation in B. Denote by @ the set
of all b such that ¢ ==b. If @={¢;} is a sequence of elements in 4,
then & denotes the sequence {@;}. Let B be the class of ail ¥ (aeB).
Clearly <B:in.....0n> is an algebra with the following definition of
operaticns

0:(8) = 0r(@) (i=1,.0y).

B is similar to B and the mapping e—¢ is a homomorphism
of B onto B. B is called the factor algebra determined by B and
the congruence relation =.

Now let (B;0y,...,0np be an abstract algebra and let E be
a subset of the Cartesian product 8) BxB. Let R be the class of
all sets RCBx B such that

(a) ECR,

(b) the relation (a,b) e R is a congruence relation in B.

The class R is non-empty since B X B < B. The intersection R,
of all sets Re R also satisfies conditions (a) and (b), hence B¢ R.
The congruence relation defined by the condition

a=b

if and only if (a,b)e R,

is called the congruence relation generated by the set ECB X B.
7) The very simple proof of (ii) is the same as that of Lemma 1.4 in

Sikorski[5]).
5) BX B is the set (no algebra!) of all pairs (a,b) where a,be B.
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8. Products of abstract algebras, Let A be a class of

similar abstract algebras {(4;oy,...,0n)>.

Let {4:}er be a family ?) of abstract algebras in %. We shall
say that an algebra B is the A-product of all the algebras A, (e T)
it BeW and if there is a family {Bi}ser of subalgebras of B such thab

(A) the union of the sets B; (z ¢ T) generates B;

(B) for every teT, B, is isomorphic to A,;

(Q) if, for every veT, h: is a homomorphism of B; into any
algebra C ¢, then there is a homomorphism k of B into ¢ which
is a common extension of all the homomorphisms %, (. e., hs(b)=h(b)
for beB,). ’

The W-product of all A, is not uniquely defined. If B is the
9-product of all 4,, and if B’ is isomorphic to B, then B’ is also
the A-product of all A,. The converse statement is also true and
follows easily from (ii) and (A-C):

(iil) If B and B’ are W-products of all A., then B and B' are
isomorphic.

Thus the %-produet B is defined up to the isomorphism type.
Clearly the isomorphism type of the Y-product B depends only on
the isomorphism type of algebras A.. It may happen that the U-pro-
duct of a given family {4;};er does not exist. A criterion for the
existence of the ¥-product will be given in § 4, (viii).

The U-product is completely commutative and associative:

(iv) If t=1(1) is & one-one transformation of T onto itself, and
if B and B’ are U-products of jamilies {d:}ser and {Aumleer res-
pectively, then B is isomorphic to B'.

(v)w) If T=XTs (Tu=0), and if Ba is the W-product of
uel

{A}ser,, then the W-product of {Buluey is isomorphic to the U-pro-
duct of {A:}ker (Whenever these products exist).

The exact proof is based on (ii).

It follows immediately from the definition that

(vi) If W CA, As ey (veT), AWy, and if A is the U-product
of all A;, then A is also the Wg-product of all A,.

9) Tt is not supposed that A;=kA., for 77"
a fixed non-empty set.
10) The simple proof of (v} is similar to that of Theorem 7.2 in Sikorski [5].

The letter T' always denotes
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4. Free algebras. Let %A be a class of similar algebras.

An algebra Be¥ is said to be U-freel) if there is a seb
KCB such that

(A) K generates B;

(B) every mapping of K into anv algebra Ce¥ can be ex-
tended to a homomorphism of B into C.

Elements ae¢H are called free generators of the U-free al-
gebra B.

Clearly, if K,CK and B,CB is the subalgebra generated by K,
then K, and B, satisfy also the condition (B).

The following two theorems show the connection between the
notion of the ¥-free algebra and of the A-product of algebras.

(vii) Suppose there exisis an U-free algebra A, with one free
generator. An algebra Be¥W is U-free with m free generators if and
only if it is the WU-product of m replicas of the algebra A,

The easy proof is left to the reader.

(viii) Let {A:)ser be a family of algebras in U, each algebra A
being generated by a set AICA,, A=m,. If

(a) 12) there is an algebra D €W which, for every e, contains
a subalgebra D, isomorphic o A.;

(b) there is an A-free algebra B with m free generators, m = Z;m,;

%€

(c) every factor algebra B determined by B and a congruence
relation is in U;

then the W-produet of all A; (veT) exisis.

Let B be the set of free generators of B, B= 2 BY, Bi>m,,

7€l

BLB =0if t== 7', and let B; be a subalgebra of B generated by B
Let f,’ be a mapping of B? onto A?. The mapping ﬂ may be ex-
tended to 2 homomorphism f: of B; onto A.. Let E: be the set of
all pairs (a,b) e B, XB;CBx B such that f:(a)=7:(b). Let E—ZE,,

and let = be the congruenee relation genemted in B by the set

E (see §2).

1) See Birkhoff [1], pp. viii-ix.

12) This condition is essential. F. g. if B is the class of all Boolean algebras,
A,AeB, A, is degenerate and 4, is not degenerate, than the PB-product of
4; and A, does not exist (see § 11 and footnote %)) However the conditions (b)
and (c) are falfilled.
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We shall prove that the facter algebra B determined by B
and the comgruence relation == is the ¥Y-product of all A,. Let B,
be the class of ail b e B such that b e B,. It is sufficient to prove that

10 arbitrary homomorphisms hs of B, into an algebra C<¥
can be extended to & homomorphism % of B into C;

20 B, is isomorphie to A,.

Ad 10, Tet ¢3(b)=hq(B)
of B into O such that

) for b e BY. There is a homomorphism ¢

g(b)y=g0(b) for beBS.
Clearly, by (i),

~

g(b)=he(b) for beB;.
The set B of all (a,b) e BX B such that g{a)=g(b) satisties the
condition (b) from § 2. If («,b) ¢ B;, then &=» and
glay =T +(@) =he(B) =g(b).
Hence E;CR for every veT, and consequently ECR, i.¢. R
also satisfies condition (a) of § 2. Therefore
gla)=g(D).

Putting k(D) =g(h) we obtain a homomorphism & of B into ¢
which is a common extension of all 7.
Ad 20 Let hs be an isomorphism of 4; onto D; and let

G (D)=l (f2(b)) for

There is a homomorphism g of B into D such that g(b)=g%(b)
for beBj. Consequently, by (i),

g(b) = ha(f=(b))

Let B be the set of all (a,b) e BX B such that g(a)=g¢g(b). If
(@,b) € Ey, 1. 6. if fs(a) =f:(b), then g(a)=g(b). Hence E,CR for every
teT, and consequently ECR, i. e. R satisfies conditions (a) and (b)
of § 2. Therefore if a=25, then g(a)=g(b). Hence the formula

if «=b, then

beB..

for every beB;.

F(b)=g(b) for beB

defines a homomorphism g of B into D. Clearly §,=g [B, maps B,
onto Dy since the set 71,{A,)—g(B,) generates D;.
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Conwaﬂmfh Ee=17"9: is a homomorphism of B, onto A,
such that L,(b)_-rz(b) for beB;. If f:(a)=[(D) (a, beB,) then a=b.
Consequently, if =0, . e if a==b, then fi(a) =f+(d), and finally
Rl =l 3). We infer that k; is an isomorphism of B, onto 4, Q.E.D.

A class W of similar algebras {d;0y,...,0,> is said to De closed
if it is the class of all abstract algebras satisfying a set of axioms,
each of which is an equation between two polynomials formed by
means of the operations oy,...,0n.

1f U is closed, then (see Birkhoff [2]):

(1) for any cardinal m, there is an U-free algebra with m free
generators 13); -

(2) every factor algebra B determined by an algebra Be¥
and by any congruence relation also belengs to U;

(3) every subalgebra of an algebra ¥ also belongs to A

(4) the full direct union D of a family of algebras 4:e¥W (v T)
also belongs to 9 (D is the class of all systems {a");er (Where aedy)
with the operations:

r;,-'\{a’}) :{(),—(tl’)}
where @®= {a}}s<q,).

It follows immediately from (viii) that

(ix) If U is closed, and if every algebra A:;e¥W (veT) contains
a one-element subalgebra (¢), then the U-product of all A, (v T') ewists.

It is sufficient to remark that the full direct union D of all A4,
has subalgebhras D, isomorphie to 4.. In fact, the subalgebra D,
formed of all {a*} where a*=e; for =1, is isomorphic to .

5. The (U, &;-product. Let A be a class of similar algebras,
and let @ be a class of transformations such that

(a) each fe® maps a subalgebra of an algebra 4% into
an algebra Be¥;

(b) if f maps 4 onto B (4,Be¥), and if feP and e,
then f is an isomorphism of A4 onto Bj;

(e) if f,ge®, then the superposition fge® also (whenever this
superposition is feasible);

(d) if A is an isomorphism of an algebra A A onto a sub-
algebra B,CBe%, then he® and b e ®D;

13y For the case of finite operations, see Birkhoff [1], p. viii. The con-
struction described there holds also for infinite operations.
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(e) for every mapping f of a subset KCA e into an algebra
B e there is ab most one transformation ge® which is an exten-
sion of f over the least subalgebra generated by K.

Let {A:}er be a family of abstract algebras in %. We shall
say that an algebra B is the (A, D)-product of all A, (zel) it BeN
and if there is a family {B;}:¢r of subalgebras of B such that

(A) the union of all sets B, gemerates B;

(B) for every zeT, B, is isomorphic to Az

(C) if, for every zeT, f,e® is a transformation of B, into
any algebra Ce®, then there is a transformation fed which is
the common extension of all f,.

It is easy to see that if @ is the eclass of all homomorphisms
between subalgebras of algebras in U, then the (U, @)-product co-
incides with the ¥-product.

" The (2, P)-product is determined up to the isomorphism type
only.

It follows from (a-e) that Theorem (ii) remains true after
replacing the word “a homomorphism” by “a mapping in 9.
Consequently, Theorems (iii), (iv), (v} and (vi) are also trae for
(%, D)-products.

II. Examples.

6. Groups. Let & and G, be respectively the class of all
groups and the class of all abelian groups. The G-product and the
®,-product always exist, by (ix).

It is easy to see that the ®,-product of a family of abelian
groups {G:}zer (written additively) is the weak direct union of the
groups G, i. e the class of all finite sums4)

aI—I—... —+@tn (aierig Ti=i=‘rj for i#_’)),
where the order of the summands makes no difference. The group
operations are defined in the obvious way.

The G-product of arbitrary groups {Gs}ser (written multi-
plicatively) is the free product of these groups, 7. e. the class of
all finite words )

: [P (are Gy Ti=Ti1),
where ab==ba if ¢aeGy, e<=bec Gy, T=7. The group operations
are defined in the obvious way.

) We assume here, for simplicity, that, for 741, Gr-Gy=(e) where ¢ is
the zero (unit) element common to all groups.
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7. Algebraic rings. Let & and K, be respectively the class
of all algebraic rings and the class of all commutative algebraic
rings. The K-product and the K,-product always exist on account
of (ix).

The K.-product of a family {K:er of commmutative rings is
the set of all finite sums of produets?!s)

ay-...-ln

where the order of factors and summands is of no consequence.
The &K-product of arbitrary rings can be defined in a simi-
lar way. ’

8. Laitices. Let € be the class of all lattices. The &-product
of any family {L;};er of lattices exists by (ix).

((t,- EK'I')Z

9. Distributive lattices. Let 84 be the class of all dis-
tributive lattices. The Qg-product of any family {L;}..r of dis-
tributive lattices exists on account of (ix). It can be described
immediately as follows.

We shall assume the following notations. Let {¥Yi}rer be
a family of non-empty sets. The letter ¥ will always denote the
Cartesian product of all sets ;. If ¥C¥Y;, then ¥* will denote
the set of all points in % whose z-th coordinate is in ¥. If ¥ is
a class of subsets of ¥, then ¥;* will denote the class of all sets ¥*
where Y eXY;. : )

Let . be the class of all prime ideals of L., and let s.(a) (for
aeL;) be the set of all prime ideals pe Y, such that anonep. Let
¥, be the class of all sets s.(a) (aels). ¥, i3 a distributive lattice
with respeet to the set-theoretical union and intersection, and the
mapping ¥ =sg.(a) is the isomorphism of L. onto ¥,;1%). Take the
~Cartesian product @ of all 3/, and apply the notations mentioned
above. Let X be the least class of subsets of ¥ such that

10 if U,V eX, then U+T eX and UV X

20 ¥FCYX for every 7.

The class X is a distributive lattice which is the 4 produect
of all Z..

15) We assume here that, for z4+', K¢ K contains only the zero element
common for all rings. :

18) This representation of a distributive lattice is due to Stone [1]. See
also Rieger [2]. A prime ideal is & set pc L such that: (1) if a,bep, then aUbep;
(2) if aep, bel, bca, then bep; (3) if aNbep, then either aep or bep.
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In fact, L, is isomorphic te X; *. Let h; be a homomorphism
of ¥¥* into a distributive lattice €. We may assume that C is a dis-
tributive lattice of subsets of a set & with the set-theoretical ope-
rations. The mapping h.(s:(a)*) is an homomorphisms of L, into C.
For every z<& let p=g, (#) be the prime ideal of L, defined as
follows

aep if and only if anon ek (s(@)*).
¢, is a mapping of & into Y. and
g7 HY) =T(¥*) for Y e X7,

Let p be the mapping ¢(@)={g,(®)} of & intec I and let
WY)=¢ YY) for Y < ¥. Clearly I is a homomorphism of Y intc C
which is the extension of all hs.

10. Fields of sets. Let § be the class of all fields of sets.
Algehraical operations in algebras g are the set-theoretical union
X;+X, and the complementation X'. The ¥-product exists for
any family of fields {¥;} of subsets of sets .30 resnectively.
Using the notation deseribed in § 9, the F-product of all ¥; is the
least tield containing all fields X3* For the proof see my paper [3].

Analogously, let §. be the class of all m-additive fields") of
sets ronsidered as algebras with the set-theoretical operations X’

anid Y X; where @, =m. The Freproduct exists for any family of
m-aa?ii%ive tields ¥, of subsets of sets Y;==0. The Fp-product is
the least m-additive field of sets containing all the fields XY¥. The
proof in the case m=x, is given in my paper [3]. If m > 8, the proof
is analogous.

11. Boolean algebras. Let B and B, denote respectively
the class of all Boolean algebras and of all m-complete Boolean
algebras 18). Algebraical operations in the class B are the Boolean
union 4,44, and the complementation A4’. Algebraical operations

in B, are A’ and the infinite Boolean union <2 Ag where w,=nt.
e<tg

‘ 17) In the sequel m denotes a fixed infinite cardinal. A field of setx X is
m-additive if the conditions Xye X, U<{m imply that the set-theoretical union
3 Xye X. An Ro-additive field is called also a o-field.
u -
e 18) Boolean algebras will be denoted by letters 4,B.C,...; their elements
by A4,B,C,... ABoolean algebia A is m-complete, if the Boolean union 20.1,1 always
ue -

exists whenever U<<m (Adue A). Instead of “Ng-complete” we shall algo write
“g-complete’.
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The existence of the B-product of any family {4} of non-
degenerate 19) Boolean algebras follows from § 10 and Stone’s re-
presentation theorem 20).

The existence of the By-product of any family {4,} of non-
degenerate %) m-complete Boolean algebras follows from (viii). In
faet, there is an m-complete Boclean algebra with n-free generators
where n is any cardinal?). The class of all m-complete Boolean
algebras is closed, which implies {viii) (c). Given a family {4.} of
non-degenerate m-complete Boolean algebras, there is a Boolean
algebra D which satisfies the condition (a) of (viil). It is sufficient
to put D = MaeNeille’s minimal extension of the B-product B of
all A4,. sinee the isomorphism of 4, onto the subalgebra B,CBCZD
preserves all infinite Boclean coperations ).

In the case m=n, the above-mentioned By-product of o-com-
plete Boclean algebras is isomorphic to the o-maximal product
examined in my paper [5] (see theorem 6.1) 22). If all A4, are o-fields
of sets, then the By -product B of all 4, does not ceincide, in ge-
neral, with the Fg-product F of all 4,2} If B+F, then B is nob
jsomorphic to a o-fieli of rets (see the remark ar the end of § 12
in my paper [5]).

12, wm-quotient algebras. Let Q. be the class of all
m-quotient algebras, i. e. Boolean algebras isumorphic to a guotient
algebra X' where X is an m-additive tield of subsets of a set Y==0,
and J i3 an m-additive ideal of sets 25). The element of ¥/J deter-
mined by a set ¥ ¢ X will he denoted by Y/dJ.

) 4 pooleau algebra is non-degenerate if it contains at least two elements.
It is degenerate, if it contains only one element.

If all 4; are degenerate, then the B-vroduct exists and it is degenerate.
If some A are degenerate and other A; are non-degenerate, the ®B.product
of all A: oes not exist. . )

20) Stone [2], pp. 98 and 106. See also Sikorski [5], Theorem G.2.

2) Rieger [1], p. 37.

22) See Sikorski [5], Theorem 9.3.

2) It should be outlined that in my paper [5] all Boolean algebras under
consideration are supposed to be non-degenerate.

2¢) A simple counter example is given in my paper [4], p. 17. Using the
notation mentioned there, A is the &y -product of 4’ and A”. It follows from
§ 12 that Cs/J is the By,-product of 4’ and A”. Clearly C;/J is not isomorphic
to A since Cq/J is isomorphic to no o-field of sets (see my paper (1], Theorem 2.4).

28) Clearly the algebraical operations in Qm are the same as in Bm.

An ideal I is m-additive if ) XyeI whenever U<m and Xnel for
every une l7. uel
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The Qy-product exists for every family {4,} of non-degenerate
m-quotient algebras. This can be proved immediately as follows.

We shall say that an m-quotient algebra ¥[J has the property
(Hw) if, for any homomorphism 7 of X/J into any m- quotient
algebm X/I (X is an m-additive field of subsets of a set F==0,
I is an m-additive ideal), there is a mapping ¢ of & into Y Whmh
induees 1, i. e.

MY [J)=¢HX)/I for every Ye¥.

For instance, if ¥ = the least m-additive field generated
by open-closed subsets of a generalized Cantor set, then ¥/J has
the property (H,,) for each ideal J26),

We may assume that 4,=X;/J; where ¥,/J; has the
property (Hw) (we may assume 27) ¢. g. that ¥, is the least m-ad-
ditive field generated by open-closed subsets of a generalized Cantor
set). ¥ and J; are respectively an m-additive field of subsets
of a set Y, and an m-additive ideal. Let ¥ be the Cartesian pro-
duct of all spaces ¥Y;. Employ the notations of § 9. Let ¥ be the
least m-additive field containing all field ¥, and let < be the
least m-additive ideal containing all ideals JJ;*.

We shall prove that ¥/J is the Qu-product of all ¥,/J;.

The mapping Y/J;—X¥*/J; is a homomorphism of ¥;/J;
onto ¥7*/J,. It is an isomorphism. In fact, if ¥ e X, and ¥ nonedJ;,
then

W=X*—(2*+ 2 28) %0

te€ld
for arbitrary sets Z e, and Z;eJ; where UCT —(7o) 18 a set of
power <. Let 49 ¢ Y—2Z, and let ylc:—2Z, (vU). Bach point
y={y,}eY such that Y, =40 for 7eU+(z,) belongs to W.

Now let h, be any homomorphism of X¥;*/J into C=X/T
where X is an m-additive field of subsets of a set &F==0 and I is
an m-additive ideal. Since k; may be interpreted as a homomorphism
of X./J:, there exists a mapping ¢, of &F into ¥ such that

heo( X* [T )=~ Y X) [T for Ye¥,.

2¢) This can easily be proved by means of the generalized characteristic
function of a transfinite sequence of sets. For the case m=N,, see Sikorski [8],
_Theorem 6.2. The proof in the case m>N, is similar.

27) Sikorski [7].
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¢(r)={7 (x)} is a mapping of & into . The formula
WY T)=¢—HX)/ I for Ye¥

defines a homomorphism of ¥ of into X I which is the common
extension of all 7, Q. E. D. )
A Boolean algebra is an R -quotient algebra if and only if
it is o-complete 28). The above-defined Qy,-product of non-degenerate
g-complete Boolean algebras coincides with the By-produet and
with the o-maximal product defined in my paper [5]. The con-
struction of the product described above is slightly different from
that.in my paper [5].

18. o-complete Boolean algebras without newtral
elements. An element 4 of a ¢-complete Boolean algebra 4 is
said to be neutral if u(4)=0 for every o-measure u defined on A.

Let B, be the class of all s-complete Boolean algebras which
contain no neutral element different from the zero element 2). The
B-product 4 of a family 4,eB, (veT) always exists. In faet
A=B/I where B is the Bg-product of all 4;, and I is the o-ideal
of all neutral elements of B. The easy proof is left to the reader.

Ryll-Nardzewski gave an example30) of two o-fields of
sets 4, and 4, such that their B,-product 4 is different from their
Tx,-product. Consequently A4 is not isomorphic to a o-field of sets.

14. Topological spaces. Each topological space 31) & may be
interpreted as an abstract algebra denoted by S(&). Elements
of §:&) are all subsets of &. The algebraical operations in S{ &) are

(1) complementation X'=F—X (XC&E);

(2) addition 3 X of an arbitrary transfinite sequence of
subsets X;C&; *

(3) the closure operation X (XC&E).

The class of all such algebras will be denoted by T

Since the type of the sequence {X;} in the operation (2) is
not fixed and may be arbitrary, the algebras S{&) are not abstract
algebras in the sense of the definition in §1. However, we can
easily generalize the definition in §1 so that some operations,

%) Loomis [1], p. 757, and Sikorski [1], p. 256.

**) The algebraical operations in B are assumed to be the same as in By, .

30) Not published.

3) By a topological space we shall mean a set & with a closure operation
satisfying axioms I-IV in § 15, p. 226.
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feasible on every transfinite sequence of elements, will be admitted;
and it is easy to see that the definition and the fundamental pro-
perties of the product also hold after this generalization. Therefore
we can apply the results of §§ 1-5 to the case of the class T,

. On the other hand, if we are concerned with a given fumily
8(&)eX (rel), instead of the unrestricted unions (2) we can
cousider only the union of sequences {Xg} of a fixed type wa,
where w, is a sufficiently great initial ordinal such that 8, > the
cardinal of any class composed of subsets of the spaces &, and
of their product®). In fact, each union of sets under consideration
can then be reduced to the union of a sequence of sets of the type we.
This is the second reason which permits the application of the
notions and theorems of §§ 1-5 to the case of the class T.

According to §1, a subalgebra of S(& T is a completely
additive subfield 33) of S{&) closed with respect to the closure
operation. A homomorphism of §(%/) into (&) (¥, Y — topolog-
ical spaces) is a mapping h such that

(1) MY —T)=F—nX) for YCY,;

(2)  R(X T)=Xn{Ye for each transfinite sequence Y;CY;
3 3

(3) MYj=h(X) for YCY.

It follows from (1) and (2) that there is a point mapping @
of & into ¥ such that

(4) MY)=¢=Y(T) for YCY.

h is an isomorphism of S(%) onto S(¥F) if and only if ¢ is one-
to-one and ¢(&)=. Condition (3) implies that ¢ is then a ho-
meomorphism. Conversely, if  is a homeomorphism of & onto ¥,
then equation (4) defines an isomorphism k of §(%Y) ouio S(F).

If h is any homomorphism, then it can be proved that the
transformation ¢ in (4) is open (i. e. ¢ is continuous, and @(T) is
open in ¥ for every set U open in &). Conversely if ¢ is an open
mapping oi & into ¥, then equation () defines a homomorphism
of S{Y) into S(%¥).

%) In the construction of the (£, @y)-product on p. 225 it is sufficient
t0 assume that Mo > exp ( I]Ty,).
TE

) A field Fis completely additive if the set-theoretical union of any family
of sets ¥ e F also belongs to F.
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I do not know whether the T-product of a family S{Y:) eI
exists. The T-product is defined by an extension property of homo-
morphisms, i.e. of open mappings between topological spaces.
No such extension property of open mappings is known. However,
open mappings form a very special class of mappings between
topological spaces. The mnatural elass which should be considered
here is the class of all continuous mappings. Therefore, instead
of homomorphisms we shall consider the class @; of transformations
induced by continuous mappings.

More exactly we define the class @; as follows: fe®,; if and
only if simultaneously

(a) f is defined on a subalgebra ACS(%) «I: the values of f
are in an algebra S{&)eT;

(b) there is a continuous mapping ¢ of & into ¥ such that
X i=¢ ) for every Yed.

It is easy to verify that the class @, satisfies conditions (a-e)
of §5.

It S(Y)<X, Y.=0 tor every reT, then the (X, Dy)-product
of the family {S(Y)her exists. More exactly, if & is the Carte-
sian product of the spaces %, with the usual topology, then S(¥/) is
the (T, Pa-product of all S(¥Y.). In other words, the (T, @;)-product
of topological spaces ¥ coincides with the Cartesian product of
these spaces.

To prove this statement, use the notations of § 9. Clearly
S(Y.)* is isomorphic to S(¥.) and all S(Y.)* generate 8(%).
Let fre®, he a transformation of S{¥.)* into an S(&)eT (re D).
Then there is a continuous mapping y, «f & into ¥ such that

Products of Abstract Algebras 225

FAT*) =471 (T*) for every YCY..

Let ¢, () be the projection of p (#) cn the axis Y.. The
mapping ¢ () of & into %Y. is continuous and

fl X% =¢~ 1Y) for ¥CY..

Consequently ‘}”(1’}:{%( )} is a continuous mapping of & into Yy
and the formula
AY)=¢{T) for YCY

defines a transformation f ¢ @; which is a commeon extension of all f;.
Fundamenta Mathematicas T. XXXIX. 15
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15. Borel C-algebras, A closure algebra ®) is a o-complete
Boolean algebra A in which there is defined a closure operation 4
determined for all 4 ¢ 4 and such that

I. A+B=A-+B, 11, 0=0,
IIT. ACA, IV. (A)=A4.

A closure algebra 4 is said to be a C-algebra 35) if

V. there is an enumerable sequence of open elements R,e A
such that every open GeA is the sum of all R, such that R,CG.

A (-algebra is said to be a Borel C-algebra if the least o-sub-
algebra containing all open elements of A is the algebra A itself.
For instance, the class B(&) of all Borel subsets of a separable
metric space is a Borel C-algebra.

Let & be the class of all Borel (-algebras6), and let &, be the
class of all comtinuous Boolean homomorphisms®), i.e. the class

of all transformations % of a subalgebra of an 4G into another
Be® such

2 An) = D (),
h(A")=Hh(4),
and
WA)Ch(d).

The (G, @c)-product of any finite or enumerable family of
non-degenerate algebras 4.e® (veT, T<8,) always exists.

In fact, we may suppose %) that 4,=B(%Y,)/J, where Y, is
a separable complete metric space and J; is a suitable o-ideal.
Let Y be the Cartesian product of all %.. Assume the notations
of §§ 9 and 12. Let o be the least o-ideal generated by all o-ideals J=.

The Borel (-algebra B(¥Y)/J is the (€, &,)-product of all A,.

In fact, the subalgebra B(Y,)*/J is isomorphic to A, since
the mapping

: Y/Ji>X*J for YeB(Y,)

3) See Sikorski [6], p. 170.

28) See Sikorski [6], p. 182.

K‘LCIearly the algebraical operations in € are: the enumerable Boolean
union né'xz{n, the complementation 4’, and the closure operation 1.

37) See Sikorski [6], p. 175.
3%) Sikorski [6], Theorem 15.2.
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is an isomorphism of 4. onto B(Y)*'J (see §12). Clearly all sub-
algebras B(Y.)*/J generate B(Y) .

Let f.e®, be a transformation of B(%Y.)* ' into any Borel
(-algebra €. We may suppose *) that C=B(%¥)!I where & is
a separable metric space, and I is a o-ideal. Since j, may be inter-
preted as a Boolean ¢-homomorphism 3) of 4, into G, and since 4,
has the property (Hy)4%%) (see §12), there is a mapping ¢, of &
into ¥ such that

f(X* ) =g HX), I for every YeB(Y).

There exists a set X;¢ X such that ¢, | F—X,is continuous ).
The transformation g(x)={g(z)} of & into ¥ induces the
Boclean o-homomorphism f of B(¥Y) J into C:

AXY J)=¢={¥) I for YeB(Y)

which is a common extension of all f,. Since ¢ is continuous on
the set F—2 X, and X X.eI, the Boolean o-homomorphism f
T

is continuous4), i. e. fe®@c, Q. E. D.

It is possible that the (€, ®,)-product of Borel G’»a]gebré_ms
B(Y:) (where 9. —separable metric spaces) is not isomorphic
to @ o-fields of sets. However, if all 9 are absolute Borel sets42),
then the (€&, &.)-product of an at most enumerable family B(Y:) is
the Borel C-algebra B(%) where ¥ is the Cartesian product.of
all 9. This follows from the fact that in the above construction
the assumption that 9 are complete can be replaced by the
hypothesis that % are absolute Borel sets ).
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On Continuous Mappings on Cartesian Products.
By

S. Mazur (Warszawa).

In every Hausdorff space we can distinguish two different
topologies: the original neighbourhood topology and the sequential
topology. The sequential topology is determined by the conecept
of a convergent sequence defined in the neighbourhood topology ?).
These two topologies are not, in general, equivalent (under sequen-
tial topology the space is only a Fréchet .L*-space). The equivalence -
holds if the space satisfies the first axiom of countability 2).

Let 4 and B be two Hausdorff spaces. By a continuous
mapping of 4 into B we shall always understand a mapping @ con-
tinuous in the neighbourhood topology, that is: for every neigh-
hourhood V of @&(a) there is a neighbourhood U of aed with
@(TU)CV. We shall say that a mapping @ of 4 into B is sequentially
continuous if it is continuous in the sequential topology of 4 and B,
i. e. if a=1lim a, in 4 implies @(e)=lm P(a,) in B.

The two above notions of continuity, corresponding to the
classical definitions of Cauchy and Heine respectively, are not,
in general, equivalent. Continuity always implies sequential con-
tinuity; the converse is true only under certain additional hypo-
theses, e. g. if A4 satisfies the first axiom of countability, in pax-
ticular it 4 satisfies the second axiom of countability ?) or if 4 is
metrizable.

In this paper it will be shown that the equivalence of neigh-
bourhood and sequential continuity holds also if the space B has
the property

1) We write a=lim an if every neighbourhood of a contains all elements «an
except a finite number.

2) That is, for each point @ there is a sequence of its neighbourhoods {T'n}
such that if U is any neighbourhood of a, then UncU for an integer n.

3y That is, the space possesses an enumerable open basis.
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