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is a 6-dimensional Cantor-manifold. In fact by corollary 3 of Nr 13,
every one of the four summands is & 6-dimensional Cantor-manifold
and the common part of two successive summands is the Cartesian
product of the 4-dimensional (by (18)) set homeomorphic to P, X Py
or to Pyx Py and of a 2-dimensional element, hence ®) it is also
6-dimensional.

15. Problems. Is the Carterian product of an n-dimensional

Cantor-manifold and a 1-dimensional continuum always an (n-+1)-

dimensional Cantor-manifold ?
Is the Cartesian product of two locally contractible Cantor-

manifolds always a Cantor-manifold?
If Ax B is a locally contractible Cantor-manifold is it true

that 4 and B are also Cantor-manifolds? .
If Ax B is an approximative psendo-manifold is it true that
A and B are also approximative pseudo-manifolds?

%) See footnote 22),

Panstwowy Instytut Matematyozny.
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Measures in Fully Normal Spaces.
By
M. Katétov (Praha).

The present note contains two decomposition theorems con-
cerning Borel measures in fully normal (i. e. paracompact) spaces.
These theorems are closely related to the results of B. Marezewski
and R. Sikorski [5] on Borel measures in metric spaces. The third
theorem, proved by similar methods, asserts that every fully noz-
mal space is a @-space, in the sense of B. Hewitt [2], unless some
of its closed discrete subspaces are not so. It may be noticed that
it is possible to deduce this result from the decomposition theorems
of the present note and E. Hewitt’s resnlts 1) concerning measures
in @-spaces.

All spaces considered are completely regular?) topological
spaces. .
The following notations are used: if P is a space, then F(P),
G(P), F*P), GXP) denote, respectively, the family of all closed
sets, the family of all open sets, the family of all sets of the form
Ia I(M), f continuous real-valued, M closed (or, equivalently, of the
form f~ 1(0), / continuous real-valued), and the family of comple-
ments of sets from F*(P). The meaning of Fo(P), FsP), GyP),
G3(P) is clear. B(P) or B*(P) denotes the least o-field containing
F(P) or F*(P) respectively. The sets belonging to B(P) will be
called Borel sets (relative to P); those belonging to B*(P) will be
called Baire sets (relative to P).

Clearly, we always have B*(P)CB(P). If P is perfectly nor-
mal 3), then F*(P)=F(P) (see e.g.[9]) and therefore BYP)=B(P).

') Bee [2a], Theorem 16.

%) A Hausdorff space P is called completely regular if, for any closed set
ACP and any we P—4, there exists a real-valued continuous funetion f in P such
that f(z)=1, f(4)=0.

?) A normal space P is called perjectly normal if F(P)C Gs(P). -
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1
e

Lemana 1. The class F*P) is countably multiplicative, i.e.

[17 ¢ F*(P) whenever Fre F*(P), and finitely additive, i.e. ZF,,EF*(P)

n=1 n=1

whenever F,e F*P).

Proof. Let F,= f"(() )y fa continuous real-valued, O<f,, <1

for every zeR. Put f=22*“ . Then f is continuots, Hlf‘,,:f"l(()).
n=1 n==1
) )
Put g=ﬁf,,. Then ¢ is continuous, Z',F,,:)g“l((b).
ey E ) :

Remarks. 1° It can happen that M e F(P), M ¢ B*(P), but
M non e FXP).

Example P is obtained from the real line by declaring every
irrational number to be isolated. It is easy to see that P is a nor-
mal space. Denoting by R the set of rational numbers, we have
E=R, R e F5B)CB*P). If G¢CP is open (in P), @DR, then there
exists a set H, GDHDR, which is open in the usual topology of
the line. Therefore, should R belong to F*(P)CG4(P), then R
would be a G4 in the usual topology of the line, which it is not.

20 1t can happen that F(P)CGe(P) in a non-normal space P.

Example. For any irrational P, P denoting the set of all
real numbers, choose a sequence {r,,} of rational numbers con-
verging (in the usual sense) to . For any MCP, let the closure
consists of all te ¥ and all # such that M containg infinitely many
points 7. The space P is completely regular, but is not normal,
sinee there are y (= power of continuum) continuous real-valuéd
functions in P (for the set R of rational numbers is dense in P),
whereas there exist” 2% such functions in P—R which is a closed
discrete subspace of P. If FCP is closed, then FR is open (every
rational point being isolated), F—R is open in P—R and therefore
belongs to &;(P), for P—R e G4(P); thus F ¢ G4(P).

30 I do not know whether there exists a completely regular
non-normal space P with B(P)=B*P) or a normal space P with
B(Py=B*(P) which is not perfectly normal.’ )

‘We shall call a measure in a space P every g-additive non-
negutive real-valued (co excluded) set funetion u in a o-field BOB¥(P).
1f B=B(P), then p will be called a Borel measure; if B= B*P),
then x4 will be called a Baire measure. A measure is said to be fwo-
valued if it assumes at most two values.
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Remark. It is easy to see that every finite ¢-additive fune-
tion in a o-field may be represented as the difference of two finite
non-negative o¢-additive functions. Therefore, many results eon-
cerning measures in topological spaces may be extended mutatis
mutandis to finite ¢-additive functions defined on Borel or Baire sets.

Given a space P and a meagsure x defined in a o-field BOB*(P)
we shall say that a closed set QC P semi-reduces p if (1) u(@G)>0
whenever @ is open, G « B, G@=:0, (2) u(F)=0 whenever F is closed,
FeB, FQ=0. If, in addition, Qeﬂi and u(P—Q)=0 (this con-
dition 1mphes (2), of course) we shall say that Q reduces p.

It is easy to see that, given a measure y, there exists only
one, if any, closed set Q reducing u. This set, if it exists, consists
of all z «.P such that u(U)>0 for any ne1ghb0’ﬂ1‘h00d (4 of z be-
longing to B.

We shall say that a measure u is reducible or, respectwely,
semireducible if there exists a set reducing or semi-reducing pu.

It is clear that, in a perfectly normal space, every %emireducib]e

measure s reducible (for, in such a space P, we have P—Q = Z'F
where F, are closed). N

We now give two examples of non-reducible measures.

Example 1. Let the ordered set P; of ordinals £<Cw, be
given its usual topology. Let &, dencte the collection of all un-
countable FCP, such that F4-(w,) is closed. It is easy to see that
%, is countably multiplicative. Let 8B; denote the collection of all
B ¢ B(Py) containing some F e §;; clearly, B, is countably multi-
plicative. Let B denote the collection of all MCP; such that either
M or P,—M contains some F ¢ ;. It is clear that F(P,)CB, B is
a o-field; hence B(P;)CB. For B e B(P;) put u(B)=1 if Be By
otherwise u(B)=0. It is easy to verify that x4 is a two-valued Borel
measure. The one-point set (w;) semi-reduces g, but g is not re-
ducible, for u(P—(w,))=1.

Example 2. Put P,,-:Pl——,(wlﬂ). For B e B(P,) put »(B)=u(B),
where x is the measure from Example 1. Then » is a two-valued
Borel measure in P, and is not semi-reducible (for every point has
& neighbourhood of measure zero whereas »(Pp)=1).

Definitions. A space P is -called fully mormal (cf. J. Tu-
key [8]) if there exists, for any open covéfing U, an open covering B
which has the followmg property: for any « e P, there is a set Uell
such that VCU whenever z¢V ¢ B.
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A collection ¢) M of sets MCP is called locally findte (relative
to P) if every xe P has a neighbourhood which intersects only
a finite number of sets M <M.

- A space P is called paracompact (J. Dieudonné [1]) if, for
any open covering I, there exists a locally finite open covering B
such that every 'V e®B is contained in some U eU). It is known
{cf. [8] and [1]) that every fully normal or paracompact space ix
normal. The following important theorem due to A. H. Stone [7]
will be used throughout in the sequel: .

A space is fully normal if and only if it is paracompact.

Lemma 2. Let P be a normal space, let {Gilrer be a locally
finite covering of the space P, and let F,e F*P), F,CQ., for any
v e T. Then ) F,ec F*P).

T

Remark. T is an arbitrary abstract set of indices, of course.

Proof. For any v e T, there exists a continuous real-valued

function 7, in P such that 0<f:(z)<1, for any ae P, {7 (0)= o,
fo{1)DP—G,. For any z <P, put f(m)—lnf fo(®). Then z e F=3F,

sel
implies f(#)=0. If £ non ¢ F, then f,(2) >0 for all 7, and f,(z)=1
for all = except a finite number (for {@;} isloc ally finite); there-
fore f(#)>0. Thus F=72(0). Every x ¢ P has a neighbourhood U
such that UG,=0 except for r=1x, k=1,..,n. Then ye U im-

plies f(y)= inf f,k(y). Therefore f is continuous which proves the
k=1..n
lemma.

Lemma 3. Let P be normal, let {Qeler be a locally finite oper
covering, and let A.CGc, A.e F3(P) for any teT. Then ) A, F4P).

Proof. We have A,zZF,,,,, Fene F*P). By Lemma 2,

2 Fne FXP), n=1,2,... Hence Z,‘A,_ 2 2 Fop e F4P).

n=i ¢

4) Since indexed systems of sets (cf. [8] or [4]) will ocour rather often
in the sequel, we state the corresponding definition for such systems explicitly
too: an indexed system {Mz}se7 of sets M;CP will be called locally finite if
every ze P has a nelghbourhood U such that UM¢=0 except for a finite number
of indices 7.
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Lemma 4. If P is fully normal and TG,CP, ¢eR, are such
that EInt U,=P, then there exists a locally finite open covering
{G,},Eq which refines {Int Uy}, and sets H, < F*P),
H.C@,, > H,=P.

T

v¢ T, such that

Proof. Since P is fully normal, {Int U,} has a locally finite
refinement {@,}. Now, the following theorem (see e.g. [4], p. 26)
is well-known: if P is normal, then every point-finite (i.e. such
that no @ e P lies in infinitely many sets @) covering {G;} is shrink-
able, that is, there exist closed sets F,C G such that ) F.=P. Given
such sets, there exist continuous real-valued functions %, equal
to 0 in Fy, to 1 in P—G@,. Then sets H,, each consisting of points
z € P such that fy2)<4, have the properties required.

Definition. Let M be a family of subsets of a spacé P. A set
ACP is said to belong locally to the family I (or: to be locally an
Pt-set) if every x e P has a neighbourhoecd U such that U4 ¢

Proposition 1. Let P be fully normal. If MCP belongs locally
to F*(P), then M e F*(P); if MCP belongs locally to FiP), then
MCF¥P).

Proof. Every x ¢ P has a neighhourhood U, sueh that U, M e §,
where § denotes F*(P) or, respectively, F3(P). Since 2 IntU,=P,
apply Lemma 4. Since every H, is contained in some U,, we have
H.M=U_.MH.. Since Lemma 1 implies that the family § is (finitely}
multiplicative, we have H, M ¢ §. Now, since the system @, is locally
‘inife, apply Lemma 2 or 3.

Remark. Theorems similar to the above Propesition 1 are
ell-known in the theory of metric spaces (¢f. e.g. C. Kuratow-
i [3], § 26, X). It is possible to show that many, if not all, such
eorems (except, of course, those in which the assumption of sepa-
hility is essential) obtain in arbitrary fully normal spaeces (of

ich the metrisable ones constitute a special case).

Proposition 1a. Let P be fully normal and let {d:}:¢1 be
Ty finite. If every A, belongs to F*(P), then Z,;A, belongs to
T€

°); if every A, belongs to F;(P), then Z‘;’A,st(P).
€

This follows at once from Proposition 1 and Lemma 1.
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Proposition 2. Let P be a fully normal space. Then; given

an’ open covering ®, there ewists ‘a completely additive field of sets U

such that (1) Ae FAP), (2) P, (3) every atom 5 of W is conta-

ined in some @ B, (4) the collection of ‘atoms of A s locally finite.

Proof. By Lemma 4, there exists a locally finite indexed

system {Hober such that X H.,=P, every H, belongs to F*(P)
T

and is contained in some @ ¢ ®. For any % ¢ P, let I'. denote the
set of e T such that » eH., and let S, denote the set of ze P such
that I'y,=I%. If 2¢P, y eP, S;+= 8y, then I'n==TI", hence there exists
e.g. 7ely=—I%; then ze H, whenever zefy, znon ¢ H, whenever
2 ey, and therefore 8,8,=0.

Let S(M) denote, for any MCP, the sum of all S, we M,
and let 9 denote the collection of all S(M). Clearly, % is a com-
pletely additive field of sets and has properties (2) and (3), for the
sets §, are precisely the atoms of 2. We shall show that the col-
Jection of all Sy is locally finite. Consider a point a ¢ P. There exists
a neighbourhood U of @ such that UH.=0 for all 7, except for
7e¢KCT, K finite (nen-void). For every @ e U, we have I'CK.
Sinee K is finite, we infer that there exist (k) ¢ U, k=1 <eny M, SUCH

that every Iy, U, is equal to some Ig. Then 2 ST and

therefore, two different S, 8y being always disjoint, the collection
of atoms is locally finite.

‘We have now only to prove that every S, belongs to F3(P).
This will imply, the eollection of all 8, being locally finite, that ¥
has property (1). Consider S, aeP. Every #¢P has a neighbourhood
T ¢ F*(P) which intersects H. only for 7eK, KCT finite. It is
easy to see that VS, consists of points z e ¥ which belong to each
H,, 7 el and to no Hy, ©e K—I,. Therefore, ¥, is equal to the
intersection of a finite number of sets belonging either to F*(P)
or to G*P), hence to F¥P). Hence, by Lemma 1, VS Fi(P).
Thus S, belongs loeally to F%(P) whence, by Proposition1, S.e F(P)
which completes the proof. ‘

Lemma 5. In order that a Borel measure p in a normal space P
be semi-reducible, it is necessary and sufficient that its Baire restric-
tion 5) be semi-reducible.

5) If 9f is a field of sets, then 4 el is called an aiom (of the field ) if

A0 and ADB+40, Bed implies B=A4.
#) That is, the Baire measure yu’ defined by w/(B)=p(B) for Be B*(P).
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Proof. It is clear that if Q semi-reduces p, then it semi-reduces
its Baire restriction u’ too. If a closed set @ semi-reduces u’, let F
be closed, FQ= 0. Then clearly there exists F; e F¥(P), F,.DF, F,Q=®,
and we have u(¥F,)=p'(F;)=0 and therefore u(F)=0. 4
The proof of the following lemma may be omitted.

Lemma 6. Let P be a space, SCP. If BCP is a ’Borcl or Baire
set (in P), then BS e B(S) or BS ¢ B¥(S), respectively. If S is a Borel
or Buaire set, then B(S)CB(P) or B*8)CB*(P) respectively.

Proposition 3a. If every (two-valued ) Borel measure in a space P
is semi-reducible, and SCP is closed, then every (two-valued) Borel
measure i S s semi-reductble.

Proof. Let x be a Borel measure in §. For Be B(P), put
»(B)= u(BS); this is possible, by Lemma 6. Let QCP be a closed
set which semi-reduces ». Put Ql_QS It is easy to see that @
semi-reduces gu.

Proposition 3b. If every (two-valued) Baire measure in
a normal space P is semi-reducible, and SCP is closed, then every
(two-valued) Baire measure in S is semi-reducible.

Proof. If 4 is a Baire measure in 8, put »(B)=u(BS), for
any B e B*(P), which is possible by Lemma 6. If QCP is closed
and semi-reduces », put @ =@8. If HCS is open (in S), H ¢ B*S),
H();=0, then choose a point aeHQ,; it is easy to see that
there exists a set G e G*(P) such that ae@, (S—H)G=0. Then
#(G8)=»(G") >0; hence u(H)>0, for HDGS. If FCS is closed (in §),
F e BXS), FQ;=0, then FQ 0 and therefore, for some F, e F*P)
we have FCFn FQ=0, o(Fy)=0, u(F\8)=0, y(F)=0.

Proposition 3ec. I]‘ every (two-valued) Borel measure in
« space P is reducible, and SCP, then every (two-valued) Borel mea-
sure in S is reducible.

Proof. If ¢ is a Borel measure in S, put »(B)=u(BS) for Be B(P).
If QCP reduces », put Q,=@S8. Then u(S—@,)=u((P—Q)8)=y(P—Q)=0.
If HCS is open in 8, let H=@S, G open in P. If HQ, 0, then
GQ==0, u(H)=»@)>0.

Theorem 1, Let P be fully normal. In order that every (two-
valued) Borel or Baire measure in P be semi-reducible, it is neces-
sary and sufficient thai every (two-valued) Borel measure m any
closed discrete subspace of P be reducible.
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Remark. The above necessary and sufficient condition may
be stated in terms of ,,power of measure zero”, see [5], as follows:
the power of amy closed discrete subspace of P has (two-valued)
measure zero.

Proof. Necessity follows from Proposition 3a and 3b.

Sufficiency. By Lemma 5, we may Trestrict ourselves to
Baire measures. Let u be a Baire measure in P which is not semi-
reducible. Let @ denote the set of points @ ¢ P such that w(U)>0
for every neighbourhood U e B*P) of z. Clearly, @ is closed and
#(G) >0 whenever @ is open, G ¢ B¥P), @Q==0. Hence there exists
a closed set § ¢ B*P) such that SQ =0, u(8)>0; for otherwise u
would be semi-reducible. We may assume that § ¢ F*(P); for other-
wise there exists §; e F*(P), 8,28, 8,Q=0, and we may- consider §,
instead of 8. Bvery # eS8 has an open neighbourhood U, e B¥(P)
such that u(U,)=0. Since Z,'U,;)S, and § is fully normal (for

X

every closed subspace of a fully normal space is fully normal),
there exists, by Proposition 2, a completely additive field of sets
ACFY(8) such that

(1) the collection U, of all atoms of A is locally finite;

(2) 4 <%, implies u(4)=0; for, by Lemma 6, 4 ¢« F*P), and,
by Proposition 2, every A4 ¢, is contained in some U,;

(3) Se.

Now choose, for any 4 e Uy, 2 point a=w(4) ¢ 4, denote by X
the set of all points «(4), let, for any MCX, p(M) denote the sum
of all 4 ¢¥, intersecting M, and put, for MCX, »M)= u(p(M)).
Since A, is a locally finite collection of disjoint sets, X is closed
diserete. Clearly, » is a (two-valued) Borel measure?) in X. The
measure » is not reducible; for otherwise, X being discrete, some
one-point subset of X would be of positive measure and therefore
we should have u(4)>0 for some A %, which contradicts the
above property (2).

i

Theorem 2. Let P be hereditarily fully normal. In order that
every (two-valued) Borel measure in P be reducible, it is necessary
and sufficient that every (two-valued) Borel measure in any discrete
subspace of P be reducible.

7) It is clear that a Borel measure in a discrete 8pace Z is simply a finite
non-negative ¢-additive function in the (completely additive) field of all subsets
of Z.

icm

Measures in fully normal spaces 81

Remark. It is again possible to state this condition in terms
of ,power of measure zero” as follows: the power of any discrete
subspace of P has (two-valued) measure zero. ‘

Proof. Necessity follows from Prbposition 3a.

Sufficiency. Suppose that a Borel measure «in P is not
reducible. Dencting by @ the set of xeP such u(U)>0 for every
open neighbourhood U of », we have u(P—@)>0, for otherwise
Q would reduce u. Consider the restriction u’ of z to B(P—@).
Clearly, u' is not semi-reducible. Hence, by Theorem 1, there exists
a discrete set XCP—@ and a (two-valued) Borel measure in X
which is not reducible.

Remarks. 1° 1t is well-known that every metrisable space
is fully normal; see e. g. Tukey [8]. Therefore, Theorems III, TV,
V, VI of [5] fellow at once from the above Theorem 2-

20 The class of fully normal spaces is much broader than that
of metrisable ones. On the other hand, the proafs of decomposition
theerems (for metrisable spaces) given in [5] are much simpler than
the corresponding proofs in the present note. In [5], Montgomery's
theorem (see [6], Lemma 2, p. 528) is essential. 1t may be noticed
that the proof of A. H. Stone's theorem (asserting that every fully
normal, e.g. every metrisable space is paracompact) rests on an
idea closely related to that of Montgomery, and that A. H. Stone’s
theorem is vital for the proofs of the theorems of the present note.

We shall now consider @-spaces.

Definition. A completely regular space P is called a @-space
if it is impossible to imbed P into a completely regular space SOP
in such a way that S=P, §=P, and every (bounded or not) con-
tinnous real-valued function f in P is extensible 8) over S.

@-spaces are known (see [2]) to possess many important pro-
perties. Therefore, it is interesting to find properties sufficient for
a completely regular space to be a Q-space. Thus E. Hewitt [2]}
has posed the problem whether every metrisable space is a Q-space.
We shall prove that, under certain restrictions, every fully normat -~
space is a Q-space.

®) This means: there exists a continuous real-valued (co and —oo exclu-
ded) function F in § such that F(z)=f(z) whenever ¢ P.
Fundamenta Mathematicae. T. XXXVHI. 3
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Proposition 4. Bvery closed subspace of a Q-space is a Q-space.

Proof. Suppose that PCR is closed and is not a_Q-space.
Then there exists a completely regular space SDP, S=P, §=P,
such that every continuous real-valued function ¢ in P is exten-
dible over § (this extension is unique, of course). Evidently, we
may suppose that §—P confains a single point & For any fed
where @ denotes the set of all continuous real-valued functions f
in R, let ' denote the restriction of f to P, and let f* denote the
extension of f' over P+ (&). K

Now let us define a topology in T'=R-- (&) as follows: & e M,
where MCR, if and only if f*(&) e f(M), for any f e @; R is imbedded
in T as an open set. 1t is easy to see that I’ is completely regular
and every f € @ is extendible (continuously) over T'. Therefore, R is
not a @-space.

Lemma 7. If S is a completely regular space, PCS s not closed,

and every continuous real-valued function f-in P is extendible to 8,
then P non € F,(8).

Proof Suppose, on the contrary, that P= 2 A,, A, closed

in §. Choose a point & e P—P. There exist contmuous functions f,
in § such that (1) 0<{fo{#)<1, for any z ¢ 8, (2) fa(§)=0, (3) ful@)=

if eAd,. Put f=3 2", Then f is continuous, f(£)=0, f(z)>0
n=1

if # ¢ P. Now put for & € P, g(z) = log f(x). Then ¢ is a continuous

function in P not extendible over S.

) Lemma 8. If PCS, P is normal, and every bounded conti-
nuous real-valued function in P is extendible over 8, then AB=0
whenever A, B are disjoint closed (in P} subsets of P.

Proof. Suppose that & ¢ AB; since P is normal, there exists
a bounded continuous real-valued funection f in P such that f(4)=0,
f(B)=1. Clearly, f is not extendible over &.

Theorem 3. In order that a fully normal space P be a Q-space,
it 18 necessary and sufficient that every closed discrete subspace of P
be a Q-space. ’

Proof. Necessity follows from Proposition 4.

Sufflclency Suppose now that P is not a @-space. Then,
there exists a completely regular space SDP, S==P, such that §=P
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and every continuous real-valued function in P is extendible to §;
we may, of course, suppose that S—P contains a single point £.
Since P is covered by open sets GCP such that £non e @, there
exists, by Proposition 2, a completely additive field of sets QIeF*(P
such that the collection %, of all atoms of 9 is locally finite
and £noned Whenever A4 e?Ia For any A ¥, there exist sets

B(A4,n) e F*(P) such that E.B(A,n):A. Since every collection
=1

{B(4,n)}, n fixed, is locally finite, we have, by Proposition 1a,
B, ¢ F*(P), where B, denotes the sum of all B(4,n), n fixed. Since

ZI'B,———P, we have, by Lemma 7, & e B,, for some p. Put B=B,
=

and let B denote the collection of all B4, A % Clearly, B is
a completely additive o-field, the collection B, of atoms of B con-
aists of sets BA=DB(4,p), 4 ¢ W,, hence B,CF*(P), and therefore,
by Proposition la, every set from B belongs to F*(P). It is
clear that

(a) £non ¢ 0 whenever ( e B,.

Lemmas 7 and 8 imply that
(b) given disjoint Cre®B (k=1,2,..) such that }_','0,,=B

there exists exactly one k, such that £eCj,-

Let XCB intersect every set from B, in exactly one pom“r
Since By is loeally finite, X is a closed discrete subspace of P. For
any MCX, let ¢(M) denote the sum of all sets from B which inter-
sect M; let M denote the collection of MCX such that & eg(HM).
Then the above property (a) implies that

(a’) M contains no finite set,

and property (b) implies

(b") if MCX (k=1,2,
for exactly one k.

Let 5 be an arbitrary element not belonging to X. Put T=X--(%);
for MCT, put M=M-(y) if MX eI, otherwise M=M. Then
X=T, T is completely regular (we make use of (a’) here). It is easy
to conclude from (b’) that every real-valued function in X is ex-
tensible to £. Therefore, X is not a @-gpace.

...) are disjoint, > My=2X, then MzeDt
n=]

Corollary. A metrisable space P is always a Q-space unless
it contains a discrete set which is not a Q-space.
8%
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Proof. We have only to prove: if XCFP is discmﬁe and is not
@ Q-space, then P cannot be & Q-space. Put §=P—(X~—X). Then
X m a closed subset of §, hence, by the above theorem, § is not

:S ZISMSGF()

Lemma 7 implies that some S is not a @-space; thelefore, by Pro-
position 4, P is not a @-space.

Remark. It is easy to show that a discrete space is a @-space
if and dnly if it does not admit of a non-reducible two-valued
Borel measure, that is if its power has two-valued measure zero.
Therefore, Theorem 3 may-be given the following equivalent form:
A fully normal space P is a Q-space if and only if the power of any
elosed discrete subset of P has two-valued measure zero.

a Q-space. Since P is metrisable, 8¢ Fo(P
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On Real-Valued Functions in Topological Spaces.
By
M. Katétov (Praha).

The following theorem ) of H. Hahn is well-known: if g and &
are real-valued functions in a metric space P, g is upper semicon-
tinuous 2), k is lower semicontinuous 2), and g{z)< k(=) for any z ¢ P,
then there exists a continuous funetion j such that glz)<flz)< h(z)
for every x e P. If < is substituted for <, the theorem still holds.
In his paper [4], J. Dieudonné has extended Hahn’s theorem
{with < or <) to paracompact 3) spaces. In the present note, it is
shown that Hahn’s theorem holds (i) with <, in arbitrary normal 4)
spaces (Theorem 1); (ii) with <, in a broad class (specified in Theo-
rem 2) of normal spaces including paracompact, countably com-
pact 5) and perfectly normal®) ones (as a matter of fact, I do not
know whether there exists any normal space not belonging to this
class).

1) See e. g. [5], 36.
of the present note).

2} A real-valued function g defined in a topological space P is called upper
semicontinuous if, for any a € P and any ¢> g(a), there exists a neighbourhood U
of a such that ¢> g(x) whenever xe U. Substituting < instead of >, we obtain
the definition of the lower semicontinuity.

3) A topological space P is called paracompact if, for any open covering
® of P, there exists an open covering § which refines & (i. e. every He9 is
contained in some G e &) and is locally finite (i.e. such that every point has
a neighbourhood intersecting only a finite number of sets H e §). See J. Dien-
donné’s paper [4].

4} A topological space P iz called normal if any two disjoint closed sets
possess disjoint neighbourhoods.

5) A topological space is called countably compact if every countable open
covering contains a finite subcovering. -

§) A normal space it called perfectly normal if every closea met can he
represented as the intersection of countably many open sets.

2. ¢ (numbers in brackets refer to the list at the end
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